organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(3-Bromo-4-meth­­oxy­phen­yl)-1-(4-methyl­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6 60-780, Poznań, Poland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199 India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 15 March 2011; accepted 28 March 2011; online 31 March 2011)

The overall shape of the mol­ecule of the title compound, C17H15BrO2, can be described by the dihedral angles between three planar fragments: 1-bromo-2-meth­oxy­phenyl ring [maximum deviation = 0.003 (2) Å], the central prop-2-en-1-one chain [maximum deviation = 0.005 (2) Å], and the methyl­phenyl ring [maximum deviation = 0.004 (2) Å]. The terminal planes are twisted by 10.37 (12)°, while the central plane is almost coplanar with the methyl­phenyl ring [3.30 (13)°], but the dihedral angle with the other phenyl ring is significantly larger [8.76 (16)°]. In the crystal, mol­ecules are linked into chains along [001] by three C—H⋯O hydrogen bonds. These chains inter­act with each other by means of weak ππ contacts [centroid–centroid distances = 3.73 (1) and 3.44 (1) Å]. An inter­molecular C—H⋯Br inter­action also occurs.

Related literature

For related structures, see: Butcher et al. (2006[Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633-o1635.]); Ng et al. (2006[Ng, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1570-o1572.]); Zhou (2010[Zhou, Y. (2010). Acta Cryst. E66, o1412.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15BrO2

  • Mr = 331.19

  • Monoclinic, P 21 /c

  • a = 11.680 (2) Å

  • b = 11.654 (2) Å

  • c = 10.834 (2) Å

  • β = 93.07 (2)°

  • V = 1472.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.79 mm−1

  • T = 295 K

  • 0.5 × 0.3 × 0.1 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technolgies, Yarnton, England.]) Tmin = 0.276, Tmax = 1.000

  • 6000 measured reflections

  • 3003 independent reflections

  • 1455 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.072

  • S = 1.00

  • 3003 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.61 3.536 (3) 178
C5—H5⋯O1i 0.93 2.69 3.603 (4) 167
C12—H12⋯O1i 0.93 2.50 3.424 (4) 171
C141—H14B⋯Br6ii 0.96 3.14 4.100 (3) 176
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technolgies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chalcone (1,3-diphenyl-2-propen-1-one) derivatives and their heterocyclic analogues are valuable intermediates in organic synthesis and exhibit a wide range of biological activities, as well as non-linear optical properties with excellent blue light transmittance and good crystallizability. As a part of our ongoing studies in the chalcone structural chemistry we have synthesized a new chalcone (2E)-3-(3-bromo-4-methoxyphenyl)-1-(4-methylphenyl)prop-2-en-1-one (I, Scheme 1). The packing of the molecules in crystals is a result of the compromise between different intermolecular interactions, tendency towards close packing, symmetry requirements etc. Therefore, studying of the crystal packing might be useful in the understanding of different intermolecular interactions. In the absence of potential good hydrogen bond donors - as it is the case of the molecule described here - the crystal structure might be determined by other interactions and requirements: close packing, van der Waals interactions, weak hydrogen bonds (C—H···O, Br, or π), halogen bonds - as there are both C—Br and CO groups available, π···π stacking etc.

The overall shape of the molecule can be described by the dihedral angles between three planar fragments (cf. Fig. 1): 1-bromo-2-methoxyphenyl ring (A), the central prop-2-en-1-one chain (B), and 4-methylphenyl ring (C). The terminal planes A and C are twisted by 10.37 (12)°, while the central plane B is almost coplanar with C (3.30 (13)°), and the dihedral angle with A is significantly larger, 8.76 (16)°. The similar molecules found in the Cambridge Crystallographic Database (Allen, 2002) differ significantly in their conformations, thus suggesting that it depends mostly on the intermolecular interactions. For instance - limiting to similar pattern of substitution - in 3-(3,4-dimethoxyphenyl)-1-(4-fluorophenyl)-prop-2-en-1-one (Butcher et al., 2006) A/C dihedral angle is 47.81 (6)° and 50.18 (5)° in two symmety independent molecules, while in 3-(3,4-dimethoxyphenyl)-1-(4-bromophenyl)-prop-2-en-1-one (Ng et al., 2006) there are also two symmetry-independent molecules, but there are almost planar, the dihedral angles between the phenyl rings are 9.30 (15)° and 4.85 (16)°. Again in 3-(3,4-dimethylphenyl)-1-(4-bromophenyl)-prop-2-en-1-one (Zhou, 2010) the twist is significant, 48.13 (4)°.

In the structure of I quite a rich structure of weak interactions can be found. The molecules are connected into chains along [0 0 1] direction by means of three C—H···O hydrogen bonds (Table 1, Fig. 2). These chains are interacting with the other ones by means of weak π···π contacts. The centroid-to-centroid distances are CgA···CgA 3.729Å and CgB···CgB 3.748Å, which - taking into account the slippage - translates into the interplanar distances of ca. 3.52Å for A···A contacts and 3.44Å for B···B ones (Fig. 3).

Related literature top

For related structures, see: Butcher et al. (2006); Ng et al. (2006); Zhou (2010). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

3-Bromo-4-methoxybenzaldehyde (2.15 g, 0.01 mol) was mixed with 1-(4-methylphenyl) ethanone (1.34 g, 0.01 mol) and dissolved in ethanol (40 ml). To the solution, 4 ml of KOH (50%) was added. The reaction mixture was stirred for 6–10 h. The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from ethanol (95%) to give the pure chalcones. Crystals suitable for X-ray diffraction studies were grown by the slow evaporation from acetone solution (m.p. = 393 K). Composition: Found (Calculated): C17H15BrO2 - C: 61.58 (61.65); H: 4.51 (4.56).

Refinement top

The hydrogen were placed geometrically, in idealized positions, and refined as rigid groups with their Uiso(H) = 1.2Ueq(C) with distances C—H = 0.93Å of the appropriate carrier atom (Uiso(H) = 1.5Ueq(C) with distances C—H = 0.96Å for methyl H).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of the compound I together with atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The hydrogen - bonded chain of molecules of I. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) x, y, z; (ii) x, 1/2-y, 1/2+z; (iii) x, 1/2-y, -1/2+z.
[Figure 3] Fig. 3. The π···π interactions (shown as dashed lines between the centroids of the phenyl rings) between the neighbouring chains. Symmetry codes: (i) x, y, z; (ii) -x,1-y, -z; (iii) 1-x, -y, -z; (iv) 1+x, -1+y, z.
(2E)-3-(3-Bromo-4-methoxyphenyl)-1-(4-methylphenyl)prop-2-en-1-one top
Crystal data top
C17H15BrO2F(000) = 672
Mr = 331.19Dx = 1.494 Mg m3
Monoclinic, P21/cMelting point: 393 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.680 (2) ÅCell parameters from 2134 reflections
b = 11.654 (2) Åθ = 3.1–27.9°
c = 10.834 (2) ŵ = 2.79 mm1
β = 93.07 (2)°T = 295 K
V = 1472.6 (4) Å3Plate, colourless
Z = 40.5 × 0.3 × 0.1 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
3003 independent reflections
Radiation source: Enhance (Mo) X-ray Source1455 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.1544 pixels mm-1θmax = 28.0°, θmin = 3.1°
ω–scanh = 915
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 139
Tmin = 0.276, Tmax = 1.000l = 1214
6000 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
3003 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C17H15BrO2V = 1472.6 (4) Å3
Mr = 331.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.680 (2) ŵ = 2.79 mm1
b = 11.654 (2) ÅT = 295 K
c = 10.834 (2) Å0.5 × 0.3 × 0.1 mm
β = 93.07 (2)°
Data collection top
Agilent Xcalibur Eos
diffractometer
3003 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1455 reflections with I > 2σ(I)
Tmin = 0.276, Tmax = 1.000Rint = 0.030
6000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.00Δρmax = 0.44 e Å3
3003 reflectionsΔρmin = 0.44 e Å3
183 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2928 (3)0.2026 (2)0.0764 (3)0.0370 (8)
O10.27055 (17)0.18029 (18)0.18486 (19)0.0502 (6)
C20.2054 (2)0.2537 (2)0.0006 (3)0.0389 (8)
H20.22350.26860.08370.047*
C30.1015 (3)0.2784 (2)0.0473 (3)0.0387 (8)
H30.08810.25930.13020.046*
C40.0056 (3)0.3310 (2)0.0112 (3)0.0336 (7)
C50.0129 (3)0.3788 (2)0.1281 (3)0.0376 (8)
H50.08230.37620.17440.045*
C60.0804 (3)0.4300 (3)0.1771 (3)0.0379 (8)
Br60.06520 (3)0.50120 (3)0.33361 (3)0.06471 (15)
C70.1850 (3)0.4354 (3)0.1113 (3)0.0394 (8)
O70.27311 (18)0.48560 (18)0.1679 (2)0.0561 (6)
C710.3790 (3)0.4986 (3)0.0993 (3)0.0688 (10)
H71A0.36640.53620.02240.103*
H71B0.43010.54400.14590.103*
H71C0.41240.42450.08330.103*
C80.1948 (3)0.3877 (3)0.0058 (3)0.0477 (9)
H80.26450.38970.05150.057*
C90.0998 (3)0.3367 (3)0.0546 (3)0.0462 (9)
H90.10680.30540.13360.055*
C110.4101 (3)0.1804 (2)0.0206 (3)0.0325 (7)
C120.4420 (3)0.1998 (2)0.1032 (3)0.0466 (9)
H120.38860.22850.15600.056*
C130.5524 (3)0.1766 (3)0.1483 (3)0.0490 (9)
H130.57200.18930.23150.059*
C140.6338 (3)0.1350 (2)0.0731 (3)0.0404 (9)
C1410.7531 (3)0.1098 (3)0.1243 (3)0.0591 (10)
H14A0.78660.17840.15940.089*
H14B0.79880.08280.05910.089*
H14C0.75030.05190.18710.089*
C150.6026 (3)0.1157 (2)0.0504 (3)0.0444 (9)
H150.65620.08770.10320.053*
C160.4931 (3)0.1376 (2)0.0946 (3)0.0420 (9)
H160.47360.12330.17750.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (2)0.040 (2)0.0315 (18)0.0004 (17)0.0049 (17)0.0066 (16)
O10.0461 (15)0.0741 (16)0.0302 (13)0.0064 (12)0.0012 (12)0.0026 (12)
C20.037 (2)0.048 (2)0.0318 (18)0.0017 (17)0.0009 (17)0.0046 (16)
C30.044 (2)0.042 (2)0.0299 (18)0.0017 (17)0.0015 (17)0.0036 (15)
C40.0311 (18)0.0391 (18)0.0304 (17)0.0046 (18)0.0007 (16)0.0061 (17)
C50.0268 (19)0.049 (2)0.0369 (19)0.0029 (16)0.0027 (16)0.0068 (16)
C60.036 (2)0.044 (2)0.0337 (18)0.0008 (17)0.0029 (17)0.0035 (16)
Br60.0554 (2)0.0894 (3)0.0494 (2)0.0029 (2)0.00389 (16)0.0202 (2)
C70.031 (2)0.037 (2)0.050 (2)0.0009 (17)0.0068 (18)0.0070 (17)
O70.0331 (13)0.0724 (17)0.0630 (14)0.0089 (14)0.0056 (12)0.0020 (14)
C710.035 (2)0.075 (3)0.097 (3)0.008 (2)0.004 (2)0.001 (2)
C80.030 (2)0.062 (2)0.050 (2)0.0027 (18)0.0070 (18)0.0002 (19)
C90.044 (2)0.060 (2)0.0341 (19)0.0031 (19)0.0054 (19)0.0016 (18)
C110.036 (2)0.0310 (19)0.0313 (18)0.0003 (15)0.0044 (16)0.0003 (15)
C120.044 (2)0.054 (2)0.042 (2)0.0106 (19)0.0055 (18)0.0118 (17)
C130.052 (2)0.057 (2)0.038 (2)0.008 (2)0.0019 (19)0.0094 (18)
C140.037 (2)0.035 (2)0.049 (2)0.0003 (16)0.0010 (19)0.0040 (17)
C1410.048 (2)0.065 (3)0.064 (3)0.0112 (19)0.003 (2)0.001 (2)
C150.037 (2)0.052 (2)0.045 (2)0.0082 (18)0.0116 (18)0.0060 (17)
C160.051 (2)0.047 (2)0.0275 (18)0.0027 (19)0.0032 (18)0.0027 (16)
Geometric parameters (Å, º) top
C1—O11.218 (3)C71—H71C0.9600
C1—C21.478 (4)C8—C91.388 (4)
C1—C111.491 (4)C8—H80.9300
C2—C31.326 (4)C9—H90.9300
C2—H20.9300C11—C161.383 (4)
C3—C41.452 (4)C11—C121.392 (4)
C3—H30.9300C12—C131.381 (4)
C4—C51.382 (4)C12—H120.9300
C4—C91.391 (4)C13—C141.374 (4)
C5—C61.374 (4)C13—H130.9300
C5—H50.9300C14—C151.386 (4)
C6—C71.383 (4)C14—C1411.501 (4)
C6—Br61.888 (3)C141—H14A0.9600
C7—O71.358 (3)C141—H14B0.9600
C7—C81.384 (4)C141—H14C0.9600
O7—C711.417 (3)C15—C161.366 (4)
C71—H71A0.9600C15—H150.9300
C71—H71B0.9600C16—H160.9300
O1—C1—C2120.8 (3)C7—C8—H8120.2
O1—C1—C11119.9 (3)C9—C8—H8120.2
C2—C1—C11119.3 (3)C8—C9—C4121.9 (3)
C3—C2—C1120.8 (3)C8—C9—H9119.0
C3—C2—H2119.6C4—C9—H9119.0
C1—C2—H2119.6C16—C11—C12117.3 (3)
C2—C3—C4129.2 (3)C16—C11—C1119.0 (3)
C2—C3—H3115.4C12—C11—C1123.7 (3)
C4—C3—H3115.4C13—C12—C11120.4 (3)
C5—C4—C9117.4 (3)C13—C12—H12119.8
C5—C4—C3124.0 (3)C11—C12—H12119.8
C9—C4—C3118.6 (3)C14—C13—C12121.5 (3)
C6—C5—C4121.2 (3)C14—C13—H13119.2
C6—C5—H5119.4C12—C13—H13119.2
C4—C5—H5119.4C13—C14—C15118.3 (3)
C5—C6—C7121.2 (3)C13—C14—C141120.6 (3)
C5—C6—Br6120.0 (2)C15—C14—C141121.1 (3)
C7—C6—Br6118.7 (3)C14—C141—H14A109.5
O7—C7—C6117.1 (3)C14—C141—H14B109.5
O7—C7—C8124.1 (3)H14A—C141—H14B109.5
C6—C7—C8118.8 (3)C14—C141—H14C109.5
C7—O7—C71118.0 (3)H14A—C141—H14C109.5
O7—C71—H71A109.5H14B—C141—H14C109.5
O7—C71—H71B109.5C16—C15—C14120.1 (3)
H71A—C71—H71B109.5C16—C15—H15119.9
O7—C71—H71C109.5C14—C15—H15119.9
H71A—C71—H71C109.5C15—C16—C11122.4 (3)
H71B—C71—H71C109.5C15—C16—H16118.8
C7—C8—C9119.5 (3)C11—C16—H16118.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.613.536 (3)178
C5—H5···O1i0.932.693.603 (4)167
C12—H12···O1i0.932.503.424 (4)171
C141—H14B···Br6ii0.963.144.100 (3)176
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H15BrO2
Mr331.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.680 (2), 11.654 (2), 10.834 (2)
β (°) 93.07 (2)
V3)1472.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.79
Crystal size (mm)0.5 × 0.3 × 0.1
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.276, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6000, 3003, 1455
Rint0.030
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.072, 1.00
No. of reflections3003
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.44

Computer programs: CrysAlis PRO (Agilent, 2010), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.613.536 (3)178
C5—H5···O1i0.932.693.603 (4)167
C12—H12···O1i0.932.503.424 (4)171
C141—H14B···Br6ii0.963.144.100 (3)176
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z1/2.
 

Acknowledgements

BPS thanks the UOM for the research facilities.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technolgies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633–o1635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNg, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1570–o1572.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation manual. Siemens Analytical X–ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhou, Y. (2010). Acta Cryst. E66, o1412.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds