metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­aqua­bis­­(cyclo­hexane-1,2-di­amine)­zinc(II) dichloride

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 28 February 2011; accepted 3 March 2011; online 12 March 2011)

In the title compound, [Zn(C6H14N2)2(H2O)2]Cl2, the Zn(II) atom resides on a special position with site symmetry 2/m and is octa­hedrally coordinated by four N atoms from two trans 1,2-diamino­cyclo­hexane ligands and two water O atoms. In the crystal, N—H⋯Cl and O—H⋯Cl hydrogen bonds link the mol­ecules into a two-dimensional network parallel to the bc plane.

Related literature

For an isotypic nickel(II) complex, see: Capilla et al. (1980[Capilla, A. V., Aranda, R. A. & Gomez-Beltran, F. (1980). Cryst. Struct. Commun. 9, 147-150.]) and for an analogous copper(II) complex, see: Pariya et al. (1998[Pariya, C., Liao, F.-L., Wang, S.-L. & Chung, C.-S. (1998). Polyhedron, 17, 547-554.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H14N2)2(H2O)2]Cl2

  • Mr = 400.69

  • Orthorhombic, C m c e

  • a = 24.6478 (4) Å

  • b = 9.5107 (2) Å

  • c = 7.6723 (2) Å

  • V = 1798.52 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 100 K

  • 0.26 × 0.21 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.670, Tmax = 0.936

  • 4324 measured reflections

  • 999 independent reflections

  • 805 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.053

  • S = 1.04

  • 999 reflections

  • 61 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.87 (1) 2.80 (1) 3.6139 (13) 156 (1)
N1—H1B⋯Cl1 0.87 (1) 2.70 (1) 3.5206 (14) 157 (1)
O1—H1O⋯Cl1 0.83 (1) 2.26 (1) 3.0857 (12) 173 (2)
Symmetry code: (i) [x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title ZnII complex (Fig. 1) is isostructural with a previously reported NiII complex (Capilla et al., 1980). The metal center in the title complex is located on a special position with site symmetry 2/m, and is six-coordinated in a distorted octahedral geometry. The equatorial plane is defined by four N atoms from two trans-1,2-diaminocyclohexane, while the axial positions are occupied by two water molecule oxygen atoms. This arrangement is similar to what was observed in an analogous CuII complex (Pariya et al., 1998). In the crystal, an O—H···Cl interaction connects the cationic complexes and chloride anions into infinite chains along the c-axis. The chains are further linked by N—H···Cl hydrogen bonds into layers parallel to the bc plane.

Related literature top

For an isotypic nickel(II) complex, see: Capilla et al. (1980) and for an analogous copper(II) complex, see: Pariya et al. (1998).

Experimental top

The colorless crystals of the title compound were obtained upon slow evaporation of an ethanolic solution (20 ml) of trans-l,2-diaminocyclohexane (0.23 g, 2 mmol) and zinc(II) acetate dihydrate (0.22 g, 1 mmol) in the presence of a few drops of HCl (37%).

Refinement top

The C-bound hydrogen atoms were placed at calculated positions with C—H = 0.99 and 1.00 Å for methylene and methyne type H-atoms, respectively. The hydrogen atoms bonded to N and water molecule were located from a difference map and included with restraints: O—H = 0.84 (2) and N—H = 0.88 (2) Å. For hydrogen atoms Uiso(H) were set to 1.2–1.5 times Ueq(carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry codes: ' = -x, -y, -z; " = x, -y, -z; "' = -x, y, z.
trans-Diaquabis(cyclohexane-1,2-diamine)zinc(II) dichloride top
Crystal data top
[Zn(C6H14N2)2(H2O)2]Cl2F(000) = 848
Mr = 400.69Dx = 1.480 Mg m3
Orthorhombic, CmceMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 2315 reflections
a = 24.6478 (4) Åθ = 3.3–30.5°
b = 9.5107 (2) ŵ = 1.67 mm1
c = 7.6723 (2) ÅT = 100 K
V = 1798.52 (7) Å3Prism, colorless
Z = 40.26 × 0.21 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
999 independent reflections
Radiation source: fine-focus sealed tube805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 27.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3131
Tmin = 0.670, Tmax = 0.936k = 1112
4324 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0239P)2 + 1.6417P]
where P = (Fo2 + 2Fc2)/3
999 reflections(Δ/σ)max < 0.001
61 parametersΔρmax = 0.36 e Å3
3 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Zn(C6H14N2)2(H2O)2]Cl2V = 1798.52 (7) Å3
Mr = 400.69Z = 4
Orthorhombic, CmceMo Kα radiation
a = 24.6478 (4) ŵ = 1.67 mm1
b = 9.5107 (2) ÅT = 100 K
c = 7.6723 (2) Å0.26 × 0.21 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
999 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
805 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.936Rint = 0.019
4324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0213 restraints
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.36 e Å3
999 reflectionsΔρmin = 0.24 e Å3
61 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.00000.00000.01354 (11)
O10.00000.10232 (16)0.2580 (2)0.0194 (3)
H1O0.0266 (6)0.0795 (18)0.318 (2)0.029*
N10.06632 (5)0.13128 (13)0.07888 (18)0.0163 (3)
H1A0.0617 (6)0.2190 (15)0.050 (2)0.020*
H1B0.0698 (7)0.1249 (17)0.1918 (18)0.020*
C10.11721 (5)0.08041 (15)0.0016 (2)0.0168 (3)
H10.11740.11110.12630.020*
C20.16808 (5)0.13853 (17)0.0850 (2)0.0205 (3)
H2A0.16780.11360.21020.025*
H2B0.16810.24230.07570.025*
C30.21934 (6)0.08004 (18)0.0001 (2)0.0255 (4)
H3A0.22180.11460.12130.031*
H3B0.25160.11450.06430.031*
Cl10.091868 (19)0.00000.50000.02019 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01056 (16)0.01421 (18)0.01585 (18)0.0000.0000.00039 (15)
O10.0165 (7)0.0220 (8)0.0197 (8)0.0000.0000.0020 (7)
N10.0158 (6)0.0144 (6)0.0188 (6)0.0013 (5)0.0016 (5)0.0005 (6)
C10.0132 (6)0.0175 (8)0.0197 (7)0.0003 (6)0.0009 (7)0.0003 (7)
C20.0159 (7)0.0209 (8)0.0247 (8)0.0033 (6)0.0007 (6)0.0013 (7)
C30.0148 (7)0.0274 (9)0.0342 (9)0.0031 (6)0.0007 (7)0.0014 (9)
Cl10.0188 (3)0.0243 (3)0.0174 (3)0.0000.0000.0004 (2)
Geometric parameters (Å, º) top
Zn1—N1i2.1440 (13)C1—C21.5227 (19)
Zn1—N1ii2.1440 (13)C1—C1iii1.530 (3)
Zn1—N1iii2.1440 (13)C1—H11.0000
Zn1—N12.1441 (13)C2—C31.526 (2)
Zn1—O12.2057 (16)C2—H2A0.9900
Zn1—O1i2.2057 (16)C2—H2B0.9900
O1—H1O0.831 (13)C3—C3iii1.522 (3)
N1—C11.4795 (18)C3—H3A0.9900
N1—H1A0.871 (14)C3—H3B0.9900
N1—H1B0.873 (13)
N1i—Zn1—N1ii80.65 (7)Zn1—N1—H1B108.4 (11)
N1i—Zn1—N1iii99.35 (7)H1A—N1—H1B109.5 (16)
N1ii—Zn1—N1iii180.00 (8)N1—C1—C2113.42 (12)
N1i—Zn1—N1180.0N1—C1—C1iii108.68 (10)
N1ii—Zn1—N199.35 (7)C2—C1—C1iii110.85 (10)
N1iii—Zn1—N180.65 (7)N1—C1—H1107.9
N1i—Zn1—O189.79 (5)C2—C1—H1107.9
N1ii—Zn1—O190.21 (5)C1iii—C1—H1107.9
N1iii—Zn1—O189.79 (5)C1—C2—C3111.30 (13)
N1—Zn1—O190.21 (5)C1—C2—H2A109.4
N1i—Zn1—O1i90.21 (5)C3—C2—H2A109.4
N1ii—Zn1—O1i89.79 (5)C1—C2—H2B109.4
N1iii—Zn1—O1i90.21 (5)C3—C2—H2B109.4
N1—Zn1—O1i89.79 (5)H2A—C2—H2B108.0
O1—Zn1—O1i180.00 (7)C3iii—C3—C2111.41 (11)
Zn1—O1—H1O112.5 (13)C3iii—C3—H3A109.3
C1—N1—Zn1109.77 (9)C2—C3—H3A109.3
C1—N1—H1A108.5 (11)C3iii—C3—H3B109.3
Zn1—N1—H1A112.7 (11)C2—C3—H3B109.3
C1—N1—H1B107.9 (11)H3A—C3—H3B108.0
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1iv0.87 (1)2.80 (1)3.6139 (13)156 (1)
N1—H1B···Cl10.87 (1)2.70 (1)3.5206 (14)157 (1)
O1—H1O···Cl10.83 (1)2.26 (1)3.0857 (12)173 (2)
Symmetry code: (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C6H14N2)2(H2O)2]Cl2
Mr400.69
Crystal system, space groupOrthorhombic, Cmce
Temperature (K)100
a, b, c (Å)24.6478 (4), 9.5107 (2), 7.6723 (2)
V3)1798.52 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.26 × 0.21 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.670, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
4324, 999, 805
Rint0.019
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.053, 1.04
No. of reflections999
No. of parameters61
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.871 (14)2.800 (14)3.6139 (13)156.1 (14)
N1—H1B···Cl10.873 (13)2.702 (14)3.5206 (14)156.8 (14)
O1—H1O···Cl10.831 (13)2.260 (13)3.0857 (12)173.0 (17)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem, 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCapilla, A. V., Aranda, R. A. & Gomez-Beltran, F. (1980). Cryst. Struct. Commun. 9, 147–150.  Google Scholar
First citationPariya, C., Liao, F.-L., Wang, S.-L. & Chung, C.-S. (1998). Polyhedron, 17, 547–554.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds