organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Cyclo­hexyl­sulfonyl-5-iso­propyl-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 17 February 2011; accepted 25 February 2011; online 2 March 2011)

In the title compound, C18H24O3S, the cyclo­hexyl ring adopts a chair conformation. In the crystal, mol­ecules are linked through weak non-classical inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For structural studies of related 3-aryl­sulfonyl-5-isopropyl-2-methyl-1-benzofuran derivatives, see: Choi et al. (2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1257.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1067.]).

[Scheme 1]

Experimental

Crystal data
  • C18H24O3S

  • Mr = 320.44

  • Monoclinic, P 21 /c

  • a = 5.7117 (1) Å

  • b = 23.5045 (4) Å

  • c = 12.7980 (2) Å

  • β = 102.080 (1)°

  • V = 1680.09 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.26 × 0.25 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.957

  • 15706 measured reflections

  • 3870 independent reflections

  • 3124 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.118

  • S = 1.05

  • 3870 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 1.00 2.33 3.3030 (19) 165
C14—H14A⋯O3ii 0.99 2.58 3.424 (2) 143
C10—H10CCgi 0.98 2.71 3.548 (2) 144
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds having a benzofuran skeleton exhibit diverse pharmacological properties such as antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2006; Galal et al., 2009; Khan et al., 2005). These compounds occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of the substituent effect on the solid state structures of 3-arylsulfonyl-5-isopropyl-2-methyl-1-benzofuran analogues (Choi et al., 2008, 2010), we report herein the molecular and crystal structures of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring is in the chair form. The molecular packing (Fig. 2) is stabilized by weak non-classical intermolecular C–H···O hydrogen bonds; the first one between a cyclohexyl H atom and the oxygen of the OSO unit (Table 1; C13—H13···O2i), the second one between a cyclohexyl H atom and the oxygen of the OSO unit (Table 1; C14—H14A···O3ii). The crystal packing (Fig. 2) is further stabilized by intermolecular C–H···π interactions between a methyl H atom of the isopropyl group and the benzene ring.

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 3-arylsulfonyl-5-isopropyl-2-methyl-1-benzofuran derivatives, see: Choi et al. (2008, 2010).

Experimental top

The 3-chloroperoxybenzoic acid (77%, 560 mg, 2.5 mmol) was added in small portions to a stirred solution of 3-cyclohexylsulfanyl-5-isopropyl-2-methyl-1-benzofuran (346 mg, 1.2 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 6h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 4:1 v/v) to afford the title compound as a colourless solid [yield 78%, m.p. 467–468 K; Rf = 0.66 (hexane–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95Å for aryl, 1.00Å for methine, 0.99Å for methylene and 0.98Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl, methine and methylene, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. Symmetry codes: (i) x-1 , y, z; (ii) x, -y+1/2, z+1/2 (iii) x+1, y, z; (iv) x, -y+1/2, z-1/2.
3-Cyclohexylsulfonyl-5-isopropyl-2-methyl-1-benzofuran top
Crystal data top
C18H24O3SF(000) = 688
Mr = 320.44Dx = 1.267 Mg m3
Monoclinic, P21/cMelting point = 467–468 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.7117 (1) ÅCell parameters from 7210 reflections
b = 23.5045 (4) Åθ = 2.4–27.3°
c = 12.7980 (2) ŵ = 0.20 mm1
β = 102.080 (1)°T = 173 K
V = 1680.09 (5) Å3Block, colourless
Z = 40.26 × 0.25 × 0.22 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3870 independent reflections
Radiation source: rotating anode3124 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.034
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.7°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2230
Tmin = 0.949, Tmax = 0.957l = 1616
15706 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.3753P]
where P = (Fo2 + 2Fc2)/3
3870 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C18H24O3SV = 1680.09 (5) Å3
Mr = 320.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7117 (1) ŵ = 0.20 mm1
b = 23.5045 (4) ÅT = 173 K
c = 12.7980 (2) Å0.26 × 0.25 × 0.22 mm
β = 102.080 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3870 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3124 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.957Rint = 0.034
15706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
3870 reflectionsΔρmin = 0.49 e Å3
202 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.79640 (7)0.253935 (16)0.35223 (3)0.02755 (13)
O10.8519 (2)0.14326 (5)0.58586 (9)0.0413 (3)
O21.0380 (2)0.27516 (5)0.37375 (10)0.0411 (3)
O30.6959 (2)0.23391 (5)0.24608 (9)0.0377 (3)
C10.7751 (3)0.19902 (6)0.44030 (12)0.0296 (3)
C20.5856 (3)0.15696 (6)0.42805 (12)0.0304 (3)
C30.3829 (3)0.14321 (7)0.35150 (13)0.0327 (4)
H30.33950.16530.28830.039*
C40.2436 (3)0.09669 (7)0.36817 (14)0.0367 (4)
C50.3105 (4)0.06562 (7)0.46338 (15)0.0444 (5)
H50.21370.03430.47500.053*
C60.5089 (4)0.07834 (7)0.54037 (15)0.0448 (5)
H60.55140.05670.60420.054*
C70.6431 (3)0.12389 (7)0.52048 (13)0.0366 (4)
C80.9275 (3)0.18916 (7)0.53575 (13)0.0353 (4)
C90.0319 (3)0.07963 (8)0.28150 (16)0.0457 (5)
H90.05660.11520.25480.055*
C100.1454 (4)0.03966 (8)0.31629 (19)0.0565 (6)
H10A0.06940.00260.33490.085*
H10B0.28510.03490.25770.085*
H10C0.19640.05560.37870.085*
C110.1175 (4)0.05314 (12)0.18821 (17)0.0678 (7)
H11A0.22180.08000.16120.102*
H11B0.02080.04400.13120.102*
H11C0.20680.01820.21190.102*
C121.1480 (3)0.21675 (9)0.59454 (15)0.0477 (5)
H12A1.28620.19260.59130.072*
H12B1.13710.22220.66930.072*
H12C1.16720.25380.56210.072*
C130.6056 (3)0.30757 (6)0.38532 (12)0.0258 (3)
H130.44010.29150.37460.031*
C140.6805 (3)0.32676 (7)0.50149 (12)0.0368 (4)
H14A0.68210.29370.54960.044*
H14B0.84410.34300.51440.044*
C150.5051 (4)0.37148 (8)0.52512 (15)0.0466 (5)
H15A0.34540.35390.51910.056*
H15B0.55900.38520.59940.056*
C160.4846 (4)0.42147 (8)0.44964 (18)0.0556 (5)
H16A0.63850.44230.46240.067*
H16B0.35960.44780.46370.067*
C170.4210 (4)0.40189 (8)0.33352 (16)0.0510 (5)
H17A0.25830.38520.31850.061*
H17B0.41980.43510.28590.061*
C180.5991 (3)0.35795 (7)0.30975 (13)0.0369 (4)
H18A0.76040.37520.31950.044*
H18B0.55050.34490.23480.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0263 (2)0.0315 (2)0.0264 (2)0.00097 (14)0.00923 (16)0.00148 (14)
O10.0547 (8)0.0371 (7)0.0309 (6)0.0125 (6)0.0067 (6)0.0045 (5)
O20.0258 (6)0.0519 (7)0.0481 (7)0.0035 (5)0.0136 (5)0.0003 (6)
O30.0509 (8)0.0380 (6)0.0257 (6)0.0039 (5)0.0114 (5)0.0038 (5)
C10.0311 (8)0.0296 (8)0.0290 (8)0.0061 (6)0.0079 (7)0.0002 (6)
C20.0386 (9)0.0239 (8)0.0316 (8)0.0059 (6)0.0137 (7)0.0014 (6)
C30.0381 (9)0.0259 (8)0.0353 (8)0.0028 (6)0.0106 (7)0.0048 (6)
C40.0419 (10)0.0261 (8)0.0460 (10)0.0020 (7)0.0177 (8)0.0024 (7)
C50.0652 (13)0.0259 (9)0.0494 (11)0.0007 (8)0.0286 (10)0.0042 (7)
C60.0719 (14)0.0298 (9)0.0365 (9)0.0080 (9)0.0203 (9)0.0076 (7)
C70.0531 (11)0.0282 (8)0.0302 (8)0.0114 (7)0.0129 (8)0.0014 (7)
C80.0383 (9)0.0369 (9)0.0321 (8)0.0119 (7)0.0104 (7)0.0006 (7)
C90.0407 (10)0.0320 (9)0.0653 (13)0.0056 (8)0.0131 (9)0.0057 (8)
C100.0537 (12)0.0407 (11)0.0843 (16)0.0120 (9)0.0353 (11)0.0130 (11)
C110.0508 (13)0.1066 (19)0.0474 (12)0.0300 (13)0.0135 (10)0.0090 (12)
C120.0380 (10)0.0636 (13)0.0375 (10)0.0114 (9)0.0010 (8)0.0016 (9)
C130.0226 (7)0.0271 (7)0.0280 (8)0.0010 (6)0.0058 (6)0.0000 (6)
C140.0450 (10)0.0387 (9)0.0271 (8)0.0071 (7)0.0084 (7)0.0029 (7)
C150.0551 (12)0.0444 (11)0.0426 (10)0.0081 (9)0.0151 (9)0.0105 (8)
C160.0661 (14)0.0319 (10)0.0688 (14)0.0063 (9)0.0139 (11)0.0103 (9)
C170.0616 (13)0.0346 (10)0.0542 (12)0.0126 (9)0.0067 (10)0.0081 (8)
C180.0459 (10)0.0318 (9)0.0316 (8)0.0020 (7)0.0051 (7)0.0048 (7)
Geometric parameters (Å, º) top
S1—O31.4389 (12)C10—H10C0.9800
S1—O21.4389 (12)C11—H11A0.9800
S1—C11.7345 (16)C11—H11B0.9800
S1—C131.7747 (15)C11—H11C0.9800
O1—C81.370 (2)C12—H12A0.9800
O1—C71.383 (2)C12—H12B0.9800
C1—C81.363 (2)C12—H12C0.9800
C1—C21.450 (2)C13—C181.524 (2)
C2—C31.389 (2)C13—C141.527 (2)
C2—C71.396 (2)C13—H131.0000
C3—C41.395 (2)C14—C151.526 (2)
C3—H30.9500C14—H14A0.9900
C4—C51.403 (2)C14—H14B0.9900
C4—C91.514 (3)C15—C161.510 (3)
C5—C61.370 (3)C15—H15A0.9900
C5—H50.9500C15—H15B0.9900
C6—C71.371 (3)C16—C171.525 (3)
C6—H60.9500C16—H16A0.9900
C8—C121.475 (3)C16—H16B0.9900
C9—C101.515 (2)C17—C181.524 (3)
C9—C111.515 (3)C17—H17A0.9900
C9—H91.0000C17—H17B0.9900
C10—H10A0.9800C18—H18A0.9900
C10—H10B0.9800C18—H18B0.9900
O3—S1—O2118.13 (7)C9—C11—H11C109.5
O3—S1—C1107.55 (7)H11A—C11—H11C109.5
O2—S1—C1109.19 (8)H11B—C11—H11C109.5
O3—S1—C13108.30 (7)C8—C12—H12A109.5
O2—S1—C13108.69 (7)C8—C12—H12B109.5
C1—S1—C13104.09 (7)H12A—C12—H12B109.5
C8—O1—C7107.01 (12)C8—C12—H12C109.5
C8—C1—C2107.65 (14)H12A—C12—H12C109.5
C8—C1—S1126.16 (13)H12B—C12—H12C109.5
C2—C1—S1126.13 (12)C18—C13—C14110.67 (13)
C3—C2—C7118.78 (15)C18—C13—S1109.58 (11)
C3—C2—C1136.71 (15)C14—C13—S1112.41 (11)
C7—C2—C1104.49 (15)C18—C13—H13108.0
C2—C3—C4119.51 (15)C14—C13—H13108.0
C2—C3—H3120.2S1—C13—H13108.0
C4—C3—H3120.2C15—C14—C13109.55 (14)
C3—C4—C5118.71 (16)C15—C14—H14A109.8
C3—C4—C9119.30 (15)C13—C14—H14A109.8
C5—C4—C9121.93 (16)C15—C14—H14B109.8
C6—C5—C4123.01 (17)C13—C14—H14B109.8
C6—C5—H5118.5H14A—C14—H14B108.2
C4—C5—H5118.5C16—C15—C14112.06 (16)
C5—C6—C7116.56 (16)C16—C15—H15A109.2
C5—C6—H6121.7C14—C15—H15A109.2
C7—C6—H6121.7C16—C15—H15B109.2
C6—C7—O1126.13 (15)C14—C15—H15B109.2
C6—C7—C2123.41 (17)H15A—C15—H15B107.9
O1—C7—C2110.46 (15)C15—C16—C17111.05 (15)
C1—C8—O1110.38 (15)C15—C16—H16A109.4
C1—C8—C12134.37 (17)C17—C16—H16A109.4
O1—C8—C12115.25 (15)C15—C16—H16B109.4
C4—C9—C10115.43 (17)C17—C16—H16B109.4
C4—C9—C11110.26 (16)H16A—C16—H16B108.0
C10—C9—C11108.82 (16)C18—C17—C16111.48 (15)
C4—C9—H9107.3C18—C17—H17A109.3
C10—C9—H9107.3C16—C17—H17A109.3
C11—C9—H9107.3C18—C17—H17B109.3
C9—C10—H10A109.5C16—C17—H17B109.3
C9—C10—H10B109.5H17A—C17—H17B108.0
H10A—C10—H10B109.5C17—C18—C13109.17 (14)
C9—C10—H10C109.5C17—C18—H18A109.8
H10A—C10—H10C109.5C13—C18—H18A109.8
H10B—C10—H10C109.5C17—C18—H18B109.8
C9—C11—H11A109.5C13—C18—H18B109.8
C9—C11—H11B109.5H18A—C18—H18B108.3
H11A—C11—H11B109.5
O3—S1—C1—C8149.94 (14)C2—C1—C8—O10.67 (18)
O2—S1—C1—C820.63 (17)S1—C1—C8—O1177.99 (11)
C13—S1—C1—C895.29 (15)C2—C1—C8—C12178.92 (18)
O3—S1—C1—C233.21 (15)S1—C1—C8—C121.6 (3)
O2—S1—C1—C2162.53 (13)C7—O1—C8—C10.73 (17)
C13—S1—C1—C281.56 (14)C7—O1—C8—C12178.94 (14)
C8—C1—C2—C3179.01 (18)C3—C4—C9—C10164.47 (16)
S1—C1—C2—C33.7 (3)C5—C4—C9—C1018.3 (2)
C8—C1—C2—C70.33 (17)C3—C4—C9—C1171.7 (2)
S1—C1—C2—C7177.66 (12)C5—C4—C9—C11105.5 (2)
C7—C2—C3—C40.6 (2)O3—S1—C13—C1863.30 (12)
C1—C2—C3—C4177.97 (17)O2—S1—C13—C1866.20 (12)
C2—C3—C4—C51.2 (2)C1—S1—C13—C18177.53 (11)
C2—C3—C4—C9176.17 (15)O3—S1—C13—C14173.20 (11)
C3—C4—C5—C61.0 (3)O2—S1—C13—C1457.30 (13)
C9—C4—C5—C6176.28 (18)C1—S1—C13—C1458.97 (13)
C4—C5—C6—C70.1 (3)C18—C13—C14—C1558.75 (18)
C5—C6—C7—O1178.51 (16)S1—C13—C14—C15178.37 (12)
C5—C6—C7—C20.5 (3)C13—C14—C15—C1656.1 (2)
C8—O1—C7—C6179.64 (16)C14—C15—C16—C1754.4 (2)
C8—O1—C7—C20.51 (17)C15—C16—C17—C1855.1 (2)
C3—C2—C7—C60.3 (2)C16—C17—C18—C1357.4 (2)
C1—C2—C7—C6179.27 (16)C14—C13—C18—C1759.57 (18)
C3—C2—C7—O1178.86 (14)S1—C13—C18—C17175.92 (12)
C1—C2—C7—O10.11 (17)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i1.002.333.3030 (19)165
C14—H14A···O3ii0.992.583.424 (2)143
C10—H10C···Cgi0.982.713.548 (2)144
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H24O3S
Mr320.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)5.7117 (1), 23.5045 (4), 12.7980 (2)
β (°) 102.080 (1)
V3)1680.09 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.26 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.949, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
15706, 3870, 3124
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 1.05
No. of reflections3870
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.49

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i1.002.333.3030 (19)165
C14—H14A···O3ii0.992.583.424 (2)143
C10—H10C···Cgi0.982.713.548 (2)144
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds