organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′,2′′,2′′′-[Pyridine-2,6-diylbis(methyl­ene­nitrilo)]tetra­ethanol

aSchool of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 10 March 2011; accepted 23 March 2011; online 31 March 2011)

In the crystal structure of the title compound C15H27N3O4, the mol­ecule is located on a twofold axis and the asymmetric unit contains one half-mol­ecule, with one N and one C atom lying on the rotation axis. The pyridine ring is the hydrogen-bond acceptor, while two hydroxyl O atoms act as hydrogen-bond donors in intra­molecular O—H⋯N and intermolecular O—H⋯N and O—H⋯O hydrogen bonds, thereby forming a closed hydrogen-bonded cage.

Related literature

For general background to pyridine, see: Klimesova et al. (1990[Klimesova, V., Svoboda, M., Waisser, K., Pour, M. & Kaustova, J. (1999). Farmaco, 54, 666-672.]); Rabasseda et al. (1999[Rabasseda, X., Silverstre, J. & Castaner, J. (1999). Drug Future, 24, 375-380.]) . For the synthesis, see: Fang et al. (2010[Fang, B., Zhou, C. H. & Rao, X. C. (2010). Eur. J. Med. Chem. 45, 4388-4398.]).

[Scheme 1]

Experimental

Crystal data
  • C15H27N3O4

  • Mr = 313.40

  • Orthorhombic, P 21 21 2

  • a = 9.145 (6) Å

  • b = 10.716 (7) Å

  • c = 8.292 (5) Å

  • V = 812.6 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.45 × 0.45 × 0.45 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 4239 measured reflections

  • 1511 independent reflections

  • 1441 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.08

  • 1511 reflections

  • 104 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 1.94 2.762 (2) 175
O1—H1A⋯N2i 0.82 2.74 3.248 (2) 122
O1—H1A⋯N2 0.82 2.54 2.935 (2) 111
O1—H1A⋯N1 0.82 2.25 3.004 (2) 153
Symmetry code: (i) -x, -y+2, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridine is an important type of nitrogen–containing aromatic heterocycle which is widely used as building block for preparing a variety of drugs, insecticides and herbicides in the pharmaceutical industry (Klimesova et al., 1999; Rabasseda et al., 1999). Recently, our researches have been focused on the development of aromatic ring–derived nitrogen mustards as potential antitumor agents. As part of our work, herein we report the molecular and crystal structures of the title compound as an intermediate for the pyridine–derived nitrogen mustards.

The molecular structure of the title compound is shown in Fig. 1. In the crystal structure of the title compound, C15H27N3O4, reveals that the molecule placed on two–fold axis (C1, H1 and N1 atoms placed on twofold axis) and asymmetric unit contains a half molecule. In the molecule, pyridine ring is the hydrogen–bond acceptor, and two hydroxyls which move closer to the pyridine ring via O—H···N intramolecular hydrogen bond perform as hydrogen–bond donor, thus the closed hydrogen bond cage has been formed.

Related literature top

For general background to pyridine, see: Klimesova et al. (1999); Rabasseda et al. (1999). For the synthesis, see: Fang et al. (2010).

Experimental top

The title compound was prepared according to the procedure of Fang et al. (2010). Single crystals were grown by slow evaporation of a solution of the title compound in the mixture of dichloromethane and n–hexane at room temperature.

Refinement top

All H atoms were placed in idealized positions and treated as riding, with C—H = 0.93Å (CH) or 0.97Å (CH2), and Uiso(H) = 1.2Ueq(C); O—H = 0.82Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
2,2',2'',2'''-[Pyridine-2,6-diylbis(methylenenitrilo)]tetraethanol top
Crystal data top
C15H27N3O4F(000) = 340
Mr = 313.40Dx = 1.281 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 2637 reflections
a = 9.145 (6) Åθ = 2.5–27.1°
b = 10.716 (7) ŵ = 0.09 mm1
c = 8.292 (5) ÅT = 298 K
V = 812.6 (9) Å3Block, colourless
Z = 20.45 × 0.45 × 0.45 mm
Data collection top
Bruker SMART APEX
diffractometer
1441 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.5°, θmin = 2.5°
ϕ– and ω–scansh = 118
4239 measured reflectionsk = 912
1511 independent reflectionsl = 108
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.1402P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1511 reflectionsΔρmax = 0.14 e Å3
104 parametersΔρmin = 0.17 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.105 (9)
Crystal data top
C15H27N3O4V = 812.6 (9) Å3
Mr = 313.40Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 9.145 (6) ŵ = 0.09 mm1
b = 10.716 (7) ÅT = 298 K
c = 8.292 (5) Å0.45 × 0.45 × 0.45 mm
Data collection top
Bruker SMART APEX
diffractometer
1441 reflections with I > 2σ(I)
4239 measured reflectionsRint = 0.021
1511 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.098H-atom parameters constrained
S = 1.08Δρmax = 0.14 e Å3
1511 reflectionsΔρmin = 0.17 e Å3
104 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00001.00000.8502 (3)0.0603 (7)
H10.00001.00000.96240.072*
C20.0769 (2)0.91187 (18)0.7667 (2)0.0537 (5)
H20.13120.85200.82150.064*
C30.07333 (19)0.91260 (16)0.6004 (2)0.0453 (4)
C40.1444 (2)0.81022 (17)0.5072 (2)0.0564 (5)
H4A0.23460.78730.56100.068*
H4B0.08060.73790.50900.068*
C50.29756 (19)0.93047 (18)0.3315 (3)0.0590 (5)
H5A0.38890.88610.31580.071*
H5B0.30400.97550.43280.071*
C60.2762 (2)1.02106 (18)0.1970 (2)0.0567 (5)
H6A0.36341.07190.18550.068*
H6B0.26180.97570.09700.068*
C70.2098 (2)0.72780 (17)0.2461 (3)0.0617 (5)
H7A0.27380.67470.30930.074*
H7B0.26280.75200.14970.074*
C80.0801 (3)0.65392 (18)0.1972 (3)0.0671 (5)
H8A0.11290.57290.15950.081*
H8B0.01930.64030.29140.081*
N10.00001.00000.5180 (2)0.0460 (5)
N20.17740 (14)0.84064 (12)0.34005 (17)0.0443 (4)
O10.15472 (15)1.09903 (12)0.22517 (18)0.0608 (4)
H1A0.09441.06170.28020.091*
O20.0051 (2)0.70862 (16)0.0769 (2)0.0867 (5)
H2A0.05310.76590.11570.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0685 (17)0.0814 (19)0.0309 (11)0.0226 (16)0.0000.000
C20.0567 (10)0.0636 (11)0.0408 (9)0.0147 (9)0.0090 (8)0.0123 (8)
C30.0449 (9)0.0501 (9)0.0410 (8)0.0046 (8)0.0020 (7)0.0090 (7)
C40.0620 (11)0.0540 (10)0.0533 (11)0.0119 (9)0.0016 (9)0.0147 (8)
C50.0383 (9)0.0654 (11)0.0734 (12)0.0017 (8)0.0028 (9)0.0111 (10)
C60.0450 (9)0.0621 (11)0.0631 (11)0.0064 (8)0.0069 (9)0.0084 (10)
C70.0612 (11)0.0542 (10)0.0696 (12)0.0205 (10)0.0148 (10)0.0044 (9)
C80.0867 (14)0.0460 (10)0.0687 (12)0.0053 (10)0.0155 (10)0.0064 (9)
N10.0536 (11)0.0513 (11)0.0333 (9)0.0073 (10)0.0000.000
N20.0406 (7)0.0433 (7)0.0491 (8)0.0064 (6)0.0038 (6)0.0053 (6)
O10.0550 (8)0.0577 (7)0.0697 (9)0.0026 (6)0.0056 (6)0.0142 (7)
O20.0996 (12)0.0797 (11)0.0807 (10)0.0185 (9)0.0140 (10)0.0251 (8)
Geometric parameters (Å, º) top
C1—C2i1.366 (2)C6—O11.410 (2)
C1—C21.366 (2)C6—H6A0.9700
C1—H10.9300C6—H6B0.9700
C2—C31.380 (3)C7—N21.469 (2)
C2—H20.9300C7—C81.482 (3)
C3—N11.339 (2)C7—H7A0.9700
C3—C41.491 (3)C7—H7B0.9700
C4—N21.455 (2)C8—O21.395 (3)
C4—H4A0.9700C8—H8A0.9700
C4—H4B0.9700C8—H8B0.9700
C5—N21.463 (2)N1—C3i1.339 (2)
C5—C61.491 (3)O1—H1A0.8200
C5—H5A0.9700O2—H2A0.8200
C5—H5B0.9700
C2i—C1—C2119.1 (2)C5—C6—H6A109.3
C2i—C1—H1120.5O1—C6—H6B109.3
C2—C1—H1120.5C5—C6—H6B109.3
C1—C2—C3119.4 (2)H6A—C6—H6B108.0
C1—C2—H2120.3N2—C7—C8115.04 (16)
C3—C2—H2120.3N2—C7—H7A108.5
N1—C3—C2121.73 (18)C8—C7—H7A108.5
N1—C3—C4117.91 (15)N2—C7—H7B108.5
C2—C3—C4120.25 (18)C8—C7—H7B108.5
N2—C4—C3114.79 (14)H7A—C7—H7B107.5
N2—C4—H4A108.6O2—C8—C7114.72 (18)
C3—C4—H4A108.6O2—C8—H8A108.6
N2—C4—H4B108.6C7—C8—H8A108.6
C3—C4—H4B108.6O2—C8—H8B108.6
H4A—C4—H4B107.5C7—C8—H8B108.6
N2—C5—C6111.48 (16)H8A—C8—H8B107.6
N2—C5—H5A109.3C3i—N1—C3118.6 (2)
C6—C5—H5A109.3C4—N2—C5110.45 (16)
N2—C5—H5B109.3C4—N2—C7111.27 (14)
C6—C5—H5B109.3C5—N2—C7111.38 (15)
H5A—C5—H5B108.0C6—O1—H1A109.5
O1—C6—C5111.42 (17)C8—O2—H2A109.5
O1—C6—H6A109.3
C2i—C1—C2—C31.04 (13)C4—C3—N1—C3i175.19 (18)
C1—C2—C3—N12.2 (3)C3—C4—N2—C570.9 (2)
C1—C2—C3—C4174.02 (14)C3—C4—N2—C7164.87 (16)
N1—C3—C4—N223.7 (2)C6—C5—N2—C4143.71 (17)
C2—C3—C4—N2160.01 (17)C6—C5—N2—C792.11 (19)
N2—C5—C6—O166.6 (2)C8—C7—N2—C477.8 (2)
N2—C7—C8—O271.9 (2)C8—C7—N2—C5158.52 (17)
C2—C3—N1—C3i1.09 (13)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.942.762 (2)175
O1—H1A···N2i0.822.743.248 (2)122
O1—H1A···N20.822.542.935 (2)111
O1—H1A···N10.822.253.004 (2)153
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC15H27N3O4
Mr313.40
Crystal system, space groupOrthorhombic, P21212
Temperature (K)298
a, b, c (Å)9.145 (6), 10.716 (7), 8.292 (5)
V3)812.6 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.45 × 0.45
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4239, 1511, 1441
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.08
No. of reflections1511
No. of parameters104
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.17

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.942.762 (2)175
O1—H1A···N2i0.822.743.248 (2)122
O1—H1A···N20.822.542.935 (2)111
O1—H1A···N10.822.253.004 (2)153
Symmetry code: (i) x, y+2, z.
 

Acknowledgements

The authors thank Southwest University (SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, B., Zhou, C. H. & Rao, X. C. (2010). Eur. J. Med. Chem. 45, 4388–4398.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKlimesova, V., Svoboda, M., Waisser, K., Pour, M. & Kaustova, J. (1999). Farmaco, 54, 666–672.  Web of Science PubMed CAS Google Scholar
First citationRabasseda, X., Silverstre, J. & Castaner, J. (1999). Drug Future, 24, 375–380.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds