organic compounds
2-Aminopyrimidinium dihydrogen phosphate monohydrate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riadh, Saudi Arabia
*Correspondence e-mail: houda.marouani@fsb.rnu.tn
In the title compound, C4H6N3+·H2O4P−·H2O, the pyrimidinium ring is essentially planar, with an r.m.s. deviation of 0.0016 Å. In the structure, pairs of symmetry-related anions are connected into centrosymmetric clusters via strong O—H⋯O hydrogen bonds forming six-membered rings with an R22(6) motif. These clusters are interconnected via water molecules through OW—H⋯O hydrogen bonds, building an infinite layer parallel to the ab plane. Moreover, infinite chains of 2-aminopyrimidinium cations spread along the a-axis direction. These chains are connected to the inorganic layer through N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds, which, together with electrostatic and van der Waals interactions, contribute to the cohesion and stability of the network in the crystal structure.
Related literature
For the biological activity of aminopyrimidinium derivatives, see: Grier et al. (1980); Gueiffier et al. (1996); Rival et al. (1991); Li et al. (2009). For related structures, see: Cheng et al. (2010); Narayana et al. (2008). For graph-set notation of hydrogen bonding, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811010658/pv2399sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811010658/pv2399Isup2.hkl
A small quantity of H3PO4 (3 mmol) was added dropwise to a solution of 2-aminopyrimidine (3 mmol in 20 ml water). A precipitate was formed which was dissolved in water (20 ml) and the solution was allowed to evaporate slowly at room temperature until the formation of colorless prismatic crystals with dimensions suitable for a crystallographic study.
All H atoms were located in difference Fourier maps and were allowed to refine with isotropic displacement parameters Uiso. The H-atoms of water molecule were refined with a distance restraint of O—H = 0.85 (1) Å.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. An ORTEP view of of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by small spheres of arbitrary radii. | |
Fig. 2. Projection of (I) along the b axis. |
C4H6N3+·H2PO4−·H2O | Z = 2 |
Mr = 211.12 | F(000) = 220 |
Triclinic, P1 | Dx = 1.570 Mg m−3 |
Hall symbol: -P 1 | Ag Kα radiation, λ = 0.56083 Å |
a = 6.212 (3) Å | Cell parameters from 25 reflections |
b = 8.600 (4) Å | θ = 9–11° |
c = 9.462 (2) Å | µ = 0.17 mm−1 |
α = 109.56 (3)° | T = 293 K |
β = 106.38 (2)° | Prism, colorless |
γ = 95.50 (2)° | 0.40 × 0.25 × 0.20 mm |
V = 446.7 (3) Å3 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.018 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.0° |
Graphite monochromator | h = −10→10 |
non–profiled ω scans | k = −14→14 |
6572 measured reflections | l = −5→15 |
4373 independent reflections | 2 standard reflections every 120 min |
3189 reflections with I > 2σ(I) | intensity decay: 3% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | All H-atom parameters refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0745P)2 + 0.0087P] where P = (Fo2 + 2Fc2)/3 |
4373 reflections | (Δ/σ)max = 0.002 |
158 parameters | Δρmax = 0.68 e Å−3 |
3 restraints | Δρmin = −0.42 e Å−3 |
C4H6N3+·H2PO4−·H2O | γ = 95.50 (2)° |
Mr = 211.12 | V = 446.7 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.212 (3) Å | Ag Kα radiation, λ = 0.56083 Å |
b = 8.600 (4) Å | µ = 0.17 mm−1 |
c = 9.462 (2) Å | T = 293 K |
α = 109.56 (3)° | 0.40 × 0.25 × 0.20 mm |
β = 106.38 (2)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.018 |
6572 measured reflections | 2 standard reflections every 120 min |
4373 independent reflections | intensity decay: 3% |
3189 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.042 | 3 restraints |
wR(F2) = 0.124 | All H-atom parameters refined |
S = 1.03 | Δρmax = 0.68 e Å−3 |
4373 reflections | Δρmin = −0.42 e Å−3 |
158 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.16874 (4) | 0.74641 (3) | 1.06016 (4) | 0.02665 (8) | |
O3 | 0.30367 (14) | 0.91480 (10) | 1.18597 (11) | 0.03404 (18) | |
O4 | −0.07714 (13) | 0.70387 (10) | 1.05045 (11) | 0.03351 (18) | |
O1 | 0.30374 (15) | 0.61277 (12) | 1.09639 (14) | 0.0442 (3) | |
O2 | 0.16298 (17) | 0.73861 (14) | 0.89151 (12) | 0.0433 (2) | |
OW | 0.56449 (16) | 0.79100 (13) | 0.85902 (13) | 0.0406 (2) | |
N2 | 0.15897 (16) | 0.12980 (13) | 0.39597 (13) | 0.03242 (19) | |
N3 | −0.14127 (17) | 0.21993 (14) | 0.48619 (13) | 0.0348 (2) | |
N1 | −0.20502 (17) | −0.03637 (13) | 0.28151 (13) | 0.0352 (2) | |
C1 | −0.06315 (18) | 0.10520 (14) | 0.38722 (13) | 0.02783 (19) | |
C2 | 0.3116 (2) | 0.27019 (17) | 0.50499 (18) | 0.0419 (3) | |
C4 | 0.0099 (2) | 0.35703 (17) | 0.59250 (17) | 0.0401 (3) | |
C3 | 0.2421 (3) | 0.38927 (18) | 0.60766 (19) | 0.0467 (3) | |
H1W | 0.608 (3) | 0.8881 (14) | 0.862 (2) | 0.052 (5)* | |
H1 | −0.164 (3) | −0.111 (2) | 0.218 (2) | 0.049 (5)* | |
H1O | 0.232 (4) | 0.513 (3) | 1.051 (3) | 0.075 (7)* | |
H3 | 0.201 (3) | 0.054 (2) | 0.327 (2) | 0.049 (5)* | |
H6 | −0.051 (3) | 0.439 (2) | 0.662 (2) | 0.044 (4)* | |
H5 | 0.347 (4) | 0.487 (3) | 0.689 (3) | 0.064 (6)* | |
H2 | −0.355 (4) | −0.047 (2) | 0.269 (2) | 0.053 (5)* | |
H4 | 0.455 (4) | 0.272 (3) | 0.499 (2) | 0.060 (6)* | |
H2W | 0.668 (3) | 0.761 (2) | 0.916 (2) | 0.065 (6)* | |
H2O | 0.289 (4) | 0.761 (3) | 0.883 (3) | 0.078 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.01938 (11) | 0.02235 (12) | 0.03390 (15) | 0.00234 (8) | 0.00888 (9) | 0.00599 (9) |
O3 | 0.0271 (3) | 0.0257 (3) | 0.0406 (5) | −0.0005 (3) | 0.0135 (3) | 0.0018 (3) |
O4 | 0.0216 (3) | 0.0284 (3) | 0.0472 (5) | 0.0027 (3) | 0.0124 (3) | 0.0102 (3) |
O1 | 0.0261 (4) | 0.0291 (4) | 0.0649 (7) | 0.0059 (3) | 0.0023 (4) | 0.0132 (4) |
O2 | 0.0328 (4) | 0.0556 (6) | 0.0366 (5) | 0.0013 (4) | 0.0123 (4) | 0.0130 (4) |
OW | 0.0297 (4) | 0.0428 (5) | 0.0520 (6) | 0.0031 (3) | 0.0113 (4) | 0.0244 (4) |
N2 | 0.0256 (4) | 0.0323 (4) | 0.0358 (5) | 0.0064 (3) | 0.0124 (4) | 0.0068 (4) |
N3 | 0.0295 (4) | 0.0376 (5) | 0.0353 (5) | 0.0116 (4) | 0.0132 (4) | 0.0080 (4) |
N1 | 0.0256 (4) | 0.0340 (5) | 0.0374 (5) | 0.0050 (3) | 0.0100 (4) | 0.0038 (4) |
C1 | 0.0244 (4) | 0.0311 (4) | 0.0284 (5) | 0.0080 (3) | 0.0093 (3) | 0.0108 (4) |
C2 | 0.0274 (5) | 0.0376 (6) | 0.0513 (8) | 0.0022 (4) | 0.0116 (5) | 0.0079 (5) |
C4 | 0.0398 (6) | 0.0363 (5) | 0.0388 (6) | 0.0132 (5) | 0.0132 (5) | 0.0061 (5) |
C3 | 0.0373 (6) | 0.0356 (6) | 0.0484 (8) | 0.0031 (5) | 0.0081 (5) | −0.0006 (5) |
P1—O4 | 1.5055 (11) | N3—C4 | 1.3207 (18) |
P1—O3 | 1.5056 (12) | N3—C1 | 1.3473 (15) |
P1—O1 | 1.5583 (11) | N1—C1 | 1.3194 (16) |
P1—O2 | 1.5645 (11) | N1—H1 | 0.83 (2) |
O1—H1O | 0.83 (3) | N1—H2 | 0.89 (2) |
O2—H2O | 0.82 (3) | C2—C3 | 1.354 (2) |
OW—H1W | 0.843 (9) | C2—H4 | 0.91 (2) |
OW—H2W | 0.834 (9) | C4—C3 | 1.399 (2) |
N2—C2 | 1.3473 (17) | C4—H6 | 0.98 (2) |
N2—C1 | 1.3503 (15) | C3—H5 | 0.95 (2) |
N2—H3 | 0.87 (2) | ||
O4—P1—O3 | 114.86 (5) | C1—N1—H2 | 118.5 (12) |
O4—P1—O1 | 111.37 (6) | H1—N1—H2 | 118.3 (17) |
O3—P1—O1 | 106.04 (6) | N1—C1—N3 | 119.50 (10) |
O4—P1—O2 | 106.56 (6) | N1—C1—N2 | 118.97 (10) |
O3—P1—O2 | 110.54 (6) | N3—C1—N2 | 121.51 (10) |
O1—P1—O2 | 107.27 (7) | N2—C2—C3 | 119.76 (12) |
P1—O1—H1O | 115.6 (18) | N2—C2—H4 | 112.8 (13) |
P1—O2—H2O | 115.0 (18) | C3—C2—H4 | 127.4 (13) |
H1W—OW—H2W | 112.2 (18) | N3—C4—C3 | 124.26 (12) |
C2—N2—C1 | 121.10 (11) | N3—C4—H6 | 115.4 (10) |
C2—N2—H3 | 120.4 (13) | C3—C4—H6 | 120.3 (10) |
C1—N2—H3 | 118.5 (13) | C2—C3—C4 | 116.54 (13) |
C4—N3—C1 | 116.83 (11) | C2—C3—H5 | 121.6 (14) |
C1—N1—H1 | 122.7 (13) | C4—C3—H5 | 121.8 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O4i | 0.83 (3) | 1.80 (3) | 2.6372 (18) | 179 (2) |
O2—H2O···OW | 0.82 (3) | 1.80 (3) | 2.6132 (18) | 175 (2) |
OW—H1W···O3ii | 0.84 (1) | 1.96 (1) | 2.7882 (17) | 166 (2) |
OW—H2W···O4iii | 0.83 (1) | 1.95 (1) | 2.7843 (16) | 177 (2) |
N1—H1···O4iv | 0.83 (2) | 2.08 (2) | 2.9070 (18) | 177 (2) |
N1—H2···O3v | 0.89 (2) | 2.00 (2) | 2.873 (2) | 166 (2) |
N2—H3···O3iv | 0.87 (2) | 1.78 (2) | 2.6535 (16) | 175 (2) |
C2—H4···N3iii | 0.91 (2) | 2.62 (2) | 3.513 (2) | 169 (2) |
C3—H5···OW | 0.95 (2) | 2.56 (2) | 3.477 (2) | 164 (2) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+1, −y+2, −z+2; (iii) x+1, y, z; (iv) x, y−1, z−1; (v) x−1, y−1, z−1. |
Experimental details
Crystal data | |
Chemical formula | C4H6N3+·H2PO4−·H2O |
Mr | 211.12 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.212 (3), 8.600 (4), 9.462 (2) |
α, β, γ (°) | 109.56 (3), 106.38 (2), 95.50 (2) |
V (Å3) | 446.7 (3) |
Z | 2 |
Radiation type | Ag Kα, λ = 0.56083 Å |
µ (mm−1) | 0.17 |
Crystal size (mm) | 0.40 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6572, 4373, 3189 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.836 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.124, 1.03 |
No. of reflections | 4373 |
No. of parameters | 158 |
No. of restraints | 3 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.68, −0.42 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O4i | 0.83 (3) | 1.80 (3) | 2.6372 (18) | 179 (2) |
O2—H2O···OW | 0.82 (3) | 1.80 (3) | 2.6132 (18) | 175 (2) |
OW—H1W···O3ii | 0.843 (9) | 1.962 (10) | 2.7882 (17) | 166 (2) |
OW—H2W···O4iii | 0.834 (9) | 1.952 (10) | 2.7843 (16) | 177 (2) |
N1—H1···O4iv | 0.83 (2) | 2.08 (2) | 2.9070 (18) | 177 (2) |
N1—H2···O3v | 0.89 (2) | 2.00 (2) | 2.873 (2) | 166 (2) |
N2—H3···O3iv | 0.87 (2) | 1.78 (2) | 2.6535 (16) | 175 (2) |
C2—H4···N3iii | 0.91 (2) | 2.62 (2) | 3.513 (2) | 169 (2) |
C3—H5···OW | 0.95 (2) | 2.56 (2) | 3.477 (2) | 164 (2) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+1, −y+2, −z+2; (iii) x+1, y, z; (iv) x, y−1, z−1; (v) x−1, y−1, z−1. |
Acknowledgements
We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.
References
Bernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cheng, X.-L., Gao, S. & Ng, S. W. (2010). Acta Cryst. E66, o127. Web of Science CSD CrossRef IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Grier, N., Harris, E. H., Joshua, H., Patchett, A. A., Witzel, B. E. & Dybas, R. A. (1980). J. Coat. Technol. A52, 57–63. Google Scholar
Gueiffier, A., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J.-C., Kerbal, A., Essassi, E. M., Debouzy, J.-C., Witvrouw, M., Blache, Y., De Balzarini, J., Clercq, E. & Chapat, J.-P. (1996). J. Med. Chem. 39, 2856–2859. CrossRef CAS PubMed Web of Science Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Li, H.-Y., Brooks, H. B., Crich, J. Z., Henry, J. R., Sawyer, J. S. & Wang, Y. (2009). Eur. Patent (Eli Lilly & Company). Google Scholar
Narayana, B., Sarojini, B. K., Prakash Kamath, K., Yathirajan, H. S. & Bolte, M. (2008). Acta Cryst. E64, o117–o118. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rival, Y., Grassy, G., Taudou, A. & Ecalle, R. (1991). Eur. J. Med. Chem. 26, 13–18. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aminopyrimidinium salts are highly active antimicrobial agents with a low acute mammalian toxicity (Grier et al., 1980). In addition, pyrimidine derivatives possess considerable biological activity and have been widely used in medicinal applications as antiviral agents (Gueiffier et al., 1996), antifungal agents (Rival et al., 1991). Moreover, imidazolidinonyl aminopyrimidine compounds have been investigated for the treatment of cancer (Li et al., 2009). In order to search for new materials for these applications, we have attempted to combine pyrimidine derivatives with phosphate species. In this paper we report the preparation and the crystal structure of the title compound, (I).
The asymmetric unit of (I) contains a H2PO4- anion, a 2-aminopyrimidinium cation and a water molecule (Fig. 1). The pyrimidinium ring is essentially planar with an rms deviation of 0.0016 Å. The interatomic bond lengths and angles in (I) do not show significant deviation from those reported in related 2-aminopyrimidinium salts (Narayana, et al., 2008; Cheng, et al., 2010).
In the structure, pairs of symmetry-related anions are connected into centrosymmetric clusters via strong O—H···O hydrogen bonds forming six-membred rings which may be described as R22(6) motif in the graph-set notation (Bernstein et al., 1995). These clusters are interconnected via water molecules through OW—H···O hydrogen bonds to build an infinite layer parallel to the ab plane. Moreover, infinite chains of 2-aminopyrimidinium cations spread along the a direction. These chains are connected to the inorganic layer through H-bonds: N—H···O, C—H···O and C—H···N (Tab. 1 & Fig. 2).