metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(2S,4S)-4-(2-hy­dr­oxy­eth­yl)-2-methyl­piperazine-1,4-diium] di-μ-chlorido-bis­­[tri­chloridocadmium(II)]

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: rongtao198806@163.com

(Received 9 December 2010; accepted 23 February 2011; online 2 March 2011)

The asymmetric unit of the title compound, (C7H18N2O)2[Cd2Cl8], comprises one 4-(2-hy­droxy­eth­yl)-2-methyl­piperazine-1,4-diium dication and a half [Cd2Cl8]4− anion. The two Cd atoms are each coordinated by two bridging Cl atoms and three terminal Cl atoms and the [Cd2Cl8]4− anion is located on an inversion centre. The crystal structure consists of N—H⋯Cl hydrogen-bonded sheets, which are further linked by C—H⋯Cl contacts, yielding a three-dimensional network.

Related literature

For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009[Fu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994-997.], 2010[Fu, D. W., Dai, J., Ge, J. Z., Ye, H. Y. & Qu, Z. R. (2010). Inorg. Chem. Commun. 13, 282-285.]); Ye et al. (2006[Ye, Q., Song, Y. M., Wang, G. X., Chen, K. & Fu, D. W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R. G. & Huang, S. P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z. & Xiong, R. G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H18N2O)2[Cd2Cl8]

  • Mr = 800.86

  • Monoclinic, P 21 /n

  • a = 8.0318 (16) Å

  • b = 11.144 (2) Å

  • c = 15.816 (3) Å

  • β = 97.81 (3)°

  • V = 1402.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.632, Tmax = 0.638

  • 14193 measured reflections

  • 3217 independent reflections

  • 3008 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.060

  • S = 1.19

  • 3217 reflections

  • 136 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl4i 0.82 2.68 3.188 (3) 121
N1—H1D⋯Cl3ii 0.91 2.29 3.163 (3) 161
N2—H2D⋯Cl4iii 0.90 2.88 3.405 (3) 119
N2—H2D⋯Cl1iv 0.90 2.35 3.125 (3) 144
N2—H2A⋯Cl2v 0.90 2.25 3.119 (3) 164
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The study of ferroelectric materials has received much attention. Some materials have predominantly dielectric-ferroelectric performance.The title compound was studied as part of our work to obtain potential ferroelectric phase-change materials [Fu et al.(2009); Ye et al. (2006); Zhang et al. (2008; 2010)] .

As one part of our continuing studies on dielectric-ferroelectric materials, we synthesized the title compound (C7H18N2O).CdCl4 (Fig 1).Unfortunately, the study carried out on the title compound indicated that the permittivity is temperature-independent, suggesting that there may be no dielectric disuniformity between 80 K to 350 K [Fu et al. (2010)].

The asymmetric unit of the title compound contains one [C7H17N2O] 2+ basic ion and half of the [Cd2Cl8]4- complex ion which is situated on an inversion centre. The intermolecular hydrogen bonds (O1—H1A···Cl4, N1—H1D···Cl3, N2—H2D···Cl4, N2—H2D···Cl1 and N2—H2A···Cl2) link the molecules into sheets and stabilize the structure (Fig 2).

Related literature top

For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009, 2010); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental top

Ethylene oxide (25 mmol) was added by bubbling of this gas into a solution of rac-2-methyl piperazine (10 mmol) in toluene at 318–323 K. The toluene solvent was then removed under reduced pressure, the rac-2-methyl-4-ethoxyl piperazine was obtained at 376–381 K by reduced pressure distillation of the mixture. A solution of chlorhydric acid (10 mmol) was added to a solution of half equimolar amount of rac-2-methyl-4-ethoxyl piperazine inethanol (20 mL), then cadmium chloride(5 mmol) in water (10 mL) was added. Crystals suitable for structure determination were grown by slow evaporation of the mixture at room temperature

Refinement top

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) for the methyl group. The other H bonded to O/N atoms were calculated geometrically and were allowed to ride on the O/N atoms with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.[The suffix A denotes the symmetry code: -x - y 1 - z]
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
Bis[(2S,4S)-4-(2-hydroxyethyl)-2-methylpiperazine-1,4-diium] di-µ-chlorido-bis[trichloridocadmium(II)] top
Crystal data top
(C7H18N2O)2[Cd2Cl8]Z = 2
Mr = 800.86F(000) = 792
Monoclinic, P21/nDx = 1.896 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.0318 (16) Åθ = 3.0–27.5°
b = 11.144 (2) ŵ = 2.30 mm1
c = 15.816 (3) ÅT = 293 K
β = 97.81 (3)°Prism, colourless
V = 1402.6 (5) Å30.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
3217 independent reflections
Radiation source: fine-focus sealed tube3008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.632, Tmax = 0.638l = 2020
14193 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.022P)2 + 0.433P]
where P = (Fo2 + 2Fc2)/3
3217 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = 0.88 e Å3
Crystal data top
(C7H18N2O)2[Cd2Cl8]V = 1402.6 (5) Å3
Mr = 800.86Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.0318 (16) ŵ = 2.30 mm1
b = 11.144 (2) ÅT = 293 K
c = 15.816 (3) Å0.20 × 0.20 × 0.20 mm
β = 97.81 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3217 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3008 reflections with I > 2σ(I)
Tmin = 0.632, Tmax = 0.638Rint = 0.037
14193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0252 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.19Δρmax = 0.35 e Å3
3217 reflectionsΔρmin = 0.88 e Å3
136 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.07749 (3)0.14056 (2)0.435513 (16)0.02832 (11)
Cl40.13747 (12)0.02958 (8)0.59105 (5)0.0299 (2)
Cl20.34061 (12)0.04831 (9)0.39588 (6)0.0364 (2)
Cl30.13624 (14)0.33698 (9)0.51000 (6)0.0363 (2)
Cl10.02934 (12)0.23097 (9)0.28873 (6)0.0369 (2)
N21.0951 (4)0.3458 (3)0.78336 (19)0.0267 (6)
H2A1.03100.36540.82370.032*
H2D1.20130.33600.80910.032*
N10.8525 (4)0.3466 (3)0.63036 (19)0.0262 (6)
H1D0.92220.32700.59170.031*
C60.8591 (5)0.2469 (3)0.6942 (2)0.0266 (7)
H6A0.82350.17290.66490.032*
H6B0.78120.26420.73440.032*
C41.0905 (5)0.4452 (3)0.7205 (2)0.0332 (8)
H4A1.16790.42800.68000.040*
H4B1.12620.51910.74990.040*
C51.0336 (5)0.2302 (3)0.7425 (2)0.0261 (7)
H5A1.10950.20630.70190.031*
C30.9163 (5)0.4608 (3)0.6735 (2)0.0328 (8)
H3A0.84110.48540.71340.039*
H3B0.91730.52360.63110.039*
O10.7146 (4)0.2021 (3)0.49063 (18)0.0422 (7)
H1A0.67270.14080.46830.063*
C10.6018 (5)0.2547 (4)0.5418 (3)0.0375 (9)
H1B0.57870.19850.58570.045*
H1C0.49650.27390.50680.045*
C71.0337 (6)0.1329 (4)0.8089 (3)0.0410 (10)
H7A1.14520.12360.83880.061*
H7B0.99760.05870.78150.061*
H7C0.95840.15460.84860.061*
C20.6798 (5)0.3669 (4)0.5825 (3)0.0372 (9)
H2B0.60750.39860.62150.045*
H2C0.68680.42650.53840.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03076 (17)0.02561 (17)0.02899 (17)0.00180 (10)0.00547 (12)0.00126 (10)
Cl40.0366 (5)0.0285 (5)0.0240 (4)0.0056 (4)0.0020 (3)0.0008 (3)
Cl20.0334 (5)0.0380 (5)0.0409 (5)0.0029 (4)0.0160 (4)0.0066 (4)
Cl30.0476 (6)0.0283 (5)0.0354 (5)0.0012 (4)0.0140 (4)0.0020 (4)
Cl10.0296 (5)0.0426 (6)0.0379 (5)0.0037 (4)0.0026 (4)0.0134 (4)
N20.0242 (15)0.0290 (16)0.0268 (15)0.0015 (12)0.0028 (12)0.0039 (12)
N10.0293 (16)0.0260 (16)0.0234 (15)0.0015 (12)0.0037 (12)0.0019 (12)
C60.0281 (18)0.0222 (18)0.0298 (18)0.0016 (14)0.0056 (14)0.0004 (14)
C40.038 (2)0.0281 (19)0.0325 (19)0.0086 (16)0.0027 (16)0.0004 (16)
C50.0274 (18)0.0234 (18)0.0279 (17)0.0014 (14)0.0049 (14)0.0028 (14)
C30.043 (2)0.0246 (19)0.0294 (19)0.0022 (16)0.0009 (16)0.0004 (15)
O10.0465 (17)0.0395 (17)0.0403 (16)0.0039 (13)0.0052 (13)0.0102 (13)
C10.031 (2)0.040 (2)0.039 (2)0.0002 (17)0.0041 (17)0.0033 (18)
C70.049 (3)0.031 (2)0.042 (2)0.0033 (18)0.003 (2)0.0055 (18)
C20.038 (2)0.034 (2)0.037 (2)0.0083 (17)0.0064 (18)0.0045 (17)
Geometric parameters (Å, º) top
Cd1—Cl32.5003 (11)C4—C31.502 (6)
Cd1—Cl22.5052 (11)C4—H4A0.9700
Cd1—Cl4i2.5603 (10)C4—H4B0.9700
Cd1—Cl12.5690 (11)C5—C71.509 (5)
Cd1—Cl42.7371 (10)C5—H5A0.9800
Cl4—Cd1i2.5603 (10)C3—H3A0.9700
N2—C41.486 (5)C3—H3B0.9700
N2—C51.495 (4)O1—C11.421 (5)
N2—H2A0.9000O1—H1A0.8200
N2—H2D0.9000C1—C21.503 (5)
N1—C61.497 (4)C1—H1B0.9700
N1—C31.501 (5)C1—H1C0.9700
N1—C21.505 (5)C7—H7A0.9600
N1—H1D0.9100C7—H7B0.9600
C6—C51.514 (5)C7—H7C0.9600
C6—H6A0.9700C2—H2B0.9700
C6—H6B0.9700C2—H2C0.9700
Cl3—Cd1—Cl2111.44 (4)C3—C4—H4B109.5
Cl3—Cd1—Cl4i143.67 (4)H4A—C4—H4B108.1
Cl2—Cd1—Cl4i103.18 (4)N2—C5—C7110.4 (3)
Cl3—Cd1—Cl195.79 (4)N2—C5—C6109.9 (3)
Cl2—Cd1—Cl197.14 (4)C7—C5—C6110.7 (3)
Cl4i—Cd1—Cl190.41 (4)N2—C5—H5A108.6
Cl3—Cd1—Cl488.47 (3)C7—C5—H5A108.6
Cl2—Cd1—Cl489.31 (4)C6—C5—H5A108.6
Cl4i—Cd1—Cl481.10 (4)N1—C3—C4111.4 (3)
Cl1—Cd1—Cl4170.34 (3)N1—C3—H3A109.4
Cd1i—Cl4—Cd198.90 (4)C4—C3—H3A109.4
C4—N2—C5112.1 (3)N1—C3—H3B109.4
C4—N2—H2A109.2C4—C3—H3B109.4
C5—N2—H2A109.2H3A—C3—H3B108.0
C4—N2—H2D109.2C1—O1—H1A109.5
C5—N2—H2D109.2O1—C1—C2109.0 (3)
H2A—N2—H2D107.9O1—C1—H1B109.9
C6—N1—C3110.1 (3)C2—C1—H1B109.9
C6—N1—C2113.4 (3)O1—C1—H1C109.9
C3—N1—C2109.6 (3)C2—C1—H1C109.9
C6—N1—H1D107.9H1B—C1—H1C108.3
C3—N1—H1D107.9C5—C7—H7A109.5
C2—N1—H1D107.9C5—C7—H7B109.5
N1—C6—C5112.2 (3)H7A—C7—H7B109.5
N1—C6—H6A109.2C5—C7—H7C109.5
C5—C6—H6A109.2H7A—C7—H7C109.5
N1—C6—H6B109.2H7B—C7—H7C109.5
C5—C6—H6B109.2C1—C2—N1113.1 (3)
H6A—C6—H6B107.9C1—C2—H2B109.0
N2—C4—C3110.8 (3)N1—C2—H2B109.0
N2—C4—H4A109.5C1—C2—H2C109.0
C3—C4—H4A109.5N1—C2—H2C109.0
N2—C4—H4B109.5H2B—C2—H2C107.8
Cl3—Cd1—Cl4—Cd1i145.07 (4)N1—C6—C5—N255.2 (4)
Cl2—Cd1—Cl4—Cd1i103.46 (4)N1—C6—C5—C7177.4 (3)
Cl4i—Cd1—Cl4—Cd1i0.0C6—N1—C3—C455.9 (4)
Cl1—Cd1—Cl4—Cd1i28.7 (2)C2—N1—C3—C4178.7 (3)
C3—N1—C6—C555.7 (4)N2—C4—C3—N156.5 (4)
C2—N1—C6—C5178.9 (3)O1—C1—C2—N153.4 (5)
C5—N2—C4—C356.5 (4)C6—N1—C2—C152.8 (5)
C4—N2—C5—C7177.7 (3)C3—N1—C2—C1176.3 (3)
C4—N2—C5—C655.3 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl4ii0.822.683.188 (3)121
N1—H1D···Cl3iii0.912.293.163 (3)161
N2—H2D···Cl4iv0.902.883.405 (3)119
N2—H2D···Cl1v0.902.353.125 (3)144
N2—H2A···Cl2vi0.902.253.119 (3)164
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z+3/2; (v) x+3/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C7H18N2O)2[Cd2Cl8]
Mr800.86
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.0318 (16), 11.144 (2), 15.816 (3)
β (°) 97.81 (3)
V3)1402.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.632, 0.638
No. of measured, independent and
observed [I > 2σ(I)] reflections
14193, 3217, 3008
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.060, 1.19
No. of reflections3217
No. of parameters136
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.88

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl4i0.822.683.188 (3)121
N1—H1D···Cl3ii0.912.293.163 (3)161
N2—H2D···Cl4iii0.902.883.405 (3)119
N2—H2D···Cl1iv0.902.353.125 (3)144
N2—H2A···Cl2v0.902.253.119 (3)164
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+3/2; (iv) x+3/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D. W., Dai, J., Ge, J. Z., Ye, H. Y. & Qu, Z. R. (2010). Inorg. Chem. Commun. 13, 282–285.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y. M., Wang, G. X., Chen, K. & Fu, D. W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R. G. & Huang, S. P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z. & Xiong, R. G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds