metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m433-m434

[N′-(5-Bromo-2-oxido­benzyl­­idene-κO)-2-chloro­benzohydrazidato-κ2N′,O](methanol-κO)(methano­lato-κO)oxido­vanadium(V)

aDepartment of Chemistry, Dezhou University, Dezhou Shandong 253023, People's Republic of China
*Correspondence e-mail: wfm99999@126.com

(Received 1 March 2011; accepted 8 March 2011; online 12 March 2011)

The VV atom in the title complex, [V(C14H8BrClN2O2)(CH3O)O(CH3OH)], is six-coordinated by one phenolate O, one imine N and one enolic O atom of the hydrazone ligand, one oxide O atom, one methanol O atom and one methoxide O atom in a distorted octa­hedral geometry. The dihedral angle between the two benzene rings of the hydrazone ligand is 13.2 (3)°. The deviation of the V atom towards the oxide O atom from the plane defined by the three donor atoms of the hydrazone ligand and the meth­oxy O atom is 0.318 (2) Å. Bond lengths are comparable with those observed in similar oxidovanadium(V) complexes with hydrazone ligands. In the crystal, pairs of mol­ecules are linked through inter­molecular O—H⋯N hydrogen bonds, forming dimers.

Related literature

For background to hydrazone compounds and their complexes, see: Seena et al. (2008[Seena, E. B., Mathew, N., Kuriakose, M. & Kurup, M. R. P. (2008). Polyhedron, 27, 1455-1462.]); Bastos et al. (2008[Bastos, A. M. B., da Silva, J. G., Maia, P. I. da S., Deflon, V. M., Batista, A. A., Ferreira, A. V. M., Botion, L. M., Niquet, E. & Beraldo, H. (2008). Polyhedron, 27, 1787-1794.]); Sarkar & Pal (2008[Sarkar, A. & Pal, S. (2008). Inorg. Chim. Acta, 361, 2296-2304.]); Nica et al. (2007[Nica, S., Rudolph, M., Görls, H. & Plass, W. (2007). Inorg. Chim. Acta, 360, 1743-1752.]). For similar oxidovanadium(V) complexes, see: Kurup et al. (2010[Kurup, M. R. P., Seena, E. B. & Kuriakose, M. (2010). Struct. Chem. 21, 599-605.]); Rajak et al. (2000[Rajak, K. K., Mondal, S. & Rath, S. P. (2000). Polyhedron, 19, 931-936.]); Grüning et al. (1999[Grüning, C., Schmidt, H. & Rehder, D. (1999). Inorg. Chem. Commun. 2, 57-59.]); Mondal et al. (2009[Mondal, B., Drew, M. G. B. & Ghosh, T. (2009). Inorg. Chim. Acta, 362, 3303-3308.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C14H8BrClN2O2)(CH3O)O(CH4O)]

  • Mr = 481.60

  • Monoclinic, C 2/c

  • a = 28.09 (2) Å

  • b = 7.992 (6) Å

  • c = 20.163 (14) Å

  • β = 121.854 (7)°

  • V = 3844 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.76 mm−1

  • T = 298 K

  • 0.30 × 0.27 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.491, Tmax = 0.569

  • 9750 measured reflections

  • 4081 independent reflections

  • 2266 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.103

  • S = 1.02

  • 4081 reflections

  • 240 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

V1—O4 1.582 (3)
V1—O3 1.765 (3)
V1—O1 1.859 (3)
V1—O2 1.957 (3)
V1—N1 2.134 (3)
V1—O5 2.403 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N2i 0.85 (4) 2.06 (4) 2.906 (4) 178 (5)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds and their oxovanadium complexes have received much attention due to their structures and biological properties (Seena et al., 2008; Bastos et al., 2008; Sarkar & Pal, 2008; Nica et al., 2007). In this paper, the title new oxovanadium(V) complex with a hydrazone ligand is reported.

The VV atom in the title complex, Fig. 1, is six-coordinated by one phenolic O, one imine N, and one enolic O atoms of the hydrazone ligand, by one oxo O atom, and by two O atoms respectively from a methanol molecule and a methoxide ligand, forming a distorted octahedral geometry. The dihedral angle between the two benzene rings of the hydrazone ligand is 13.2 (3)°. The deviation of the V atom from the plane defined by the three donor atoms of the hydrazone ligand and the methoxy O atom towards the oxo O atom is 0.318 (2) Å. The coordinate bond lengths and angles (Table 1) are comparable with those observed in similar oxovanadium(V) complexes (Kurup et al., 2010; Rajak et al., 2000; Grüning et al., 1999; Mondal et al., 2009). In the crystal structure, adjacent two molecules are linked through intermolecular O—H···N hydrogen bonds (Table 2), to form a dimer, as shown in Fig. 2.

Related literature top

For background to hydrazone compounds and their complexes, see: Seena et al. (2008); Bastos et al. (2008); Sarkar & Pal (2008); Nica et al. (2007). For similar oxovanadium(V) complexes, see: Kurup et al. (2010); Rajak et al. (2000); Grüning et al. (1999); Mondal et al. (2009).

Experimental top

5-Bromosalicylaldehyde (1 mmol, 0.20 g), 2-chlorobenzohydrazide 1 mmol, 0.17 g), and VO(acac)2 (1 mmol, 0.26 g) were mixed in methanol (30 ml). The mixture was boiled under reflux for 2 h, then cooled to room temperature. Brown block-like single crystals, suitable for X-ray diffraction, were formed after slow evaporation of the solution in air for a few days.

Refinement top

H5 atom was located from a difference Fourier map and refined isotropically. The O5—H5 distance is restrained to 0.85 (1) Å. The remaining hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of the title complex, viewed along the b axis.
[N'-(5-Bromo-2-oxidobenzylidene-κO)-2- chlorobenzohydrazidato-κ2N',O](methanol- κO)(methanolato-κO)oxidovanadium(V) top
Crystal data top
[V(C14H8BrClN2O2)(CH3O)O(CH4O)]F(000) = 1920
Mr = 481.60Dx = 1.664 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 28.09 (2) ÅCell parameters from 1798 reflections
b = 7.992 (6) Åθ = 2.3–25.0°
c = 20.163 (14) ŵ = 2.76 mm1
β = 121.854 (7)°T = 298 K
V = 3844 (5) Å3Block, brown
Z = 80.30 × 0.27 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4081 independent reflections
Radiation source: fine-focus sealed tube2266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2835
Tmin = 0.491, Tmax = 0.569k = 99
9750 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0359P)2]
where P = (Fo2 + 2Fc2)/3
4081 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.44 e Å3
Crystal data top
[V(C14H8BrClN2O2)(CH3O)O(CH4O)]V = 3844 (5) Å3
Mr = 481.60Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.09 (2) ŵ = 2.76 mm1
b = 7.992 (6) ÅT = 298 K
c = 20.163 (14) Å0.30 × 0.27 × 0.23 mm
β = 121.854 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4081 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2266 reflections with I > 2σ(I)
Tmin = 0.491, Tmax = 0.569Rint = 0.056
9750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.45 e Å3
4081 reflectionsΔρmin = 0.44 e Å3
240 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.33992 (3)0.48966 (10)0.15964 (4)0.0355 (2)
Br10.05406 (2)0.13036 (7)0.00218 (3)0.05439 (19)
Cl10.44356 (6)0.87745 (17)0.12452 (7)0.0663 (4)
H50.2799 (16)0.809 (6)0.1145 (18)0.099*
N10.27232 (13)0.5095 (4)0.04108 (16)0.0281 (8)
N20.28364 (14)0.5947 (4)0.01011 (18)0.0306 (8)
O10.28365 (12)0.4401 (4)0.17896 (15)0.0428 (8)
O20.37010 (11)0.6037 (3)0.10369 (15)0.0392 (8)
O30.39495 (11)0.5587 (4)0.25184 (14)0.0418 (8)
O40.35806 (13)0.3060 (4)0.15302 (15)0.0519 (9)
O50.30672 (12)0.7684 (4)0.15650 (16)0.0441 (8)
C10.20329 (17)0.3624 (5)0.0557 (2)0.0298 (10)
C20.23468 (17)0.3619 (5)0.1384 (2)0.0336 (10)
C30.21228 (18)0.2811 (6)0.1779 (2)0.0425 (12)
H30.23320.27580.23210.051*
C40.15989 (18)0.2100 (6)0.1374 (2)0.0422 (12)
H40.14560.15740.16440.051*
C50.12819 (16)0.2159 (5)0.0566 (2)0.0351 (11)
C60.14949 (17)0.2896 (5)0.0161 (2)0.0346 (11)
H60.12810.29140.03820.042*
C70.22241 (18)0.4472 (5)0.0110 (2)0.0331 (10)
H70.19750.45800.04260.040*
C80.33695 (17)0.6358 (5)0.0297 (2)0.0309 (10)
C90.36154 (17)0.7211 (5)0.0115 (2)0.0310 (10)
C100.40956 (18)0.8227 (5)0.0260 (2)0.0393 (11)
C110.43223 (19)0.8885 (6)0.0144 (3)0.0482 (13)
H110.46480.95210.01180.058*
C120.4068 (2)0.8607 (6)0.0937 (3)0.0546 (14)
H120.42180.90760.12100.065*
C130.3589 (2)0.7628 (6)0.1326 (3)0.0530 (13)
H130.34200.74190.18570.064*
C140.33694 (17)0.6971 (5)0.0914 (2)0.0393 (11)
H140.30430.63400.11800.047*
C150.44932 (19)0.4960 (8)0.3020 (3)0.0801 (19)
H15A0.45020.37910.29180.120*
H15B0.45970.51090.35520.120*
H15C0.47520.55520.29320.120*
C160.3407 (2)0.9086 (6)0.1983 (3)0.0563 (14)
H16A0.37000.87360.24940.084*
H16B0.31810.99200.20300.084*
H16C0.35690.95470.17060.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0370 (5)0.0392 (5)0.0266 (4)0.0050 (4)0.0141 (4)0.0019 (4)
Br10.0345 (3)0.0605 (4)0.0636 (3)0.0119 (3)0.0227 (3)0.0005 (3)
Cl10.0644 (9)0.0763 (10)0.0548 (8)0.0275 (8)0.0292 (7)0.0141 (7)
N10.032 (2)0.028 (2)0.0254 (17)0.0033 (17)0.0157 (16)0.0003 (16)
N20.033 (2)0.032 (2)0.0292 (18)0.0039 (17)0.0180 (17)0.0002 (16)
O10.0400 (19)0.058 (2)0.0281 (15)0.0200 (16)0.0165 (15)0.0009 (15)
O20.0330 (17)0.049 (2)0.0303 (16)0.0054 (15)0.0130 (14)0.0083 (14)
O30.0318 (18)0.055 (2)0.0286 (16)0.0001 (16)0.0094 (15)0.0063 (15)
O40.067 (2)0.042 (2)0.0389 (18)0.0046 (18)0.0226 (17)0.0038 (15)
O50.041 (2)0.038 (2)0.0410 (18)0.0035 (17)0.0129 (15)0.0027 (16)
C10.033 (2)0.028 (3)0.028 (2)0.001 (2)0.015 (2)0.0011 (19)
C20.033 (3)0.034 (3)0.034 (2)0.005 (2)0.018 (2)0.000 (2)
C30.047 (3)0.053 (3)0.032 (2)0.012 (3)0.024 (2)0.003 (2)
C40.045 (3)0.045 (3)0.047 (3)0.010 (2)0.031 (3)0.001 (2)
C50.031 (3)0.036 (3)0.038 (2)0.002 (2)0.018 (2)0.001 (2)
C60.037 (3)0.033 (3)0.028 (2)0.000 (2)0.013 (2)0.000 (2)
C70.034 (3)0.037 (3)0.025 (2)0.001 (2)0.013 (2)0.000 (2)
C80.035 (3)0.031 (3)0.033 (2)0.001 (2)0.022 (2)0.002 (2)
C90.033 (2)0.025 (3)0.037 (2)0.003 (2)0.019 (2)0.002 (2)
C100.040 (3)0.034 (3)0.043 (3)0.005 (2)0.021 (2)0.004 (2)
C110.038 (3)0.048 (3)0.064 (3)0.009 (2)0.031 (3)0.000 (3)
C120.060 (3)0.057 (4)0.070 (4)0.002 (3)0.050 (3)0.015 (3)
C130.054 (3)0.069 (4)0.046 (3)0.001 (3)0.033 (3)0.009 (3)
C140.032 (3)0.048 (3)0.039 (3)0.005 (2)0.020 (2)0.004 (2)
C150.039 (3)0.116 (5)0.058 (3)0.015 (4)0.007 (3)0.007 (4)
C160.066 (4)0.053 (4)0.043 (3)0.013 (3)0.024 (3)0.007 (3)
Geometric parameters (Å, º) top
V1—O41.582 (3)C4—C51.384 (5)
V1—O31.765 (3)C4—H40.9300
V1—O11.859 (3)C5—C61.374 (5)
V1—O21.957 (3)C6—H60.9300
V1—N12.134 (3)C7—H70.9300
V1—O52.403 (4)C8—C91.496 (5)
Br1—C51.896 (4)C9—C141.390 (5)
Cl1—C101.746 (4)C9—C101.405 (6)
N1—C71.298 (5)C10—C111.375 (6)
N1—N21.406 (4)C11—C121.383 (6)
N2—C81.314 (5)C11—H110.9300
O1—C21.328 (5)C12—C131.386 (6)
O2—C81.301 (4)C12—H120.9300
O3—C151.406 (5)C13—C141.375 (5)
O5—C161.424 (5)C13—H130.9300
O5—H50.85 (4)C14—H140.9300
C1—C61.409 (5)C15—H15A0.9600
C1—C21.418 (5)C15—H15B0.9600
C1—C71.439 (5)C15—H15C0.9600
C2—C31.404 (5)C16—H16A0.9600
C3—C41.374 (5)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
O4—V1—O3103.70 (15)C5—C6—C1120.9 (4)
O4—V1—O199.61 (15)C5—C6—H6119.6
O3—V1—O1102.39 (13)C1—C6—H6119.6
O4—V1—O297.29 (14)N1—C7—C1123.8 (4)
O3—V1—O293.25 (13)N1—C7—H7118.1
O1—V1—O2153.46 (12)C1—C7—H7118.1
O4—V1—N196.33 (13)O2—C8—N2123.2 (3)
O3—V1—N1157.41 (14)O2—C8—C9117.8 (4)
O1—V1—N184.17 (13)N2—C8—C9119.1 (4)
O2—V1—N173.72 (13)C14—C9—C10116.9 (4)
O4—V1—O5174.59 (12)C14—C9—C8119.2 (4)
O3—V1—O581.36 (12)C10—C9—C8123.9 (4)
O1—V1—O580.92 (13)C11—C10—C9121.1 (4)
O2—V1—O580.39 (12)C11—C10—Cl1115.6 (4)
N1—V1—O578.35 (11)C9—C10—Cl1123.4 (3)
C7—N1—N2116.7 (3)C10—C11—C12120.4 (4)
C7—N1—V1126.8 (3)C10—C11—H11119.8
N2—N1—V1116.5 (2)C12—C11—H11119.8
C8—N2—N1107.4 (3)C11—C12—C13119.9 (4)
C2—O1—V1133.7 (3)C11—C12—H12120.0
C8—O2—V1119.2 (2)C13—C12—H12120.0
C15—O3—V1131.4 (3)C14—C13—C12119.0 (4)
C16—O5—V1125.8 (3)C14—C13—H13120.5
C16—O5—H5105 (4)C12—C13—H13120.5
V1—O5—H5121 (4)C13—C14—C9122.7 (4)
C6—C1—C2118.7 (4)C13—C14—H14118.7
C6—C1—C7118.8 (3)C9—C14—H14118.7
C2—C1—C7122.2 (4)O3—C15—H15A109.5
O1—C2—C3119.7 (4)O3—C15—H15B109.5
O1—C2—C1121.4 (3)H15A—C15—H15B109.5
C3—C2—C1118.8 (4)O3—C15—H15C109.5
C4—C3—C2120.9 (4)H15A—C15—H15C109.5
C4—C3—H3119.6H15B—C15—H15C109.5
C2—C3—H3119.6O5—C16—H16A109.5
C3—C4—C5120.5 (4)O5—C16—H16B109.5
C3—C4—H4119.8H16A—C16—H16B109.5
C5—C4—H4119.8O5—C16—H16C109.5
C6—C5—C4120.2 (4)H16A—C16—H16C109.5
C6—C5—Br1120.0 (3)H16B—C16—H16C109.5
C4—C5—Br1119.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N2i0.85 (4)2.06 (4)2.906 (4)178 (5)
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[V(C14H8BrClN2O2)(CH3O)O(CH4O)]
Mr481.60
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)28.09 (2), 7.992 (6), 20.163 (14)
β (°) 121.854 (7)
V3)3844 (5)
Z8
Radiation typeMo Kα
µ (mm1)2.76
Crystal size (mm)0.30 × 0.27 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.491, 0.569
No. of measured, independent and
observed [I > 2σ(I)] reflections
9750, 4081, 2266
Rint0.056
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.103, 1.02
No. of reflections4081
No. of parameters240
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.44

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
V1—O41.582 (3)V1—O21.957 (3)
V1—O31.765 (3)V1—N12.134 (3)
V1—O11.859 (3)V1—O52.403 (4)
O4—V1—O3103.70 (15)O1—V1—N184.17 (13)
O4—V1—O199.61 (15)O2—V1—N173.72 (13)
O3—V1—O1102.39 (13)O4—V1—O5174.59 (12)
O4—V1—O297.29 (14)O3—V1—O581.36 (12)
O3—V1—O293.25 (13)O1—V1—O580.92 (13)
O1—V1—O2153.46 (12)O2—V1—O580.39 (12)
O4—V1—N196.33 (13)N1—V1—O578.35 (11)
O3—V1—N1157.41 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N2i0.85 (4)2.06 (4)2.906 (4)178 (5)
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

This work was supported financially by Dezhou University, People's Republic of China.

References

First citationBastos, A. M. B., da Silva, J. G., Maia, P. I. da S., Deflon, V. M., Batista, A. A., Ferreira, A. V. M., Botion, L. M., Niquet, E. & Beraldo, H. (2008). Polyhedron, 27, 1787–1794.  CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrüning, C., Schmidt, H. & Rehder, D. (1999). Inorg. Chem. Commun. 2, 57–59.  Google Scholar
First citationKurup, M. R. P., Seena, E. B. & Kuriakose, M. (2010). Struct. Chem. 21, 599–605.  CSD CrossRef CAS Google Scholar
First citationMondal, B., Drew, M. G. B. & Ghosh, T. (2009). Inorg. Chim. Acta, 362, 3303–3308.  CrossRef CAS Google Scholar
First citationNica, S., Rudolph, M., Görls, H. & Plass, W. (2007). Inorg. Chim. Acta, 360, 1743–1752.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajak, K. K., Mondal, S. & Rath, S. P. (2000). Polyhedron, 19, 931–936.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarkar, A. & Pal, S. (2008). Inorg. Chim. Acta, 361, 2296–2304.  CrossRef CAS Google Scholar
First citationSeena, E. B., Mathew, N., Kuriakose, M. & Kurup, M. R. P. (2008). Polyhedron, 27, 1455–1462.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m433-m434
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds