metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m465-m466

{2-(4-Hy­dr­oxy­phen­yl)-2-[(3-meth­­oxy-2-oxido­benzyl­­idene)amino-κ2O2,N]propanoato-κO}(1,10-phenanthroline-κ2N,N′)copper(II) dihydrate

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and bDepartment of Material Science, Shandong Polytechnic Technician College, Shandong 252027, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn

(Received 14 January 2011; accepted 14 March 2011; online 19 March 2011)

In the title complex, [Cu(C17H15NO5)(C12H8N2)]·2H2O, the central CuII ion is five-coordinate, bound to one N atom and two O atoms from the Schiff base ligand and by two N atoms from a 1,10-phenanthroline ligand in a distorted square-pyramidal configuration. In the crystal, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds form a two-dimensional network parallel to (001).

Related literature

For background to Schiff bases and the applications of Schiff base–copper complexes, see: Chohan et al. (1998[Chohan, Z. H., Praveen, M. & Ghaffer, A. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 1673-1687.]); Nath et al. (2001[Nath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99-149.]); Raso et al. (1999[Raso, A. G., Fiol, J. J., Zafra, A. L., Cabrero, A., Mata, I. & Molins, E. (1999). Polyhedron, 18, 871-878.]); Yamada (1966[Yamada, S. (1966). Coord. Chem. Rev. 1, 415-437.]). For the structure of a similar complex with a five-coordinate CuII ion, see: Qiu et al. (2008[Qiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745-m746.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C17H15NO5)(C12H8N2)]·2H2O

  • Mr = 593.08

  • Monoclinic, C 2

  • a = 11.755 (3) Å

  • b = 20.653 (5) Å

  • c = 13.202 (3) Å

  • β = 96.935 (4)°

  • V = 3181.6 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 298 K

  • 0.48 × 0.42 × 0.38 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.720, Tmax = 0.769

  • 8117 measured reflections

  • 3778 independent reflections

  • 2811 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.202

  • S = 1.04

  • 3778 reflections

  • 363 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 956 Friedel pairs

  • Flack parameter: −0.02 (3)

Table 1
Selected bond lengths (Å)

Cu1—N1 1.926 (10)
Cu1—O4 1.935 (5)
Cu1—O1 1.989 (5)
Cu1—N3 2.029 (9)
Cu1—N2 2.325 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H31⋯O2 0.85 1.93 2.684 (9) 148
O3—H3⋯O6i 0.82 2.53 2.843 (11) 104
O6—H30⋯O6ii 0.85 2.44 2.888 (11) 114
O7—H33⋯O2iii 0.85 2.15 2.721 (13) 125
C18—H18⋯O5iv 0.93 2.46 3.268 (13) 145
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x, y, -z; (iii) x, y, z+1; (iv) -x+1, y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases still play an important role as ligands in metal coordination chemistry even after almost a century since their discovery (Yamada, 1966). It has been reported that amino acid Schiff bases and their first row transition metal complexes exhibit fungicidal, bactericidal, antiviral, and antitubercular activity (Chohan et al., 1998; Nath et al., 2001). Considerable efforts have been devoted to copper(II) complexes of tridentate N-alkylidene or N-arylidene alkanato Schiff base ligands, due to their structural diversity, electrochemical properties as well as a potential model for a number of important biological systems (Raso et al., 1999). Herein, we report the synthesis and crystal structure of a new copper(II) complex with a tridentate Schiff base ligand derived from the condensation of L-tyrosine and o-vanillin, with a 1,10-phenanthroline coligand.

As shown in Fig 1, the central CuII ion is five coordinate, bound to two O atoms and one N atom of the Schiff base ligand and two N atoms of the 1,10-phenanthroline ligand, forming a distorted square-pyramidal geometry. The O1, O4, N1, and N2 atoms are in the equatorial plane, and N3 is in the axial position. The CuII ion lies 0.5068 (39)Å above the equatorial plane towards N3. The Cu1—N3 bond is significantly longer [2.325 (8) Å] (Table 1) as seen previously [2.231 (3) Å] (Qiu et al., 2008).

In the crystal, the combination of intramolecular and intermolecular hydrogen bonds (Table 2) leads to a two-dimensional network (Fig. 2).

Related literature top

For background to Schiff bases and the applications of Schiff base–copper complexes, see: Chohan et al. (1998); Nath et al. (2001); Raso et al. (1999); Yamada (1966). For the structure of a similar five-coordinate copper(II) complex, see: Qiu et al. (2008).

Experimental top

L-Tyrosine(1 mmol, 146.2 mg) and potassium hydroxide (1 mmol, 56.1 mg) were dissolved in hot methanol (10 ml) and added successively to a methanol solution of o-vanillin (1 mmol, 152.2 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution(2 ml) of cupric acetate monohydrate (1 mmol, 199.7 mg) was added dropwise and stirred for 2 h. A methanol solution (5 ml) of 1,10-phenanthroline (1 mmol, 198.2 mg) was added dropwise and stirred for 4 h. The solution was held at room temperature for ten days, whereupon green block-shaped crystals suitable for X-ray diffraction were obtained.

Refinement top

The maximum residual density peak in the final difference Fourier map is 1.189 e Å-3, it is 2.67Å and 4.018Å from H19 and Cu, respectively.

H atoms of the water molecules were found in difference Fourier maps and refined isotropically, with the O—H distances restrained to 0.85 (2)Å and with Uiso(H) = 1.2Ueq(O). All other H atoms were placed in geometrically calculated positions (C—H = 0.93 - 0.98 Å)and allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(Cphenyl) or 1.5Ueq(Cmethyl) and Ohydroxyl).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, drawn with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The two-dimensional network of the title complex linked by hydrogen bonds.
{2-(4-Hydroxyphenyl)-2-[(3-methoxy-2-oxidobenzylidene)amino- κ2O2,N]propanoato-κO}(1,10-phenanthroline- κ2N,N')copper(II) dihydrate top
Crystal data top
[Cu(C17H15NO5)(C12H8N2)]·2H2OF(000) = 1228
Mr = 593.08Dx = 1.238 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2405 reflections
a = 11.755 (3) Åθ = 2.4–22.2°
b = 20.653 (5) ŵ = 0.73 mm1
c = 13.202 (3) ÅT = 298 K
β = 96.935 (4)°Block, blue
V = 3181.6 (14) Å30.48 × 0.42 × 0.38 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3778 independent reflections
Radiation source: fine-focus sealed tube2811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.720, Tmax = 0.769k = 1024
8117 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.202 w = 1/[σ2(Fo2) + (0.1348P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3778 reflectionsΔρmax = 1.19 e Å3
363 parametersΔρmin = 0.32 e Å3
15 restraintsAbsolute structure: Flack (1983), 957 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[Cu(C17H15NO5)(C12H8N2)]·2H2OV = 3181.6 (14) Å3
Mr = 593.08Z = 4
Monoclinic, C2Mo Kα radiation
a = 11.755 (3) ŵ = 0.73 mm1
b = 20.653 (5) ÅT = 298 K
c = 13.202 (3) Å0.48 × 0.42 × 0.38 mm
β = 96.935 (4)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3778 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2811 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.769Rint = 0.040
8117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.202Δρmax = 1.19 e Å3
S = 1.04Δρmin = 0.32 e Å3
3778 reflectionsAbsolute structure: Flack (1983), 957 Friedel pairs
363 parametersAbsolute structure parameter: 0.02 (3)
15 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.47884 (7)0.39140 (5)0.30240 (6)0.0528 (3)
O10.3247 (4)0.3954 (4)0.2218 (4)0.0629 (13)
O20.1982 (6)0.4622 (4)0.1409 (6)0.086 (2)
O30.6863 (7)0.7563 (4)0.1644 (6)0.093 (2)
H30.68840.77380.10890.139*
O40.6105 (4)0.3954 (4)0.4054 (4)0.0615 (13)
O50.7833 (6)0.3774 (4)0.5400 (5)0.085 (2)
O60.0460 (5)0.3655 (3)0.1065 (5)0.091 (2)
H300.07850.35550.05450.110*
H310.06980.40390.11830.110*
O70.1122 (9)0.5336 (6)0.9760 (9)0.140 (4)
H330.15040.53891.03430.169*
H320.12760.49400.96710.169*
N10.4673 (6)0.4843 (5)0.2928 (5)0.048 (2)
N30.4572 (7)0.2951 (4)0.3234 (6)0.057 (2)
N20.5696 (6)0.3454 (4)0.1729 (5)0.064 (2)
C10.2914 (8)0.4502 (5)0.1928 (7)0.064 (2)
C20.3727 (7)0.5070 (4)0.2167 (6)0.0523 (19)
H20.33230.54300.24470.063*
C30.4188 (7)0.5280 (5)0.1168 (6)0.058 (2)
H3A0.46470.49320.09380.070*
H3B0.35440.53500.06470.070*
C40.4896 (7)0.5882 (4)0.1279 (5)0.0502 (18)
C50.4378 (8)0.6477 (5)0.1252 (8)0.072 (3)
H50.35830.65000.11520.086*
C60.5015 (8)0.7054 (5)0.1372 (7)0.070 (2)
H60.46480.74530.13530.084*
C70.6210 (9)0.7016 (5)0.1519 (6)0.067 (2)
C80.6746 (8)0.6425 (6)0.1572 (7)0.070 (3)
H80.75420.64050.16910.084*
C90.6109 (8)0.5849 (5)0.1449 (6)0.059 (2)
H90.64790.54510.14790.071*
C100.5227 (7)0.5261 (5)0.3509 (6)0.055 (2)
H100.50030.56920.34330.065*
C110.6173 (7)0.5113 (5)0.4271 (6)0.055 (2)
C120.6726 (9)0.5654 (5)0.4794 (7)0.075 (3)
H120.64700.60750.46540.090*
C130.7641 (9)0.5534 (7)0.5505 (8)0.089 (3)
H130.80080.58800.58570.107*
C140.8038 (10)0.4923 (6)0.5719 (7)0.079 (3)
H140.86800.48640.61940.095*
C150.7517 (8)0.4403 (6)0.5254 (6)0.061 (2)
C160.6550 (7)0.4463 (5)0.4466 (6)0.056 (2)
C170.8766 (10)0.3668 (7)0.6178 (10)0.106 (4)
H17A0.94760.37270.58990.158*
H17B0.87280.32350.64350.158*
H17C0.87220.39710.67230.158*
C180.4013 (8)0.2711 (5)0.3963 (7)0.068 (2)
H180.37180.29980.44080.081*
C190.3855 (10)0.2077 (6)0.4090 (9)0.084 (3)
H190.34610.19330.46170.101*
C200.4272 (10)0.1631 (6)0.3443 (10)0.085 (3)
H200.41540.11890.35150.101*
C210.4880 (8)0.1874 (5)0.2676 (8)0.067 (2)
C220.5018 (7)0.2544 (5)0.2576 (7)0.059 (2)
C230.5601 (7)0.2798 (5)0.1781 (6)0.054 (2)
C240.6054 (9)0.2391 (6)0.1102 (8)0.073 (3)
C250.6605 (8)0.2653 (7)0.0366 (8)0.088 (3)
H250.69180.23840.00930.106*
C260.6710 (10)0.3290 (8)0.0287 (9)0.092 (3)
H260.70810.34650.02330.110*
C270.6258 (8)0.3701 (6)0.0993 (7)0.080 (3)
H270.63500.41470.09480.096*
C280.5357 (9)0.1457 (6)0.1986 (10)0.085 (3)
H280.52910.10100.20370.103*
C290.5923 (12)0.1733 (7)0.1232 (10)0.092 (4)
H290.62360.14570.07830.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0548 (5)0.0557 (6)0.0464 (5)0.0062 (6)0.0006 (3)0.0017 (5)
O10.062 (3)0.053 (3)0.070 (3)0.016 (4)0.005 (2)0.000 (4)
O20.070 (4)0.092 (5)0.089 (5)0.018 (4)0.025 (4)0.032 (4)
O30.096 (5)0.082 (5)0.102 (5)0.038 (4)0.023 (4)0.002 (4)
O40.066 (3)0.059 (3)0.055 (3)0.004 (4)0.009 (2)0.001 (4)
O50.086 (4)0.090 (7)0.072 (4)0.003 (4)0.021 (3)0.009 (4)
O60.108 (5)0.077 (5)0.084 (5)0.032 (4)0.008 (4)0.007 (4)
O70.127 (7)0.129 (9)0.162 (9)0.001 (7)0.002 (6)0.026 (8)
N10.052 (4)0.054 (5)0.037 (3)0.001 (3)0.003 (3)0.003 (3)
N30.057 (4)0.056 (5)0.057 (4)0.004 (4)0.001 (3)0.005 (4)
N20.053 (4)0.084 (6)0.052 (4)0.003 (4)0.006 (3)0.002 (4)
C10.055 (5)0.063 (6)0.071 (5)0.014 (4)0.004 (4)0.009 (5)
C20.056 (4)0.056 (5)0.044 (4)0.000 (4)0.001 (3)0.007 (4)
C30.055 (4)0.073 (6)0.046 (4)0.013 (4)0.002 (3)0.005 (4)
C40.060 (5)0.051 (5)0.039 (4)0.008 (4)0.004 (3)0.006 (3)
C50.053 (5)0.073 (7)0.092 (7)0.009 (5)0.019 (4)0.020 (6)
C60.074 (6)0.057 (6)0.082 (6)0.003 (5)0.020 (5)0.006 (5)
C70.089 (6)0.062 (6)0.054 (5)0.014 (5)0.021 (4)0.000 (4)
C80.051 (5)0.083 (7)0.071 (6)0.021 (5)0.012 (4)0.007 (5)
C90.067 (5)0.064 (6)0.047 (5)0.004 (5)0.005 (4)0.001 (4)
C100.062 (5)0.054 (5)0.044 (4)0.014 (4)0.005 (4)0.001 (4)
C110.056 (4)0.062 (6)0.047 (4)0.009 (4)0.008 (3)0.002 (4)
C120.097 (7)0.066 (6)0.058 (5)0.014 (6)0.005 (5)0.010 (5)
C130.086 (7)0.099 (9)0.076 (7)0.021 (6)0.016 (5)0.018 (6)
C140.088 (7)0.094 (8)0.051 (5)0.015 (6)0.006 (5)0.000 (5)
C150.057 (5)0.081 (7)0.043 (4)0.005 (5)0.000 (3)0.011 (5)
C160.053 (4)0.075 (6)0.039 (4)0.006 (4)0.001 (3)0.002 (4)
C170.088 (7)0.126 (12)0.090 (7)0.011 (7)0.037 (6)0.001 (7)
C180.069 (5)0.076 (7)0.059 (5)0.006 (5)0.014 (4)0.005 (5)
C190.088 (7)0.083 (8)0.083 (7)0.026 (6)0.018 (5)0.003 (6)
C200.088 (7)0.061 (6)0.101 (8)0.016 (6)0.004 (6)0.007 (6)
C210.067 (5)0.050 (5)0.077 (6)0.006 (5)0.016 (4)0.005 (5)
C220.053 (4)0.063 (6)0.054 (5)0.008 (4)0.017 (4)0.003 (4)
C230.049 (4)0.062 (6)0.047 (4)0.001 (4)0.003 (3)0.008 (4)
C240.067 (6)0.085 (7)0.063 (5)0.005 (5)0.007 (4)0.016 (5)
C250.066 (6)0.121 (8)0.075 (6)0.022 (7)0.001 (5)0.012 (7)
C260.081 (7)0.132 (9)0.066 (6)0.025 (7)0.022 (5)0.015 (7)
C270.076 (5)0.105 (10)0.060 (5)0.001 (6)0.013 (4)0.015 (6)
C280.083 (7)0.061 (7)0.108 (9)0.005 (5)0.006 (6)0.005 (6)
C290.092 (8)0.092 (8)0.088 (8)0.012 (7)0.001 (6)0.041 (7)
Geometric parameters (Å, º) top
Cu1—N11.926 (10)C8—H80.9300
Cu1—O41.935 (5)C9—H90.9300
Cu1—O11.989 (5)C10—C111.439 (11)
Cu1—N32.029 (9)C10—H100.9300
Cu1—N22.325 (8)C11—C121.429 (13)
O1—C11.243 (12)C11—C161.428 (13)
O2—C11.245 (11)C12—C131.363 (15)
O3—C71.365 (12)C12—H120.9300
O3—H30.8200C13—C141.363 (17)
O4—C161.267 (12)C13—H130.9300
O5—C151.357 (14)C14—C151.347 (15)
O5—C171.425 (12)C14—H140.9300
O6—H300.8500C15—C161.450 (12)
O6—H310.8500C17—H17A0.9600
O7—H330.8500C17—H17B0.9600
O7—H320.8501C17—H17C0.9600
N1—C101.280 (11)C18—C191.337 (16)
N1—C21.482 (10)C18—H180.9300
N3—C181.325 (13)C19—C201.384 (17)
N3—C221.358 (13)C19—H190.9300
N2—C271.339 (12)C20—C211.400 (17)
N2—C231.361 (12)C20—H200.9300
C1—C21.521 (12)C21—C221.402 (14)
C2—C31.547 (11)C21—C281.418 (16)
C2—H20.9800C22—C231.422 (13)
C3—C41.493 (12)C23—C241.382 (14)
C3—H3A0.9700C24—C251.346 (16)
C3—H3B0.9700C24—C291.379 (18)
C4—C51.370 (13)C25—C261.327 (19)
C4—C91.418 (13)C25—H250.9300
C5—C61.405 (14)C26—C271.412 (17)
C5—H50.9300C26—H260.9300
C6—C71.396 (14)C27—H270.9300
C6—H60.9300C28—C291.39 (2)
C7—C81.373 (15)C28—H280.9300
C8—C91.404 (14)C29—H290.9300
N1—Cu1—O492.8 (3)C12—C11—C16122.4 (8)
N1—Cu1—O182.6 (3)C12—C11—C10116.1 (9)
O4—Cu1—O1166.9 (3)C16—C11—C10121.5 (8)
N1—Cu1—N3167.6 (3)C13—C12—C11117.7 (10)
O4—Cu1—N392.8 (3)C13—C12—H12121.1
O1—Cu1—N389.6 (3)C11—C12—H12121.1
N1—Cu1—N2113.2 (3)C14—C13—C12122.3 (11)
O4—Cu1—N297.8 (2)C14—C13—H13118.9
O1—Cu1—N295.3 (2)C12—C13—H13118.9
N3—Cu1—N277.1 (3)C15—C14—C13121.2 (10)
C1—O1—Cu1115.8 (6)C15—C14—H14119.4
C7—O3—H3109.5C13—C14—H14119.4
C16—O4—Cu1126.2 (7)C14—C15—O5126.5 (8)
C15—O5—C17115.1 (9)C14—C15—C16122.2 (10)
H30—O6—H31101.8O5—C15—C16111.2 (9)
H33—O7—H3298.7O4—C16—C11126.9 (7)
C10—N1—C2118.6 (9)O4—C16—C15118.9 (9)
C10—N1—Cu1127.3 (6)C11—C16—C15114.2 (8)
C2—N1—Cu1113.6 (6)O5—C17—H17A109.5
C18—N3—C22119.8 (9)O5—C17—H17B109.5
C18—N3—Cu1123.1 (8)H17A—C17—H17B109.5
C22—N3—Cu1117.1 (7)O5—C17—H17C109.5
C27—N2—C23117.8 (9)H17A—C17—H17C109.5
C27—N2—Cu1133.5 (7)H17B—C17—H17C109.5
C23—N2—Cu1108.7 (6)N3—C18—C19123.1 (10)
O1—C1—O2125.1 (9)N3—C18—H18118.5
O1—C1—C2118.1 (7)C19—C18—H18118.5
O2—C1—C2116.7 (9)C18—C19—C20120.6 (10)
N1—C2—C1107.4 (7)C18—C19—H19119.7
N1—C2—C3110.8 (6)C20—C19—H19119.7
C1—C2—C3108.4 (7)C19—C20—C21117.3 (10)
N1—C2—H2110.1C19—C20—H20121.4
C1—C2—H2110.1C21—C20—H20121.4
C3—C2—H2110.1C22—C21—C20119.8 (10)
C4—C3—C2113.5 (7)C22—C21—C28118.6 (10)
C4—C3—H3A108.9C20—C21—C28121.6 (10)
C2—C3—H3A108.9N3—C22—C21119.5 (9)
C4—C3—H3B108.9N3—C22—C23120.1 (9)
C2—C3—H3B108.9C21—C22—C23120.4 (9)
H3A—C3—H3B107.7N2—C23—C24122.2 (9)
C5—C4—C9118.8 (8)N2—C23—C22117.1 (8)
C5—C4—C3120.2 (8)C24—C23—C22120.7 (10)
C9—C4—C3121.0 (8)C25—C24—C23118.7 (12)
C4—C5—C6121.9 (8)C25—C24—C29123.8 (12)
C4—C5—H5119.1C23—C24—C29117.5 (11)
C6—C5—H5119.1C26—C25—C24120.9 (12)
C7—C6—C5118.8 (9)C26—C25—H25119.5
C7—C6—H6120.6C24—C25—H25119.5
C5—C6—H6120.6C25—C26—C27119.9 (11)
O3—C7—C8118.8 (9)C25—C26—H26120.1
O3—C7—C6120.9 (10)C27—C26—H26120.1
C8—C7—C6120.3 (9)N2—C27—C26120.6 (12)
C7—C8—C9120.8 (9)N2—C27—H27119.7
C7—C8—H8119.6C26—C27—H27119.7
C9—C8—H8119.6C29—C28—C21118.2 (11)
C8—C9—C4119.4 (10)C29—C28—H28120.9
C8—C9—H9120.3C21—C28—H28120.9
C4—C9—H9120.3C24—C29—C28124.4 (12)
N1—C10—C11124.7 (9)C24—C29—H29117.8
N1—C10—H10117.6C28—C29—H29117.8
C11—C10—H10117.6
C1—C2—C3—C4173.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H31···O20.851.932.684 (9)148
O3—H3···O6i0.822.532.843 (11)104
O6—H30···O6ii0.852.442.888 (11)114
O7—H33···O2iii0.852.152.721 (13)125
C18—H18···O5iv0.932.463.268 (13)145
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z; (iii) x, y, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C17H15NO5)(C12H8N2)]·2H2O
Mr593.08
Crystal system, space groupMonoclinic, C2
Temperature (K)298
a, b, c (Å)11.755 (3), 20.653 (5), 13.202 (3)
β (°) 96.935 (4)
V3)3181.6 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.48 × 0.42 × 0.38
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.720, 0.769
No. of measured, independent and
observed [I > 2σ(I)] reflections
8117, 3778, 2811
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.202, 1.04
No. of reflections3778
No. of parameters363
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.32
Absolute structureFlack (1983), 957 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N11.926 (10)Cu1—N32.029 (9)
Cu1—O41.935 (5)Cu1—N22.325 (8)
Cu1—O11.989 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H31···O20.851.932.684 (9)148
O3—H3···O6i0.822.532.843 (11)104
O6—H30···O6ii0.852.442.888 (11)114
O7—H33···O2iii0.852.152.721 (13)125
C18—H18···O5iv0.932.463.268 (13)145
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z; (iii) x, y, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Praveen, M. & Ghaffer, A. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 1673–1687.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99–149.  Web of Science CrossRef CAS Google Scholar
First citationQiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745–m746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaso, A. G., Fiol, J. J., Zafra, A. L., Cabrero, A., Mata, I. & Molins, E. (1999). Polyhedron, 18, 871–878.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, S. (1966). Coord. Chem. Rev. 1, 415–437.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m465-m466
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds