organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Chloro­phen­yl)-1-methyl-3,3a,4,9b-tetra­hydro-1H-chromeno[4,3-c]isoxazole-3a-carbo­nitrile

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 31 January 2011; accepted 28 February 2011; online 5 March 2011)

In the title compound, C18H15ClN2O2, the five-membered isoxazole ring adopts an envelope conformation [the deviation of the N atom is 0.3154 (15) Å] and the six-membered pyran ring adopts a half-chair conformation. The mean plane through all atoms of the isoxazole ring forms dihedral angles of 47.98 (8)° with the mean plane of the chromene ring system and 75.10 (9)° with the chloro­benzene ring.

Related literature

For the synthesis of tricyclic chromenoisoxazolidines, see: Bakthadoss & Murugan (2010[Bakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825-5830.]). For uses of isoxazole derivatives, see: Loh et al. (2010[Loh, B., Vozzolo, L., Mok, B. J., Lee, C. C., Fitzmaurice, R. J., Caddick, S. & Fassati, A. (2010). J. Med. Chem. 52, 6966-6978.]); Winn et al. (1976[Winn, M., Arendsen, D., Dodge, P., Dren, A., Dunnigan, D., Hallas, R., Hwang, K., Kyncl, J., Lee, Y. H., Plotnikoff, N., Young Zaugg, H., Dalzell, H. & Razdan, R. K. (1976). J. Med. Chem. 19, 461-471.]). For a related structure, see: Gunasekaran et al. (2010[Gunasekaran, B., Kathiravan, S., Raghunathan, R. & Manivannan, V. (2010). Acta Cryst. E66, o611-o612.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15ClN2O2

  • Mr = 326.77

  • Monoclinic, P 21 /c

  • a = 10.0141 (4) Å

  • b = 9.2358 (3) Å

  • c = 17.5945 (6) Å

  • β = 102.354 (2)°

  • V = 1589.60 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.952

  • 20534 measured reflections

  • 4926 independent reflections

  • 3390 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.151

  • S = 1.04

  • 4926 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Using Baylis-Hillman derivatives through in situ formation of nitrones followed by an intramolecular [3+2] dipolar cycloaddition reaction sequence is a novel and simple method of synthesizing tricyclic chromenoisoxozolidine frameworks. The new [3+2] cycloaddition reaction leads to a novel class of angularly substituted fused tricyclic chromenoisoxazolidines, creating two rings and three contiguous stereocenters, one of them being a tetrasubstituted carbon center. (Bakthadoss & Murugan, 2010). Benzopyran and isoxazolidine derivatives are well known for their biological activity and proven medicinal utility. For example, benzopyran derivatives possess antipsychotic and antidepressant activities (Winn et al., 1976). Isoxazolidine and isoxazole sulfonamide are found to inhibit HIV-1 infection in human CD4+ lymphocytic T cells (Loh et al., 2010).

The title compound C18H15N2O2Cl comprises a chromenoisoxazole ring system attached to a chlorobenzene ring and a carbonitrile group. The X-ray analysis confirms the molecular structure and atom connectivity as illustrated at (Fig. 1). In the isoxazole ring (N1/O2/C7/C8/C10), the deviation of atom N1 is -0.3154 (15)Å. This ring adopts an envelope conformation with puckering parameters (Cremer & Pople, 1975) q2 = 0.5041 (15)Å and ϕ2 = 44.23 (17)°. The dihedral angle between the chromeno ring system (O1/C1–C9) and the isoxazole ring(N1/O2/C7/C8/C10) is 47.98 (8)°. The isoxazole ring (N1/O2/C7/C8/C10) also forms a dihedral angle of 75.10 (9)° with the the chlorobenzene ring (C11–C16).

In the chromeno ring system, the dihedral angle between the pyran ring (O1/C1/C6-C9) and the benzene ring(C1-C6) is 3.50 (9)°. The deviation of atom C9 from the mean plane of the pyran ring is 0.3068 (17)Å. The pyran ring adopts half chair conformation (H-form), with puckering parameters (Cremer & Pople, 1975) q2 = 0.3501 (17)Å, q3 = -0.3037 (16)Å and ϕ2 = 94.7 (2)°. The pyran ring (O1/C1/C6–C9) also forms an interplanar angle of 49.31 (8)° with the isoxazole ring (N1/O2/C7/C8/C10). The chlorobenzene ring(C11–C16) forms an interplanar angle of 51.98 (8)° with the mean plane of the fused isoxazole–pyran ring system (N1/O1/O2/C1/C6–C10). Also, the dihedral angle between the chlorobenzene ring (C11–C16) and the chromeno ring system (O1/C1–C9) is 39.95 (7)°. The title compound exhibits structural similarities with other reported related structures (Gunasekaran et al., 2010). There are no classic hydrogen bonds.

Related literature top

For he synthesis of tricyclic chromenoisoxazolidines, see: Bakthadoss & Murugan (2010). For uses of isoxazole derivatives, see: Loh et al. (2010); Winn et al. (1976). For a related structure, see: Gunasekaran et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of the compound (E)-2-((2-formylphenoxy) methyl)-3-(3-chlorophenyl) acrylonitrile (1.0 mmol) with N-methylhydroxylamine hydrochloride (1.1 mmol), pyridine (0.24 ml, 3 mmol) and ethanol (5 ml) were placed in a round bottom flask and refluxed for 6 h. After completion of the reaction as indicated by TLC, the reaction mixture was concentrated under reduced pressure. The crude product was diluted with water (10 ml) and dilute HCl (5 ml) and extracted with ethylacetate (20 ml). The organic layer was washed with brine solution (10 ml) and concentrated. The crude product was purified by column chromatography to provide the pure desired compound, as a colourless solid.

Refinement top

All hydrogen atoms were placed in calculated positions with C—H = 0.93–0.98Å and refined in riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitary radius.
3-(3-Chlorophenyl)-1-methyl-3,3a,4,9b-tetrahydro-1H- chromeno[4,3-c]isoxazole-3a-carbonitrile top
Crystal data top
C18H15ClN2O2F(000) = 680
Mr = 326.77Dx = 1.365 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4926 reflections
a = 10.0141 (4) Åθ = 1.0–25.0°
b = 9.2358 (3) ŵ = 0.25 mm1
c = 17.5945 (6) ÅT = 295 K
β = 102.354 (2)°Block, colourless
V = 1589.60 (10) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4926 independent reflections
Radiation source: fine-focus sealed tube3390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 30.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.928, Tmax = 0.952k = 1312
20534 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.525P]
where P = (Fo2 + 2Fc2)/3
4926 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C18H15ClN2O2V = 1589.60 (10) Å3
Mr = 326.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0141 (4) ŵ = 0.25 mm1
b = 9.2358 (3) ÅT = 295 K
c = 17.5945 (6) Å0.30 × 0.25 × 0.20 mm
β = 102.354 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4926 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3390 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.952Rint = 0.026
20534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.04Δρmax = 0.61 e Å3
4926 reflectionsΔρmin = 0.63 e Å3
209 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71130 (16)0.55309 (17)0.60426 (9)0.0414 (3)
C20.7392 (2)0.5485 (2)0.53022 (11)0.0558 (5)
H20.67640.50810.48900.067*
C30.8604 (2)0.6042 (3)0.51838 (13)0.0661 (6)
H30.87860.60310.46870.079*
C40.9552 (2)0.6618 (3)0.57932 (14)0.0666 (6)
H41.03750.69800.57100.080*
C50.92754 (19)0.6654 (2)0.65242 (12)0.0527 (4)
H50.99240.70290.69360.063*
C60.80402 (15)0.61383 (17)0.66604 (9)0.0391 (3)
C70.77527 (14)0.61740 (15)0.74613 (8)0.0347 (3)
H70.85760.59120.78470.042*
C80.65603 (14)0.51912 (15)0.75457 (8)0.0345 (3)
C90.54349 (15)0.53043 (18)0.68020 (9)0.0400 (3)
H9A0.46770.46830.68510.048*
H9B0.51000.62920.67430.048*
C100.60629 (16)0.58987 (17)0.82461 (9)0.0392 (3)
H100.50950.61570.80790.047*
C110.62489 (15)0.49933 (17)0.89708 (9)0.0382 (3)
C120.74430 (16)0.50552 (19)0.95373 (10)0.0435 (4)
H120.81450.56810.94830.052*
C130.75772 (19)0.4174 (2)1.01837 (10)0.0503 (4)
C140.6564 (2)0.3247 (2)1.02857 (12)0.0584 (5)
H140.66760.26641.07260.070*
C150.5385 (2)0.3195 (2)0.97269 (12)0.0621 (5)
H150.46870.25690.97880.075*
C160.52159 (19)0.4062 (2)0.90713 (11)0.0512 (4)
H160.44060.40200.86970.061*
C170.8261 (2)0.86941 (19)0.78734 (11)0.0531 (4)
H17A0.78780.95200.80800.080*
H17B0.85820.89750.74180.080*
H17C0.90100.83210.82570.080*
C180.69897 (16)0.36725 (17)0.76710 (10)0.0405 (3)
N10.72137 (14)0.75768 (14)0.76661 (7)0.0396 (3)
N20.72938 (17)0.24949 (17)0.77403 (11)0.0618 (4)
O10.59142 (12)0.48990 (13)0.61273 (7)0.0470 (3)
O20.68515 (14)0.71908 (12)0.84078 (7)0.0481 (3)
Cl10.90798 (6)0.42666 (9)1.08998 (4)0.0900 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0467 (8)0.0382 (8)0.0375 (8)0.0095 (6)0.0049 (6)0.0010 (6)
C20.0680 (12)0.0572 (11)0.0404 (9)0.0170 (9)0.0079 (8)0.0024 (8)
C30.0852 (14)0.0674 (13)0.0533 (11)0.0204 (11)0.0318 (11)0.0081 (10)
C40.0685 (12)0.0649 (13)0.0749 (14)0.0032 (10)0.0344 (11)0.0058 (11)
C50.0475 (9)0.0522 (10)0.0595 (11)0.0014 (8)0.0142 (8)0.0013 (8)
C60.0402 (7)0.0350 (7)0.0406 (8)0.0046 (6)0.0055 (6)0.0011 (6)
C70.0346 (6)0.0300 (7)0.0355 (7)0.0006 (5)0.0015 (5)0.0001 (5)
C80.0353 (7)0.0285 (6)0.0369 (7)0.0029 (5)0.0016 (5)0.0002 (5)
C90.0341 (7)0.0415 (8)0.0406 (8)0.0013 (6)0.0007 (6)0.0047 (6)
C100.0401 (7)0.0358 (7)0.0402 (8)0.0050 (6)0.0053 (6)0.0013 (6)
C110.0402 (7)0.0351 (7)0.0404 (8)0.0004 (6)0.0111 (6)0.0026 (6)
C120.0395 (7)0.0456 (9)0.0454 (8)0.0006 (7)0.0091 (6)0.0074 (7)
C130.0550 (10)0.0499 (10)0.0453 (9)0.0078 (8)0.0091 (7)0.0076 (7)
C140.0899 (14)0.0380 (9)0.0523 (10)0.0021 (9)0.0262 (10)0.0051 (8)
C150.0824 (14)0.0455 (10)0.0662 (12)0.0269 (10)0.0331 (11)0.0089 (9)
C160.0518 (9)0.0503 (10)0.0517 (10)0.0143 (8)0.0119 (8)0.0137 (8)
C170.0676 (11)0.0342 (8)0.0540 (10)0.0085 (8)0.0052 (8)0.0031 (7)
C180.0404 (7)0.0326 (7)0.0471 (8)0.0010 (6)0.0061 (6)0.0004 (6)
N10.0513 (7)0.0293 (6)0.0360 (6)0.0008 (5)0.0045 (5)0.0011 (5)
N20.0636 (10)0.0364 (8)0.0845 (12)0.0068 (7)0.0135 (9)0.0031 (8)
O10.0452 (6)0.0517 (7)0.0392 (6)0.0014 (5)0.0016 (5)0.0116 (5)
O20.0751 (8)0.0314 (6)0.0395 (6)0.0028 (5)0.0158 (5)0.0031 (4)
Cl10.0704 (4)0.1252 (6)0.0635 (4)0.0115 (4)0.0098 (3)0.0284 (3)
Geometric parameters (Å, º) top
C1—O11.371 (2)C10—O21.4257 (19)
C1—C61.388 (2)C10—C111.503 (2)
C1—C21.390 (2)C10—H100.9800
C2—C31.375 (3)C11—C121.384 (2)
C2—H20.9300C11—C161.385 (2)
C3—C41.378 (3)C12—C131.381 (2)
C3—H30.9300C12—H120.9300
C4—C51.373 (3)C13—C141.369 (3)
C4—H40.9300C13—Cl11.7459 (19)
C5—C61.393 (2)C14—C151.366 (3)
C5—H50.9300C14—H140.9300
C6—C71.498 (2)C15—C161.385 (3)
C7—N11.4775 (19)C15—H150.9300
C7—C81.532 (2)C16—H160.9300
C7—H70.9800C17—N11.461 (2)
C8—C181.470 (2)C17—H17A0.9600
C8—C91.537 (2)C17—H17B0.9600
C8—C101.567 (2)C17—H17C0.9600
C9—O11.423 (2)C18—N21.129 (2)
C9—H9A0.9700N1—O21.4711 (17)
C9—H9B0.9700
O1—C1—C6122.77 (14)O2—C10—C11109.49 (12)
O1—C1—C2116.42 (15)O2—C10—C8104.48 (12)
C6—C1—C2120.75 (17)C11—C10—C8115.63 (12)
C3—C2—C1119.44 (19)O2—C10—H10109.0
C3—C2—H2120.3C11—C10—H10109.0
C1—C2—H2120.3C8—C10—H10109.0
C2—C3—C4120.68 (19)C12—C11—C16119.17 (16)
C2—C3—H3119.7C12—C11—C10121.27 (14)
C4—C3—H3119.7C16—C11—C10119.56 (15)
C5—C4—C3119.7 (2)C13—C12—C11119.03 (16)
C5—C4—H4120.2C13—C12—H12120.5
C3—C4—H4120.2C11—C12—H12120.5
C4—C5—C6121.15 (19)C14—C13—C12122.17 (17)
C4—C5—H5119.4C14—C13—Cl1118.99 (15)
C6—C5—H5119.4C12—C13—Cl1118.84 (14)
C1—C6—C5118.25 (16)C15—C14—C13118.59 (17)
C1—C6—C7120.97 (14)C15—C14—H14120.7
C5—C6—C7120.71 (15)C13—C14—H14120.7
N1—C7—C6113.74 (12)C14—C15—C16120.76 (17)
N1—C7—C899.38 (11)C14—C15—H15119.6
C6—C7—C8112.88 (12)C16—C15—H15119.6
N1—C7—H7110.1C15—C16—C11120.27 (17)
C6—C7—H7110.1C15—C16—H16119.9
C8—C7—H7110.1C11—C16—H16119.9
C18—C8—C7111.76 (12)N1—C17—H17A109.5
C18—C8—C9109.29 (12)N1—C17—H17B109.5
C7—C8—C9108.78 (12)H17A—C17—H17B109.5
C18—C8—C10114.32 (13)N1—C17—H17C109.5
C7—C8—C10102.39 (11)H17A—C17—H17C109.5
C9—C8—C10110.04 (12)H17B—C17—H17C109.5
O1—C9—C8112.07 (12)N2—C18—C8177.46 (19)
O1—C9—H9A109.2C17—N1—O2104.46 (12)
C8—C9—H9A109.2C17—N1—C7113.60 (13)
O1—C9—H9B109.2O2—N1—C7100.14 (10)
C8—C9—H9B109.2C1—O1—C9115.99 (12)
H9A—C9—H9B107.9C10—O2—N1104.90 (11)
O1—C1—C2—C3177.20 (17)C7—C8—C10—C11114.23 (14)
C6—C1—C2—C30.3 (3)C9—C8—C10—C11130.25 (14)
C1—C2—C3—C41.3 (3)O2—C10—C11—C1228.6 (2)
C2—C3—C4—C50.9 (3)C8—C10—C11—C1289.10 (18)
C3—C4—C5—C61.0 (3)O2—C10—C11—C16152.35 (14)
O1—C1—C6—C5175.18 (15)C8—C10—C11—C1689.99 (18)
C2—C1—C6—C52.2 (2)C16—C11—C12—C130.7 (2)
O1—C1—C6—C71.9 (2)C10—C11—C12—C13178.38 (15)
C2—C1—C6—C7179.23 (15)C11—C12—C13—C140.4 (3)
C4—C5—C6—C12.5 (3)C11—C12—C13—Cl1179.51 (13)
C4—C5—C6—C7179.59 (17)C12—C13—C14—C150.1 (3)
C1—C6—C7—N198.81 (17)Cl1—C13—C14—C15179.19 (15)
C5—C6—C7—N184.21 (18)C13—C14—C15—C160.1 (3)
C1—C6—C7—C813.4 (2)C14—C15—C16—C110.4 (3)
C5—C6—C7—C8163.53 (14)C12—C11—C16—C150.7 (3)
N1—C7—C8—C18158.11 (12)C10—C11—C16—C15178.42 (16)
C6—C7—C8—C1881.06 (15)C6—C7—N1—C1777.41 (16)
N1—C7—C8—C981.13 (13)C8—C7—N1—C17162.38 (12)
C6—C7—C8—C939.70 (16)C6—C7—N1—O2171.80 (12)
N1—C7—C8—C1035.30 (13)C8—C7—N1—O251.59 (12)
C6—C7—C8—C10156.14 (12)C6—C1—O1—C920.4 (2)
C18—C8—C9—O163.51 (17)C2—C1—O1—C9162.18 (15)
C7—C8—C9—O158.76 (16)C8—C9—O1—C149.34 (18)
C10—C8—C9—O1170.19 (12)C11—C10—O2—N1150.44 (12)
C18—C8—C10—O2127.25 (13)C8—C10—O2—N126.01 (14)
C7—C8—C10—O26.19 (14)C17—N1—O2—C10167.72 (13)
C9—C8—C10—O2109.34 (13)C7—N1—O2—C1049.94 (13)
C18—C8—C10—C116.83 (18)

Experimental details

Crystal data
Chemical formulaC18H15ClN2O2
Mr326.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.0141 (4), 9.2358 (3), 17.5945 (6)
β (°) 102.354 (2)
V3)1589.60 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.928, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
20534, 4926, 3390
Rint0.026
(sin θ/λ)max1)0.718
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.151, 1.04
No. of reflections4926
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.63

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

KSN and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray data collection.

References

First citationBakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825–5830.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGunasekaran, B., Kathiravan, S., Raghunathan, R. & Manivannan, V. (2010). Acta Cryst. E66, o611–o612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, B., Vozzolo, L., Mok, B. J., Lee, C. C., Fitzmaurice, R. J., Caddick, S. & Fassati, A. (2010). J. Med. Chem. 52, 6966–6978.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinn, M., Arendsen, D., Dodge, P., Dren, A., Dunnigan, D., Hallas, R., Hwang, K., Kyncl, J., Lee, Y. H., Plotnikoff, N., Young Zaugg, H., Dalzell, H. & Razdan, R. K. (1976). J. Med. Chem. 19, 461–471.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds