metal-organic compounds
{2-(4-Hydroxyphenyl)-2-[(3-methoxy-2-oxidobenzylidene)amino-κ2O2,N]propanoato-κO}(1,10-phenanthroline-κ2N,N′)copper(II) dihydrate
aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and bDepartment of Material Science, Shandong Polytechnic Technician College, Shandong 252027, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn
In the title complex, [Cu(C17H15NO5)(C12H8N2)]·2H2O, the central CuII ion is five-coordinate, bound to one N atom and two O atoms from the Schiff base ligand and by two N atoms from a 1,10-phenanthroline ligand in a distorted square-pyramidal configuration. In the crystal, intermolecular O—H⋯O and C—H⋯O hydrogen bonds form a two-dimensional network parallel to (001).
Related literature
For background to et al. (1998); Nath et al. (2001); Raso et al. (1999); Yamada (1966). For the structure of a similar complex with a five-coordinate CuII ion, see: Qiu et al. (2008).
and the applications of Schiff base–copper complexes, see: ChohanExperimental
Crystal data
|
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811009627/rn2083sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811009627/rn2083Isup2.hkl
L-Tyrosine(1 mmol, 146.2 mg) and potassium hydroxide (1 mmol, 56.1 mg) were dissolved in hot methanol (10 ml) and added successively to a methanol solution of o-vanillin (1 mmol, 152.2 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution(2 ml) of cupric acetate monohydrate (1 mmol, 199.7 mg) was added dropwise and stirred for 2 h. A methanol solution (5 ml) of 1,10-phenanthroline (1 mmol, 198.2 mg) was added dropwise and stirred for 4 h. The solution was held at room temperature for ten days, whereupon green block-shaped crystals suitable for X-ray diffraction were obtained.
The maximum residual density peak in the final difference Fourier map is 1.189 e Å-3, it is 2.67Å and 4.018Å from H19 and Cu, respectively.
H atoms of the water molecules were found in difference Fourier maps and refined isotropically, with the O—H distances restrained to 0.85 (2)Å and with Uiso(H) = 1.2Ueq(O). All other H atoms were placed in geometrically calculated positions (C—H = 0.93 - 0.98 Å)and allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(Cphenyl) or 1.5Ueq(Cmethyl) and Ohydroxyl).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure of the title compound, drawn with 30% probability displacement ellipsoids. | |
Fig. 2. The two-dimensional network of the title complex linked by hydrogen bonds. |
[Cu(C17H15NO5)(C12H8N2)]·2H2O | F(000) = 1228 |
Mr = 593.08 | Dx = 1.238 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2y | Cell parameters from 2405 reflections |
a = 11.755 (3) Å | θ = 2.4–22.2° |
b = 20.653 (5) Å | µ = 0.73 mm−1 |
c = 13.202 (3) Å | T = 298 K |
β = 96.935 (4)° | Block, blue |
V = 3181.6 (14) Å3 | 0.48 × 0.42 × 0.38 mm |
Z = 4 |
Bruker SMART 1000 CCD area-detector diffractometer | 3778 independent reflections |
Radiation source: fine-focus sealed tube | 2811 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −13→13 |
Tmin = 0.720, Tmax = 0.769 | k = −10→24 |
8117 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.071 | H-atom parameters constrained |
wR(F2) = 0.202 | w = 1/[σ2(Fo2) + (0.1348P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3778 reflections | Δρmax = 1.19 e Å−3 |
363 parameters | Δρmin = −0.32 e Å−3 |
15 restraints | Absolute structure: Flack (1983), 957 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.02 (3) |
[Cu(C17H15NO5)(C12H8N2)]·2H2O | V = 3181.6 (14) Å3 |
Mr = 593.08 | Z = 4 |
Monoclinic, C2 | Mo Kα radiation |
a = 11.755 (3) Å | µ = 0.73 mm−1 |
b = 20.653 (5) Å | T = 298 K |
c = 13.202 (3) Å | 0.48 × 0.42 × 0.38 mm |
β = 96.935 (4)° |
Bruker SMART 1000 CCD area-detector diffractometer | 3778 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2811 reflections with I > 2σ(I) |
Tmin = 0.720, Tmax = 0.769 | Rint = 0.040 |
8117 measured reflections |
R[F2 > 2σ(F2)] = 0.071 | H-atom parameters constrained |
wR(F2) = 0.202 | Δρmax = 1.19 e Å−3 |
S = 1.04 | Δρmin = −0.32 e Å−3 |
3778 reflections | Absolute structure: Flack (1983), 957 Friedel pairs |
363 parameters | Absolute structure parameter: −0.02 (3) |
15 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.47884 (7) | 0.39140 (5) | 0.30240 (6) | 0.0528 (3) | |
O1 | 0.3247 (4) | 0.3954 (4) | 0.2218 (4) | 0.0629 (13) | |
O2 | 0.1982 (6) | 0.4622 (4) | 0.1409 (6) | 0.086 (2) | |
O3 | 0.6863 (7) | 0.7563 (4) | 0.1644 (6) | 0.093 (2) | |
H3 | 0.6884 | 0.7738 | 0.1089 | 0.139* | |
O4 | 0.6105 (4) | 0.3954 (4) | 0.4054 (4) | 0.0615 (13) | |
O5 | 0.7833 (6) | 0.3774 (4) | 0.5400 (5) | 0.085 (2) | |
O6 | 0.0460 (5) | 0.3655 (3) | 0.1065 (5) | 0.091 (2) | |
H30 | 0.0785 | 0.3555 | 0.0545 | 0.110* | |
H31 | 0.0698 | 0.4039 | 0.1183 | 0.110* | |
O7 | 0.1122 (9) | 0.5336 (6) | 0.9760 (9) | 0.140 (4) | |
H33 | 0.1504 | 0.5389 | 1.0343 | 0.169* | |
H32 | 0.1276 | 0.4940 | 0.9671 | 0.169* | |
N1 | 0.4673 (6) | 0.4843 (5) | 0.2928 (5) | 0.048 (2) | |
N3 | 0.4572 (7) | 0.2951 (4) | 0.3234 (6) | 0.057 (2) | |
N2 | 0.5696 (6) | 0.3454 (4) | 0.1729 (5) | 0.064 (2) | |
C1 | 0.2914 (8) | 0.4502 (5) | 0.1928 (7) | 0.064 (2) | |
C2 | 0.3727 (7) | 0.5070 (4) | 0.2167 (6) | 0.0523 (19) | |
H2 | 0.3323 | 0.5430 | 0.2447 | 0.063* | |
C3 | 0.4188 (7) | 0.5280 (5) | 0.1168 (6) | 0.058 (2) | |
H3A | 0.4647 | 0.4932 | 0.0938 | 0.070* | |
H3B | 0.3544 | 0.5350 | 0.0647 | 0.070* | |
C4 | 0.4896 (7) | 0.5882 (4) | 0.1279 (5) | 0.0502 (18) | |
C5 | 0.4378 (8) | 0.6477 (5) | 0.1252 (8) | 0.072 (3) | |
H5 | 0.3583 | 0.6500 | 0.1152 | 0.086* | |
C6 | 0.5015 (8) | 0.7054 (5) | 0.1372 (7) | 0.070 (2) | |
H6 | 0.4648 | 0.7453 | 0.1353 | 0.084* | |
C7 | 0.6210 (9) | 0.7016 (5) | 0.1519 (6) | 0.067 (2) | |
C8 | 0.6746 (8) | 0.6425 (6) | 0.1572 (7) | 0.070 (3) | |
H8 | 0.7542 | 0.6405 | 0.1691 | 0.084* | |
C9 | 0.6109 (8) | 0.5849 (5) | 0.1449 (6) | 0.059 (2) | |
H9 | 0.6479 | 0.5451 | 0.1479 | 0.071* | |
C10 | 0.5227 (7) | 0.5261 (5) | 0.3509 (6) | 0.055 (2) | |
H10 | 0.5003 | 0.5692 | 0.3433 | 0.065* | |
C11 | 0.6173 (7) | 0.5113 (5) | 0.4271 (6) | 0.055 (2) | |
C12 | 0.6726 (9) | 0.5654 (5) | 0.4794 (7) | 0.075 (3) | |
H12 | 0.6470 | 0.6075 | 0.4654 | 0.090* | |
C13 | 0.7641 (9) | 0.5534 (7) | 0.5505 (8) | 0.089 (3) | |
H13 | 0.8008 | 0.5880 | 0.5857 | 0.107* | |
C14 | 0.8038 (10) | 0.4923 (6) | 0.5719 (7) | 0.079 (3) | |
H14 | 0.8680 | 0.4864 | 0.6194 | 0.095* | |
C15 | 0.7517 (8) | 0.4403 (6) | 0.5254 (6) | 0.061 (2) | |
C16 | 0.6550 (7) | 0.4463 (5) | 0.4466 (6) | 0.056 (2) | |
C17 | 0.8766 (10) | 0.3668 (7) | 0.6178 (10) | 0.106 (4) | |
H17A | 0.9476 | 0.3727 | 0.5899 | 0.158* | |
H17B | 0.8728 | 0.3235 | 0.6435 | 0.158* | |
H17C | 0.8722 | 0.3971 | 0.6723 | 0.158* | |
C18 | 0.4013 (8) | 0.2711 (5) | 0.3963 (7) | 0.068 (2) | |
H18 | 0.3718 | 0.2998 | 0.4408 | 0.081* | |
C19 | 0.3855 (10) | 0.2077 (6) | 0.4090 (9) | 0.084 (3) | |
H19 | 0.3461 | 0.1933 | 0.4617 | 0.101* | |
C20 | 0.4272 (10) | 0.1631 (6) | 0.3443 (10) | 0.085 (3) | |
H20 | 0.4154 | 0.1189 | 0.3515 | 0.101* | |
C21 | 0.4880 (8) | 0.1874 (5) | 0.2676 (8) | 0.067 (2) | |
C22 | 0.5018 (7) | 0.2544 (5) | 0.2576 (7) | 0.059 (2) | |
C23 | 0.5601 (7) | 0.2798 (5) | 0.1781 (6) | 0.054 (2) | |
C24 | 0.6054 (9) | 0.2391 (6) | 0.1102 (8) | 0.073 (3) | |
C25 | 0.6605 (8) | 0.2653 (7) | 0.0366 (8) | 0.088 (3) | |
H25 | 0.6918 | 0.2384 | −0.0093 | 0.106* | |
C26 | 0.6710 (10) | 0.3290 (8) | 0.0287 (9) | 0.092 (3) | |
H26 | 0.7081 | 0.3465 | −0.0233 | 0.110* | |
C27 | 0.6258 (8) | 0.3701 (6) | 0.0993 (7) | 0.080 (3) | |
H27 | 0.6350 | 0.4147 | 0.0948 | 0.096* | |
C28 | 0.5357 (9) | 0.1457 (6) | 0.1986 (10) | 0.085 (3) | |
H28 | 0.5291 | 0.1010 | 0.2037 | 0.103* | |
C29 | 0.5923 (12) | 0.1733 (7) | 0.1232 (10) | 0.092 (4) | |
H29 | 0.6236 | 0.1457 | 0.0783 | 0.110* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0548 (5) | 0.0557 (6) | 0.0464 (5) | −0.0062 (6) | −0.0006 (3) | 0.0017 (5) |
O1 | 0.062 (3) | 0.053 (3) | 0.070 (3) | −0.016 (4) | −0.005 (2) | 0.000 (4) |
O2 | 0.070 (4) | 0.092 (5) | 0.089 (5) | −0.018 (4) | −0.025 (4) | 0.032 (4) |
O3 | 0.096 (5) | 0.082 (5) | 0.102 (5) | −0.038 (4) | 0.023 (4) | −0.002 (4) |
O4 | 0.066 (3) | 0.059 (3) | 0.055 (3) | −0.004 (4) | −0.009 (2) | −0.001 (4) |
O5 | 0.086 (4) | 0.090 (7) | 0.072 (4) | 0.003 (4) | −0.021 (3) | 0.009 (4) |
O6 | 0.108 (5) | 0.077 (5) | 0.084 (5) | −0.032 (4) | −0.008 (4) | 0.007 (4) |
O7 | 0.127 (7) | 0.129 (9) | 0.162 (9) | 0.001 (7) | 0.002 (6) | 0.026 (8) |
N1 | 0.052 (4) | 0.054 (5) | 0.037 (3) | −0.001 (3) | 0.003 (3) | 0.003 (3) |
N3 | 0.057 (4) | 0.056 (5) | 0.057 (4) | −0.004 (4) | 0.001 (3) | −0.005 (4) |
N2 | 0.053 (4) | 0.084 (6) | 0.052 (4) | −0.003 (4) | −0.006 (3) | −0.002 (4) |
C1 | 0.055 (5) | 0.063 (6) | 0.071 (5) | −0.014 (4) | −0.004 (4) | 0.009 (5) |
C2 | 0.056 (4) | 0.056 (5) | 0.044 (4) | 0.000 (4) | 0.001 (3) | 0.007 (4) |
C3 | 0.055 (4) | 0.073 (6) | 0.046 (4) | −0.013 (4) | 0.002 (3) | 0.005 (4) |
C4 | 0.060 (5) | 0.051 (5) | 0.039 (4) | −0.008 (4) | 0.004 (3) | 0.006 (3) |
C5 | 0.053 (5) | 0.073 (7) | 0.092 (7) | 0.009 (5) | 0.019 (4) | 0.020 (6) |
C6 | 0.074 (6) | 0.057 (6) | 0.082 (6) | −0.003 (5) | 0.020 (5) | 0.006 (5) |
C7 | 0.089 (6) | 0.062 (6) | 0.054 (5) | −0.014 (5) | 0.021 (4) | 0.000 (4) |
C8 | 0.051 (5) | 0.083 (7) | 0.071 (6) | −0.021 (5) | −0.012 (4) | 0.007 (5) |
C9 | 0.067 (5) | 0.064 (6) | 0.047 (5) | −0.004 (5) | 0.005 (4) | 0.001 (4) |
C10 | 0.062 (5) | 0.054 (5) | 0.044 (4) | −0.014 (4) | −0.005 (4) | 0.001 (4) |
C11 | 0.056 (4) | 0.062 (6) | 0.047 (4) | −0.009 (4) | 0.008 (3) | −0.002 (4) |
C12 | 0.097 (7) | 0.066 (6) | 0.058 (5) | −0.014 (6) | −0.005 (5) | −0.010 (5) |
C13 | 0.086 (7) | 0.099 (9) | 0.076 (7) | −0.021 (6) | −0.016 (5) | −0.018 (6) |
C14 | 0.088 (7) | 0.094 (8) | 0.051 (5) | −0.015 (6) | −0.006 (5) | 0.000 (5) |
C15 | 0.057 (5) | 0.081 (7) | 0.043 (4) | −0.005 (5) | 0.000 (3) | 0.011 (5) |
C16 | 0.053 (4) | 0.075 (6) | 0.039 (4) | −0.006 (4) | 0.001 (3) | −0.002 (4) |
C17 | 0.088 (7) | 0.126 (12) | 0.090 (7) | 0.011 (7) | −0.037 (6) | −0.001 (7) |
C18 | 0.069 (5) | 0.076 (7) | 0.059 (5) | −0.006 (5) | 0.014 (4) | 0.005 (5) |
C19 | 0.088 (7) | 0.083 (8) | 0.083 (7) | −0.026 (6) | 0.018 (5) | 0.003 (6) |
C20 | 0.088 (7) | 0.061 (6) | 0.101 (8) | −0.016 (6) | −0.004 (6) | −0.007 (6) |
C21 | 0.067 (5) | 0.050 (5) | 0.077 (6) | −0.006 (5) | −0.016 (4) | −0.005 (5) |
C22 | 0.053 (4) | 0.063 (6) | 0.054 (5) | −0.008 (4) | −0.017 (4) | −0.003 (4) |
C23 | 0.049 (4) | 0.062 (6) | 0.047 (4) | 0.001 (4) | −0.003 (3) | −0.008 (4) |
C24 | 0.067 (6) | 0.085 (7) | 0.063 (5) | 0.005 (5) | −0.007 (4) | −0.016 (5) |
C25 | 0.066 (6) | 0.121 (8) | 0.075 (6) | 0.022 (7) | 0.001 (5) | −0.012 (7) |
C26 | 0.081 (7) | 0.132 (9) | 0.066 (6) | 0.025 (7) | 0.022 (5) | 0.015 (7) |
C27 | 0.076 (5) | 0.105 (10) | 0.060 (5) | 0.001 (6) | 0.013 (4) | 0.015 (6) |
C28 | 0.083 (7) | 0.061 (7) | 0.108 (9) | −0.005 (5) | −0.006 (6) | −0.005 (6) |
C29 | 0.092 (8) | 0.092 (8) | 0.088 (8) | 0.012 (7) | −0.001 (6) | −0.041 (7) |
Cu1—N1 | 1.926 (10) | C8—H8 | 0.9300 |
Cu1—O4 | 1.935 (5) | C9—H9 | 0.9300 |
Cu1—O1 | 1.989 (5) | C10—C11 | 1.439 (11) |
Cu1—N3 | 2.029 (9) | C10—H10 | 0.9300 |
Cu1—N2 | 2.325 (8) | C11—C12 | 1.429 (13) |
O1—C1 | 1.243 (12) | C11—C16 | 1.428 (13) |
O2—C1 | 1.245 (11) | C12—C13 | 1.363 (15) |
O3—C7 | 1.365 (12) | C12—H12 | 0.9300 |
O3—H3 | 0.8200 | C13—C14 | 1.363 (17) |
O4—C16 | 1.267 (12) | C13—H13 | 0.9300 |
O5—C15 | 1.357 (14) | C14—C15 | 1.347 (15) |
O5—C17 | 1.425 (12) | C14—H14 | 0.9300 |
O6—H30 | 0.8500 | C15—C16 | 1.450 (12) |
O6—H31 | 0.8500 | C17—H17A | 0.9600 |
O7—H33 | 0.8500 | C17—H17B | 0.9600 |
O7—H32 | 0.8501 | C17—H17C | 0.9600 |
N1—C10 | 1.280 (11) | C18—C19 | 1.337 (16) |
N1—C2 | 1.482 (10) | C18—H18 | 0.9300 |
N3—C18 | 1.325 (13) | C19—C20 | 1.384 (17) |
N3—C22 | 1.358 (13) | C19—H19 | 0.9300 |
N2—C27 | 1.339 (12) | C20—C21 | 1.400 (17) |
N2—C23 | 1.361 (12) | C20—H20 | 0.9300 |
C1—C2 | 1.521 (12) | C21—C22 | 1.402 (14) |
C2—C3 | 1.547 (11) | C21—C28 | 1.418 (16) |
C2—H2 | 0.9800 | C22—C23 | 1.422 (13) |
C3—C4 | 1.493 (12) | C23—C24 | 1.382 (14) |
C3—H3A | 0.9700 | C24—C25 | 1.346 (16) |
C3—H3B | 0.9700 | C24—C29 | 1.379 (18) |
C4—C5 | 1.370 (13) | C25—C26 | 1.327 (19) |
C4—C9 | 1.418 (13) | C25—H25 | 0.9300 |
C5—C6 | 1.405 (14) | C26—C27 | 1.412 (17) |
C5—H5 | 0.9300 | C26—H26 | 0.9300 |
C6—C7 | 1.396 (14) | C27—H27 | 0.9300 |
C6—H6 | 0.9300 | C28—C29 | 1.39 (2) |
C7—C8 | 1.373 (15) | C28—H28 | 0.9300 |
C8—C9 | 1.404 (14) | C29—H29 | 0.9300 |
N1—Cu1—O4 | 92.8 (3) | C12—C11—C16 | 122.4 (8) |
N1—Cu1—O1 | 82.6 (3) | C12—C11—C10 | 116.1 (9) |
O4—Cu1—O1 | 166.9 (3) | C16—C11—C10 | 121.5 (8) |
N1—Cu1—N3 | 167.6 (3) | C13—C12—C11 | 117.7 (10) |
O4—Cu1—N3 | 92.8 (3) | C13—C12—H12 | 121.1 |
O1—Cu1—N3 | 89.6 (3) | C11—C12—H12 | 121.1 |
N1—Cu1—N2 | 113.2 (3) | C14—C13—C12 | 122.3 (11) |
O4—Cu1—N2 | 97.8 (2) | C14—C13—H13 | 118.9 |
O1—Cu1—N2 | 95.3 (2) | C12—C13—H13 | 118.9 |
N3—Cu1—N2 | 77.1 (3) | C15—C14—C13 | 121.2 (10) |
C1—O1—Cu1 | 115.8 (6) | C15—C14—H14 | 119.4 |
C7—O3—H3 | 109.5 | C13—C14—H14 | 119.4 |
C16—O4—Cu1 | 126.2 (7) | C14—C15—O5 | 126.5 (8) |
C15—O5—C17 | 115.1 (9) | C14—C15—C16 | 122.2 (10) |
H30—O6—H31 | 101.8 | O5—C15—C16 | 111.2 (9) |
H33—O7—H32 | 98.7 | O4—C16—C11 | 126.9 (7) |
C10—N1—C2 | 118.6 (9) | O4—C16—C15 | 118.9 (9) |
C10—N1—Cu1 | 127.3 (6) | C11—C16—C15 | 114.2 (8) |
C2—N1—Cu1 | 113.6 (6) | O5—C17—H17A | 109.5 |
C18—N3—C22 | 119.8 (9) | O5—C17—H17B | 109.5 |
C18—N3—Cu1 | 123.1 (8) | H17A—C17—H17B | 109.5 |
C22—N3—Cu1 | 117.1 (7) | O5—C17—H17C | 109.5 |
C27—N2—C23 | 117.8 (9) | H17A—C17—H17C | 109.5 |
C27—N2—Cu1 | 133.5 (7) | H17B—C17—H17C | 109.5 |
C23—N2—Cu1 | 108.7 (6) | N3—C18—C19 | 123.1 (10) |
O1—C1—O2 | 125.1 (9) | N3—C18—H18 | 118.5 |
O1—C1—C2 | 118.1 (7) | C19—C18—H18 | 118.5 |
O2—C1—C2 | 116.7 (9) | C18—C19—C20 | 120.6 (10) |
N1—C2—C1 | 107.4 (7) | C18—C19—H19 | 119.7 |
N1—C2—C3 | 110.8 (6) | C20—C19—H19 | 119.7 |
C1—C2—C3 | 108.4 (7) | C19—C20—C21 | 117.3 (10) |
N1—C2—H2 | 110.1 | C19—C20—H20 | 121.4 |
C1—C2—H2 | 110.1 | C21—C20—H20 | 121.4 |
C3—C2—H2 | 110.1 | C22—C21—C20 | 119.8 (10) |
C4—C3—C2 | 113.5 (7) | C22—C21—C28 | 118.6 (10) |
C4—C3—H3A | 108.9 | C20—C21—C28 | 121.6 (10) |
C2—C3—H3A | 108.9 | N3—C22—C21 | 119.5 (9) |
C4—C3—H3B | 108.9 | N3—C22—C23 | 120.1 (9) |
C2—C3—H3B | 108.9 | C21—C22—C23 | 120.4 (9) |
H3A—C3—H3B | 107.7 | N2—C23—C24 | 122.2 (9) |
C5—C4—C9 | 118.8 (8) | N2—C23—C22 | 117.1 (8) |
C5—C4—C3 | 120.2 (8) | C24—C23—C22 | 120.7 (10) |
C9—C4—C3 | 121.0 (8) | C25—C24—C23 | 118.7 (12) |
C4—C5—C6 | 121.9 (8) | C25—C24—C29 | 123.8 (12) |
C4—C5—H5 | 119.1 | C23—C24—C29 | 117.5 (11) |
C6—C5—H5 | 119.1 | C26—C25—C24 | 120.9 (12) |
C7—C6—C5 | 118.8 (9) | C26—C25—H25 | 119.5 |
C7—C6—H6 | 120.6 | C24—C25—H25 | 119.5 |
C5—C6—H6 | 120.6 | C25—C26—C27 | 119.9 (11) |
O3—C7—C8 | 118.8 (9) | C25—C26—H26 | 120.1 |
O3—C7—C6 | 120.9 (10) | C27—C26—H26 | 120.1 |
C8—C7—C6 | 120.3 (9) | N2—C27—C26 | 120.6 (12) |
C7—C8—C9 | 120.8 (9) | N2—C27—H27 | 119.7 |
C7—C8—H8 | 119.6 | C26—C27—H27 | 119.7 |
C9—C8—H8 | 119.6 | C29—C28—C21 | 118.2 (11) |
C8—C9—C4 | 119.4 (10) | C29—C28—H28 | 120.9 |
C8—C9—H9 | 120.3 | C21—C28—H28 | 120.9 |
C4—C9—H9 | 120.3 | C24—C29—C28 | 124.4 (12) |
N1—C10—C11 | 124.7 (9) | C24—C29—H29 | 117.8 |
N1—C10—H10 | 117.6 | C28—C29—H29 | 117.8 |
C11—C10—H10 | 117.6 | ||
C1—C2—C3—C4 | 173.6 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H31···O2 | 0.85 | 1.93 | 2.684 (9) | 148 |
O3—H3···O6i | 0.82 | 2.53 | 2.843 (11) | 104 |
O6—H30···O6ii | 0.85 | 2.44 | 2.888 (11) | 114 |
O7—H33···O2iii | 0.85 | 2.15 | 2.721 (13) | 125 |
C18—H18···O5iv | 0.93 | 2.46 | 3.268 (13) | 145 |
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) −x, y, −z; (iii) x, y, z+1; (iv) −x+1, y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C17H15NO5)(C12H8N2)]·2H2O |
Mr | 593.08 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 298 |
a, b, c (Å) | 11.755 (3), 20.653 (5), 13.202 (3) |
β (°) | 96.935 (4) |
V (Å3) | 3181.6 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.73 |
Crystal size (mm) | 0.48 × 0.42 × 0.38 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.720, 0.769 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8117, 3778, 2811 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.071, 0.202, 1.04 |
No. of reflections | 3778 |
No. of parameters | 363 |
No. of restraints | 15 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.19, −0.32 |
Absolute structure | Flack (1983), 957 Friedel pairs |
Absolute structure parameter | −0.02 (3) |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
Cu1—N1 | 1.926 (10) | Cu1—N3 | 2.029 (9) |
Cu1—O4 | 1.935 (5) | Cu1—N2 | 2.325 (8) |
Cu1—O1 | 1.989 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H31···O2 | 0.85 | 1.93 | 2.684 (9) | 148 |
O3—H3···O6i | 0.82 | 2.53 | 2.843 (11) | 104 |
O6—H30···O6ii | 0.85 | 2.44 | 2.888 (11) | 114 |
O7—H33···O2iii | 0.85 | 2.15 | 2.721 (13) | 125 |
C18—H18···O5iv | 0.93 | 2.46 | 3.268 (13) | 145 |
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) −x, y, −z; (iii) x, y, z+1; (iv) −x+1, y, −z+1. |
Acknowledgements
The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chohan, Z. H., Praveen, M. & Ghaffer, A. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 1673–1687. CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Nath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99–149. Web of Science CrossRef CAS Google Scholar
Qiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745–m746. Web of Science CSD CrossRef IUCr Journals Google Scholar
Raso, A. G., Fiol, J. J., Zafra, A. L., Cabrero, A., Mata, I. & Molins, E. (1999). Polyhedron, 18, 871–878. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamada, S. (1966). Coord. Chem. Rev. 1, 415–437. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases still play an important role as ligands in metal coordination chemistry even after almost a century since their discovery (Yamada, 1966). It has been reported that amino acid Schiff bases and their first row transition metal complexes exhibit fungicidal, bactericidal, antiviral, and antitubercular activity (Chohan et al., 1998; Nath et al., 2001). Considerable efforts have been devoted to copper(II) complexes of tridentate N-alkylidene or N-arylidene alkanato Schiff base ligands, due to their structural diversity, electrochemical properties as well as a potential model for a number of important biological systems (Raso et al., 1999). Herein, we report the synthesis and crystal structure of a new copper(II) complex with a tridentate Schiff base ligand derived from the condensation of L-tyrosine and o-vanillin, with a 1,10-phenanthroline coligand.
As shown in Fig 1, the central CuII ion is five coordinate, bound to two O atoms and one N atom of the Schiff base ligand and two N atoms of the 1,10-phenanthroline ligand, forming a distorted square-pyramidal geometry. The O1, O4, N1, and N2 atoms are in the equatorial plane, and N3 is in the axial position. The CuII ion lies 0.5068 (39)Å above the equatorial plane towards N3. The Cu1—N3 bond is significantly longer [2.325 (8) Å] (Table 1) as seen previously [2.231 (3) Å] (Qiu et al., 2008).
In the crystal, the combination of intramolecular and intermolecular hydrogen bonds (Table 2) leads to a two-dimensional network (Fig. 2).