organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-3-(2-methyl­phen­yl)-3,3a,4,9b-tetra­hydro-1H-chromeno[4,3-c][1,2]oxazole-3a-carbo­nitrile

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 7 March 2011; accepted 11 March 2011; online 19 March 2011)

In the title compound, C19H18N2O2, the five-membered isoxazole ring adopts an envelope conformation and the deviation of the N atom from the mean plane of the isoxazole ring is −0.3256 (11) Å. The pyran ring adopts a half-chair conformation. The isoxazole ring forms dihedral angles of 44.07 (7) and 84.23 (7)° with the pyran and methyl­benzene rings, respectively. The mol­ecular structure is stabilized by weak C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Bakthadoss & Murugan (2010[Bakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825-5830.]). For the biological and pharmacological activities of isoxazole derivatives, see: Hu et al. (2004[Hu, H., Harrison, T. J. & Wilson, P. D. (2004). J. Org. Chem. 69, 3782-3786.]); Lin et al. (1996[Lin, G. N., Lu, C. M., Lin, H. C., Fang, S. C., Shieh, B. J., Hsu, M. F., Wang, J. P., Ko, F. N. & Teng, C. M. (1996). J. Nat. Prod. 59, 834-838.]); Rozman et al. (2002[Rozman, B., Praprotnik, S., Logar, D., Tomsic, M., Hojnik, M., Kos-Golja, M., Accetto, R. & Dolenc, P. (2002). Ann. Rheum. Dis. 61, 567-569.]). For a related structure, see: Swaminathan et al. (2011[Swaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o799.]). For puckering amplitudes, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N2O2

  • Mr = 306.35

  • Monoclinic, P 21 /n

  • a = 11.0120 (4) Å

  • b = 13.0368 (4) Å

  • c = 11.1977 (3) Å

  • β = 97.836 (2)°

  • V = 1592.54 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 23069 measured reflections

  • 5936 independent reflections

  • 3084 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.148

  • S = 1.01

  • 5936 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18BCg1i 0.96 2.99 3.6831 (16) 130
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is an angularly substituted fused tricyclic chromenoisoxazolidine framework, synthesized using Baylis-Hillman derivatives through in situ formation of nitrones followed by an intramolecular (3 + 2) dipolar cycloaddition reaction sequence (Bakthadoss & Murugan, 2010). It is well known that benzopyran and isoxazolidine derivatives possess interesting biological and pharmacological activities (Lin et al., 1996; Hu et al., 2004). Leflunomide is an isoxazole drug used for the treatment of rheumatoid arthritis (Rozman et al., 2002).

The title compound (Fig. 1) comprises a chromenoisoxazole ring system attached to a methylbenzene ring and a carbonitrile group. The isoxazole ring (N1/O2/C7/C8/C10) adopts an N1 envelope conformation with N1 -0.3256 (11) Å out of the plane formed by the rest of the ring atoms. The isoxazole ring is inclined at 84.23 (7)° with respect to the mean-plane formed by methylbenzene ring (C11—C16). The pyran ring (O1/C1/C6-C9) adopts a half-chair conformation with puckering amplitudes (Cremer & Pople, 1975): Q = 0.4852 (13) Å, θ = 127.2 (2)° and ϕ = 107.9 (2)°. The title compound exhibits structural similarities with a reported structure (Swaminathan et al., 2011). The molecular structure of the title compound is stabilized by rather weak C18—H18B···π interactions involving the centroid (Cg1) of phenyl ring C11–C16 (Table 1).

Related literature top

For synthetic aspects, see: Bakthadoss et al. (2010). For biological and pharmacological activities of isoxazole derivatives, see: Hu et al. (2004); Lin et al. (1996); Rozman et al. (2002). For a related structure, see: Swaminathan et al. (2011). For puckering amplitudes, see: Cremer & Pople (1975).

Experimental top

A mixture of (E)-2-((2-formylphenoxy) methyl) -3-o-tolylacrylonitrile (1.0 mmol), N-methylhydroxylamine hydrochloride (1.1 mmol), pyridine (0.24 ml, 3 mmol) and ethanol (5 ml) were placed in a round bottom flask and refluxed for 6 h. After completion of the reaction as indicated by TLC, the reaction mixture was concentrated under reduced pressure. The crude product was diluted with water (10 ml) and dil HCl (5 ml) and extracted with ethylacetate (20 ml). The organic layer was washed with brine solution (10 ml) and concetrated. The crude product was purified by column chromatography to provide the pure title compound, as a colourless solid. Crystals of the title compound were grown from its solution in methanol by slow evaporation at room temperature.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methylene and methyne type H-atoms, respectively, and refined in riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(methyl-C) and Uiso(H) = 1.2 Ueq(the rest of the C atoms).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are drawn as small spheres of arbitary radius.
1-Methyl-3-(2-methylphenyl)-3,3a,4,9b-tetrahydro-1H- chromeno[4,3-c][1,2]oxazole-3a-carbonitrile top
Crystal data top
C19H18N2O2F(000) = 648
Mr = 306.35Dx = 1.278 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 5936 reflections
a = 11.0120 (4) Åθ = 1.0–25°
b = 13.0368 (4) ŵ = 0.08 mm1
c = 11.1977 (3) ÅT = 293 K
β = 97.836 (2)°Block, colourless
V = 1592.54 (9) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3084 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 33.1°, θmin = 2.4°
ω scansh = 1516
23069 measured reflectionsk = 1819
5936 independent reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.0556P]
where P = (Fo2 + 2Fc2)/3
5936 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H18N2O2V = 1592.54 (9) Å3
Mr = 306.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0120 (4) ŵ = 0.08 mm1
b = 13.0368 (4) ÅT = 293 K
c = 11.1977 (3) Å0.30 × 0.25 × 0.20 mm
β = 97.836 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3084 reflections with I > 2σ(I)
23069 measured reflectionsRint = 0.035
5936 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
5936 reflectionsΔρmin = 0.21 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38107 (11)0.12807 (10)0.10789 (11)0.0446 (3)
C20.43271 (13)0.21739 (11)0.15852 (13)0.0582 (4)
H20.47060.21780.23800.070*
C30.42782 (15)0.30530 (12)0.09094 (15)0.0654 (4)
H30.46350.36520.12450.078*
C40.37052 (14)0.30563 (12)0.02619 (15)0.0640 (4)
H40.36850.36530.07200.077*
C50.31626 (13)0.21749 (10)0.07520 (13)0.0536 (3)
H50.27540.21870.15350.064*
C60.32143 (11)0.12627 (9)0.00950 (10)0.0425 (3)
C70.25834 (11)0.03122 (9)0.06218 (10)0.0407 (3)
H70.17450.04730.09870.049*
C80.25759 (10)0.05625 (9)0.02964 (10)0.0396 (3)
C90.37624 (12)0.05094 (10)0.11822 (11)0.0458 (3)
H9A0.37760.10680.17560.055*
H9B0.44580.05930.07440.055*
C100.25780 (11)0.15460 (10)0.05147 (10)0.0448 (3)
H100.33440.19230.02880.054*
C110.15148 (11)0.22621 (9)0.04883 (10)0.0430 (3)
C120.03836 (12)0.19982 (11)0.11130 (12)0.0528 (3)
H120.03130.14110.15890.063*
C130.06361 (13)0.25916 (12)0.10388 (13)0.0577 (4)
H130.13900.24070.14620.069*
C140.05336 (13)0.34544 (11)0.03398 (13)0.0571 (4)
H140.12210.38540.02780.069*
C150.05804 (14)0.37299 (10)0.02683 (12)0.0544 (3)
H150.06380.43220.07350.065*
C160.16284 (12)0.31509 (10)0.02085 (10)0.0458 (3)
C170.28229 (15)0.35091 (13)0.08907 (14)0.0714 (4)
H17A0.33720.36980.03310.107*
H17B0.26790.40920.13760.107*
H17C0.31810.29660.14000.107*
C180.31258 (15)0.02789 (12)0.26883 (11)0.0624 (4)
H18A0.34410.01710.32510.094*
H18B0.35740.09120.26410.094*
H18C0.22750.04130.29530.094*
C190.15272 (11)0.05003 (9)0.09694 (11)0.0439 (3)
N10.32585 (9)0.02011 (8)0.15097 (8)0.0464 (3)
N20.07493 (11)0.04521 (10)0.15340 (10)0.0598 (3)
O10.38708 (8)0.04332 (7)0.18095 (7)0.0501 (2)
O20.25538 (9)0.11520 (7)0.17000 (7)0.0540 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0477 (6)0.0468 (7)0.0411 (6)0.0039 (5)0.0120 (5)0.0003 (5)
C20.0646 (8)0.0602 (9)0.0508 (7)0.0107 (7)0.0116 (6)0.0100 (7)
C30.0768 (10)0.0492 (9)0.0737 (10)0.0142 (7)0.0224 (8)0.0106 (8)
C40.0764 (10)0.0434 (8)0.0756 (10)0.0011 (7)0.0229 (8)0.0065 (7)
C50.0592 (8)0.0497 (8)0.0530 (7)0.0026 (6)0.0116 (6)0.0084 (6)
C60.0446 (6)0.0427 (7)0.0416 (6)0.0008 (5)0.0116 (5)0.0013 (5)
C70.0426 (6)0.0460 (7)0.0341 (5)0.0010 (5)0.0071 (4)0.0045 (5)
C80.0436 (6)0.0430 (7)0.0332 (5)0.0024 (5)0.0089 (4)0.0016 (5)
C90.0518 (7)0.0487 (7)0.0370 (6)0.0009 (6)0.0060 (5)0.0052 (5)
C100.0519 (7)0.0451 (7)0.0392 (6)0.0005 (5)0.0128 (5)0.0001 (5)
C110.0529 (7)0.0397 (7)0.0379 (5)0.0008 (5)0.0121 (5)0.0041 (5)
C120.0604 (8)0.0440 (7)0.0544 (7)0.0017 (6)0.0087 (6)0.0031 (6)
C130.0516 (7)0.0597 (9)0.0617 (8)0.0006 (6)0.0072 (6)0.0070 (7)
C140.0609 (8)0.0535 (8)0.0600 (8)0.0130 (7)0.0192 (7)0.0093 (7)
C150.0768 (9)0.0427 (7)0.0461 (7)0.0094 (6)0.0168 (6)0.0025 (6)
C160.0623 (8)0.0398 (7)0.0360 (6)0.0005 (6)0.0098 (5)0.0036 (5)
C170.0772 (10)0.0690 (11)0.0641 (9)0.0002 (8)0.0049 (8)0.0154 (8)
C180.0810 (10)0.0714 (10)0.0372 (6)0.0130 (8)0.0161 (6)0.0050 (6)
C190.0513 (7)0.0423 (7)0.0394 (6)0.0030 (5)0.0102 (5)0.0016 (5)
N10.0557 (6)0.0498 (6)0.0361 (5)0.0091 (5)0.0146 (4)0.0002 (4)
N20.0639 (7)0.0652 (8)0.0551 (7)0.0023 (6)0.0249 (6)0.0060 (6)
O10.0622 (5)0.0532 (6)0.0340 (4)0.0076 (4)0.0040 (4)0.0004 (4)
O20.0737 (6)0.0535 (6)0.0374 (4)0.0161 (4)0.0166 (4)0.0045 (4)
Geometric parameters (Å, º) top
C1—O11.3710 (14)C10—C111.5008 (17)
C1—C21.3830 (18)C10—H100.9800
C1—C61.3872 (17)C11—C121.3864 (18)
C2—C31.370 (2)C11—C161.3928 (17)
C2—H20.9300C12—C131.3754 (19)
C3—C41.376 (2)C12—H120.9300
C3—H30.9300C13—C141.366 (2)
C4—C51.374 (2)C13—H130.9300
C4—H40.9300C14—C151.367 (2)
C5—C61.3954 (17)C14—H140.9300
C5—H50.9300C15—C161.3882 (18)
C6—C71.5015 (17)C15—H150.9300
C7—N11.4800 (15)C16—C171.5027 (19)
C7—C81.5363 (16)C17—H17A0.9600
C7—H70.9800C17—H17B0.9600
C8—C191.4647 (16)C17—H17C0.9600
C8—C91.5305 (16)C18—N11.4498 (16)
C8—C101.5715 (17)C18—H18A0.9600
C9—O11.4124 (15)C18—H18B0.9600
C9—H9A0.9700C18—H18C0.9600
C9—H9B0.9700C19—N21.1336 (16)
C10—O21.4201 (14)N1—O21.4626 (13)
O1—C1—C2116.76 (11)O2—C10—H10109.2
O1—C1—C6122.00 (11)C11—C10—H10109.2
C2—C1—C6121.18 (12)C8—C10—H10109.2
C3—C2—C1119.65 (14)C12—C11—C16119.67 (11)
C3—C2—H2120.2C12—C11—C10119.03 (11)
C1—C2—H2120.2C16—C11—C10121.18 (11)
C2—C3—C4120.50 (14)C13—C12—C11120.98 (13)
C2—C3—H3119.8C13—C12—H12119.5
C4—C3—H3119.8C11—C12—H12119.5
C5—C4—C3119.73 (14)C14—C13—C12119.56 (13)
C5—C4—H4120.1C14—C13—H13120.2
C3—C4—H4120.1C12—C13—H13120.2
C4—C5—C6121.18 (13)C13—C14—C15120.00 (13)
C4—C5—H5119.4C13—C14—H14120.0
C6—C5—H5119.4C15—C14—H14120.0
C1—C6—C5117.72 (12)C14—C15—C16121.90 (13)
C1—C6—C7121.34 (11)C14—C15—H15119.1
C5—C6—C7120.85 (11)C16—C15—H15119.1
N1—C7—C6112.90 (9)C15—C16—C11117.88 (12)
N1—C7—C899.38 (9)C15—C16—C17118.83 (12)
C6—C7—C8113.21 (9)C11—C16—C17123.28 (12)
N1—C7—H7110.3C16—C17—H17A109.5
C6—C7—H7110.3C16—C17—H17B109.5
C8—C7—H7110.3H17A—C17—H17B109.5
C19—C8—C9109.11 (9)C16—C17—H17C109.5
C19—C8—C7112.33 (9)H17A—C17—H17C109.5
C9—C8—C7108.55 (9)H17B—C17—H17C109.5
C19—C8—C10113.95 (9)N1—C18—H18A109.5
C9—C8—C10110.06 (10)N1—C18—H18B109.5
C7—C8—C10102.61 (9)H18A—C18—H18B109.5
O1—C9—C8111.62 (10)N1—C18—H18C109.5
O1—C9—H9A109.3H18A—C18—H18C109.5
C8—C9—H9A109.3H18B—C18—H18C109.5
O1—C9—H9B109.3N2—C19—C8177.11 (13)
C8—C9—H9B109.3C18—N1—O2104.33 (9)
H9A—C9—H9B108.0C18—N1—C7114.76 (11)
O2—C10—C11109.16 (10)O2—N1—C7100.14 (8)
O2—C10—C8104.11 (9)C1—O1—C9114.23 (9)
C11—C10—C8115.69 (9)C10—O2—N1103.20 (8)
O1—C1—C2—C3178.84 (12)C9—C8—C10—C11123.40 (11)
C6—C1—C2—C31.6 (2)C7—C8—C10—C11121.21 (11)
C1—C2—C3—C40.9 (2)O2—C10—C11—C1241.16 (15)
C2—C3—C4—C50.9 (2)C8—C10—C11—C1275.80 (14)
C3—C4—C5—C62.0 (2)O2—C10—C11—C16142.76 (11)
O1—C1—C6—C5177.60 (11)C8—C10—C11—C16100.28 (13)
C2—C1—C6—C50.56 (18)C16—C11—C12—C131.17 (19)
O1—C1—C6—C70.98 (18)C10—C11—C12—C13174.97 (12)
C2—C1—C6—C7176.06 (11)C11—C12—C13—C140.0 (2)
C4—C5—C6—C11.29 (19)C12—C13—C14—C150.8 (2)
C4—C5—C6—C7177.93 (12)C13—C14—C15—C160.5 (2)
C1—C6—C7—N1106.66 (12)C14—C15—C16—C110.60 (19)
C5—C6—C7—N176.83 (14)C14—C15—C16—C17179.31 (13)
C1—C6—C7—C85.29 (16)C12—C11—C16—C151.42 (17)
C5—C6—C7—C8171.23 (10)C10—C11—C16—C15174.63 (11)
N1—C7—C8—C19152.86 (9)C12—C11—C16—C17178.48 (13)
C6—C7—C8—C1987.13 (12)C10—C11—C16—C175.46 (18)
N1—C7—C8—C986.40 (10)C6—C7—N1—C1877.73 (13)
C6—C7—C8—C933.60 (13)C8—C7—N1—C18162.04 (10)
N1—C7—C8—C1030.08 (10)C6—C7—N1—O2171.21 (9)
C6—C7—C8—C10150.08 (10)C8—C7—N1—O250.98 (10)
C19—C8—C9—O162.50 (12)C2—C1—O1—C9157.77 (11)
C7—C8—C9—O160.20 (12)C6—C1—O1—C925.06 (16)
C10—C8—C9—O1171.77 (9)C8—C9—O1—C156.41 (13)
C19—C8—C10—O2120.23 (10)C11—C10—O2—N1157.42 (9)
C9—C8—C10—O2116.84 (10)C8—C10—O2—N133.34 (11)
C7—C8—C10—O21.45 (11)C18—N1—O2—C10173.44 (10)
C19—C8—C10—C110.47 (15)C7—N1—O2—C1054.44 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the phenyl ring C11–C16.
D—H···AD—HH···AD···AD—H···A
C18—H18B···Cg1i0.962.993.6831 (16)130
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H18N2O2
Mr306.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.0120 (4), 13.0368 (4), 11.1977 (3)
β (°) 97.836 (2)
V3)1592.54 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23069, 5936, 3084
Rint0.035
(sin θ/λ)max1)0.769
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.148, 1.01
No. of reflections5936
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the phenyl ring C11–C16.
D—H···AD—HH···AD···AD—H···A
C18—H18B···Cg1i0.962.993.6831 (16)130
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

K. Swaminathan and K. Sethusankar thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationBakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825–5830.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHu, H., Harrison, T. J. & Wilson, P. D. (2004). J. Org. Chem. 69, 3782–3786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, G. N., Lu, C. M., Lin, H. C., Fang, S. C., Shieh, B. J., Hsu, M. F., Wang, J. P., Ko, F. N. & Teng, C. M. (1996). J. Nat. Prod. 59, 834–838.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRozman, B., Praprotnik, S., Logar, D., Tomsic, M., Hojnik, M., Kos-Golja, M., Accetto, R. & Dolenc, P. (2002). Ann. Rheum. Dis. 61, 567–569.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o799.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds