organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o873-o874

4,5-Bis(4-fluoro­phen­yl)-5-hy­dr­oxy-3-(2-methyl­propano­yl)-1-phenyl­pyrrolidin-2-one

aDepartment of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310035, People's Republic of China, and bDepartment of Chemistry, Zaozhuang University, Shandong, People's Republic of China
*Correspondence e-mail: huangjy@mail.zjgsu.edu.cn

(Received 3 December 2010; accepted 8 March 2011; online 12 March 2011)

The title compound, C26H23F2NO3, was synthesized by the reaction of 2-(4-fluoro­benzyl­idene)-4-methyl-3-oxo-N-phenyl­penta­namide and 4-fluoro­benzaldehyde. The dihedral angles between the mean plane through the pyrrolidine ring (nearly planar; maximum deviation of 0.145 Å for the C atom bearing the hydroxy group) with the phenyl and benzene rings are 37.22 (7), 51.88 (7) and 87.64 (9)°, respectively. The pyyolidine ring is near coplaner, with max offset of 0.145 A for C19 atom.\uff09 In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds into inversion dimers, which are further assembled into chains parallel to the b axis by weak C—H⋯O hydrogen bonds.

Related literature

The title compound is an impurity in the preparation of an inter­mediate in the synthesis of atorvastatin {systematic name [R-(R*,R*)]-2-(4-fluoro­phen­yl)-ρ,δ-dihy­droxy-5-(1-methyl­eth­yl)-3-phenyl-4-[(phenyl­amino)­carbon­yl]-1H-pyrrole-1-heptenoic acid}, see: Baumann et al. (1992[Baumann, K. L., Butler, D. E., Deering, C. F., Mennen, K. E., Millar, A., Nanninga, T. N., Palmer, C. W. & Roth, B. D. (1992). Tetrahedron Lett. 33, 2283-2284.]); Sagyam et al. (2007[Sagyam, R. R., Vurimidi, H., Padi, P. R. & Ghanta, M. R. (2007). J. Heterocycl. Chem. 44, 923-926.]). For the use of atorvastatin as a hypolipidemic and hypochol­esterolemic agent, see: Lea & McTavish, (1997[Lea, A. P. & McTavish, D. (1997). Drugs, 53, 828-847.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H23F2NO3

  • Mr = 435.45

  • Monoclinic, C 2/c

  • a = 24.506 (4) Å

  • b = 10.2180 (15) Å

  • c = 20.554 (3) Å

  • β = 121.963 (2)°

  • V = 4366.5 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 153 K

  • 0.15 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.986, Tmax = 0.990

  • 10716 measured reflections

  • 4091 independent reflections

  • 2471 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 1.02

  • 4091 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.95 2.59 3.489 (3) 157
O2—H2⋯O1ii 0.84 1.93 2.7625 (18) 174
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Atorvastatin, {[R-(R*,R*)]-2-(4-fluorophenyl)-ρ,δ-dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrole-1-heptenoic acid}, is a selective and competitive inhibitor of the enzyme hydroxyl-methylglutaryl coenzyme-A reductase (HMG-CoA-R), which plays a key role in the biosynthesis of cholesterol. By virtue of that activity atorvastatin is useful as a hypolipidemic and hypocholesterolemic agent (Lea & McTavish, 1997). The synthesis of atorvastatin is carried out via the critical intermediate 2-[2-(4-fluorophenyl)-2-oxo-1-phenylethyl]-4-methyl-3-oxo-pentanoic acid phenylamide (Sagyam et al., 20077; Baumann et al., 1992). The process for preparing this intermediate is particularly sensitive and vulnerable to the formation of some impurities which may cause product rejection and decreased yields. We report here the crystal structure of one of these impurities.

In the title compound (Fig. 1) bond lengths and angles are within normal ranges (Allen et al., 1987). The five atoms of the pyrrolidine ring are not coplanar, with deviations from the planarity ranging from -0.124 (2) to 0.163 (2) Å. The dihedral angles between the mean plane through the pyrrolidine ring with the C13–C18 phenyl ring and the C1–C6, C7–C12 benzene rings are 37.22 (7), 51.88 (7)° and 87.64 (9)°, respectively. In the crystal structure, the molecules are linked by intermolecular O—H···O hydrogen bonds into dinuclear units (Table 1). The dinuclear units are further assembled into one–dimensional chains along the [010] direction by C–H···O hydrogen bonds.

Related literature top

The title compound is an impurity in the preparation of 2-[2-(4-fluorophenyl)-2-oxo-1-phenylethyl]-4-methyl-3-oxo-pentanoic acid, a critical intermediate in the synthesis of atorvastatin {systematic name [R-(R*,R*)]-2-(4-fluorophenyl)-ρ,δ-dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrole-1- heptenoic acid}, see: Baumann et al. (1992); Sagyam et al. (2007). For the use of atorvastatin as a hypolipidemic and hypocholesterolemic agent, see: Lea & McTavish, (1997). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 2-(4-fluorobenzylidene)-4-methyl-3-oxo-N-phenylpentanamide (5.10 g, 16.4 mmol), ethyl hydroxyethylmethyl thiazolium bromide (0.60 g, 2.38 mmol), 4-fluorobenzaldehyde (2.16 g, 17.4 mmol) and triethylamine (1.20 g, 11.9 mmol) was heated with stirring to 338 K. The reaction mixture was allowed to stand for 24 h at this temperature. Then 2-propanol (6.0 ml) was added and the mixture was heated to about 373 K. Deionized water (6.0 ml) was dropwise added to the reaction mixture over 30 min while maintaining the temperature at 338 K. After it was gradually cooled to 273 K, a white solid was isolated on a filter and washed with 2-propanol. The solid was recrystallized from ethyl acetate/hexane (1:1 v/v) and dried under vacuum at 323 K to give the title product as a white solid (2.28 g, yield 32%). Colourless crystals were obtained by vapor diffusion of pentane into an acetone solution over a period of 5 d.

Refinement top

The hydroxy H atom was found in a difference Fourier map and refined using a riding model, with the O—H = 0.84 Å and with Uiso(H) = 1.5 Ueq(O). All other H atoms were placed in geometrically calculated position and refined using a riding model, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. Dispalcement ellipsoids are drawn at 30% probability level.
4,5-Bis(4-fluorophenyl)-5-hydroxy-3-(2-methylpropanoyl)-1-phenylpyrrolidin-2-one top
Crystal data top
C26H23F2NO3F(000) = 1824
Mr = 435.45Dx = 1.325 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10716 reflections
a = 24.506 (4) Åθ = 2.0–25.6°
b = 10.2180 (15) ŵ = 0.10 mm1
c = 20.554 (3) ÅT = 153 K
β = 121.963 (2)°Prism, colourless
V = 4366.5 (11) Å30.15 × 0.15 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
4091 independent reflections
Radiation source: fine-focus sealed tube2471 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2920
Tmin = 0.986, Tmax = 0.990k = 1212
10716 measured reflectionsl = 2125
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0294P)2 + 3.1716P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4091 reflectionsΔρmax = 0.15 e Å3
293 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00069 (13)
Crystal data top
C26H23F2NO3V = 4366.5 (11) Å3
Mr = 435.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.506 (4) ŵ = 0.10 mm1
b = 10.2180 (15) ÅT = 153 K
c = 20.554 (3) Å0.15 × 0.15 × 0.10 mm
β = 121.963 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4091 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2471 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.990Rint = 0.033
10716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.02Δρmax = 0.15 e Å3
4091 reflectionsΔρmin = 0.18 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.29729 (8)0.50006 (17)0.53453 (10)0.0981 (6)
F20.42759 (8)0.66971 (13)0.21676 (8)0.0818 (5)
O10.48023 (6)0.09701 (13)0.40993 (8)0.0442 (4)
O20.50669 (6)0.28658 (13)0.48691 (7)0.0412 (4)
H20.50800.22760.51620.062*
O30.32087 (8)0.03185 (16)0.26703 (10)0.0698 (5)
N10.49052 (7)0.12325 (15)0.39667 (9)0.0350 (4)
C10.37194 (9)0.2815 (2)0.43135 (12)0.0413 (5)
C20.35015 (11)0.4082 (2)0.40746 (14)0.0562 (6)
H2A0.35190.44460.36610.067*
C30.36879 (12)0.2328 (2)0.49159 (13)0.0608 (7)
H30.38420.14690.50970.073*
C40.32592 (12)0.4824 (2)0.44287 (16)0.0670 (7)
H40.31200.56980.42690.080*
C50.32242 (12)0.4286 (3)0.50057 (15)0.0653 (7)
C60.34365 (13)0.3059 (3)0.52658 (15)0.0721 (8)
H60.34140.27080.56790.086*
C70.46243 (9)0.35844 (19)0.35938 (11)0.0361 (5)
C80.43194 (10)0.3401 (2)0.28104 (12)0.0473 (6)
H80.41860.25470.26020.057*
C90.48343 (10)0.48238 (19)0.38900 (12)0.0443 (5)
H90.50590.49580.44290.053*
C100.47203 (12)0.5871 (2)0.34077 (13)0.0530 (6)
H100.48620.67250.36100.064*
C110.42063 (12)0.4446 (2)0.23262 (13)0.0555 (6)
H110.39970.43230.17880.067*
C120.44041 (12)0.5657 (2)0.26446 (13)0.0530 (6)
C130.54700 (9)0.11424 (19)0.39270 (11)0.0377 (5)
C140.55081 (11)0.0173 (2)0.34826 (12)0.0503 (6)
H140.51640.04290.32130.060*
C150.59694 (10)0.2022 (2)0.43122 (13)0.0512 (6)
H150.59480.26950.46170.061*
C160.60423 (12)0.0077 (3)0.34296 (14)0.0604 (7)
H160.60660.05970.31270.072*
C170.65415 (12)0.0945 (3)0.38100 (15)0.0653 (7)
H170.69090.08790.37700.078*
C180.65041 (11)0.1906 (3)0.42466 (15)0.0659 (7)
H180.68500.25070.45110.079*
C190.46645 (9)0.24691 (18)0.41043 (11)0.0357 (5)
C200.39741 (9)0.20473 (18)0.39012 (11)0.0370 (5)
H200.36760.22270.33420.044*
C210.40032 (9)0.05602 (18)0.39926 (11)0.0361 (5)
H210.40230.03100.44750.043*
C220.46109 (9)0.01616 (19)0.40310 (10)0.0348 (5)
C230.34501 (10)0.0155 (2)0.33026 (13)0.0440 (5)
C240.32304 (11)0.1444 (2)0.34376 (15)0.0612 (7)
H240.35930.18430.39170.073*
C250.30332 (16)0.2382 (3)0.27765 (19)0.1080 (12)
H25A0.26960.19790.22980.162*
H25B0.28700.31930.28660.162*
H25C0.34070.25790.27380.162*
C260.26836 (15)0.1156 (4)0.3559 (2)0.1135 (13)
H26C0.28310.05390.39850.170*
H26B0.25440.19710.36800.170*
H26A0.23230.07720.30910.170*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0963 (12)0.1070 (13)0.1038 (12)0.0287 (10)0.0616 (11)0.0280 (10)
F20.1209 (13)0.0551 (9)0.0778 (10)0.0180 (8)0.0583 (10)0.0305 (8)
O10.0472 (9)0.0305 (8)0.0572 (9)0.0039 (7)0.0291 (8)0.0038 (7)
O20.0471 (8)0.0362 (8)0.0350 (8)0.0071 (7)0.0183 (7)0.0017 (6)
O30.0736 (12)0.0648 (11)0.0495 (10)0.0192 (9)0.0180 (9)0.0024 (9)
N10.0328 (9)0.0298 (9)0.0419 (10)0.0008 (7)0.0195 (8)0.0006 (7)
C10.0320 (11)0.0418 (12)0.0455 (12)0.0033 (9)0.0174 (10)0.0048 (10)
C20.0540 (15)0.0462 (14)0.0736 (16)0.0108 (11)0.0374 (14)0.0034 (12)
C30.0721 (17)0.0615 (16)0.0571 (15)0.0233 (13)0.0398 (14)0.0070 (12)
C40.0627 (17)0.0484 (15)0.092 (2)0.0155 (12)0.0419 (16)0.0056 (14)
C50.0519 (16)0.0776 (19)0.0657 (17)0.0131 (14)0.0307 (14)0.0216 (15)
C60.0793 (19)0.086 (2)0.0597 (16)0.0261 (16)0.0425 (15)0.0023 (15)
C70.0393 (11)0.0329 (11)0.0389 (11)0.0028 (9)0.0226 (10)0.0010 (9)
C80.0578 (14)0.0382 (12)0.0428 (13)0.0006 (10)0.0246 (11)0.0028 (10)
C90.0580 (14)0.0356 (12)0.0413 (12)0.0037 (10)0.0277 (11)0.0017 (10)
C100.0792 (17)0.0305 (12)0.0596 (15)0.0012 (11)0.0438 (14)0.0004 (11)
C110.0697 (17)0.0540 (15)0.0412 (13)0.0036 (12)0.0282 (12)0.0054 (11)
C120.0720 (17)0.0404 (13)0.0577 (15)0.0123 (12)0.0420 (14)0.0161 (12)
C130.0331 (11)0.0377 (11)0.0409 (12)0.0032 (9)0.0187 (10)0.0055 (9)
C140.0523 (14)0.0516 (14)0.0537 (14)0.0020 (11)0.0327 (12)0.0017 (11)
C150.0390 (13)0.0498 (14)0.0614 (14)0.0043 (11)0.0243 (11)0.0029 (11)
C160.0642 (17)0.0649 (16)0.0687 (16)0.0097 (14)0.0465 (14)0.0043 (13)
C170.0474 (16)0.081 (2)0.0783 (18)0.0121 (14)0.0407 (15)0.0148 (15)
C180.0391 (14)0.0732 (18)0.0823 (18)0.0084 (12)0.0300 (14)0.0022 (15)
C190.0372 (11)0.0321 (11)0.0353 (11)0.0002 (9)0.0176 (9)0.0027 (9)
C200.0356 (11)0.0334 (11)0.0391 (11)0.0022 (9)0.0178 (9)0.0007 (9)
C210.0364 (11)0.0343 (11)0.0382 (11)0.0016 (9)0.0202 (10)0.0005 (9)
C220.0351 (11)0.0316 (11)0.0344 (11)0.0004 (9)0.0161 (9)0.0009 (9)
C230.0347 (12)0.0431 (13)0.0516 (14)0.0005 (10)0.0210 (11)0.0016 (11)
C240.0427 (14)0.0458 (14)0.0762 (17)0.0102 (11)0.0186 (13)0.0069 (13)
C250.095 (2)0.0598 (19)0.122 (3)0.0212 (17)0.025 (2)0.0242 (19)
C260.081 (2)0.118 (3)0.168 (3)0.005 (2)0.083 (3)0.035 (3)
Geometric parameters (Å, º) top
F1—C51.362 (3)C11—C121.363 (3)
F2—C121.365 (2)C11—H110.9500
O1—C221.228 (2)C13—C151.381 (3)
O2—C191.402 (2)C13—C141.384 (3)
O2—H20.8400C14—C161.373 (3)
O3—C231.208 (2)C14—H140.9500
N1—C221.355 (2)C15—C181.392 (3)
N1—C131.432 (2)C15—H150.9500
N1—C191.484 (2)C16—C171.372 (3)
C1—C31.374 (3)C16—H160.9500
C1—C21.387 (3)C17—C181.366 (3)
C1—C201.511 (3)C17—H170.9500
C2—C41.384 (3)C18—H180.9500
C2—H2A0.9500C19—C201.573 (3)
C3—C61.387 (3)C20—C211.528 (3)
C3—H30.9500C20—H201.0000
C4—C51.351 (3)C21—C221.505 (3)
C4—H40.9500C21—C231.532 (3)
C5—C61.354 (4)C21—H211.0000
C6—H60.9500C23—C241.504 (3)
C7—C91.381 (3)C24—C261.516 (4)
C7—C81.383 (3)C24—C251.517 (4)
C7—C191.517 (3)C24—H241.0000
C8—C111.384 (3)C25—H25A0.9800
C8—H80.9500C25—H25B0.9800
C9—C101.383 (3)C25—H25C0.9800
C9—H90.9500C26—H26C0.9800
C10—C121.350 (3)C26—H26B0.9800
C10—H100.9500C26—H26A0.9800
C19—O2—H2109.5C17—C16—H16119.7
C22—N1—C13122.29 (16)C14—C16—H16119.7
C22—N1—C19112.54 (15)C18—C17—C16119.3 (2)
C13—N1—C19124.01 (15)C18—C17—H17120.3
C3—C1—C2117.6 (2)C16—C17—H17120.3
C3—C1—C20123.64 (19)C17—C18—C15121.3 (2)
C2—C1—C20118.81 (19)C17—C18—H18119.4
C4—C2—C1121.2 (2)C15—C18—H18119.4
C4—C2—H2A119.4O2—C19—N1110.20 (15)
C1—C2—H2A119.4O2—C19—C7107.93 (15)
C1—C3—C6121.6 (2)N1—C19—C7113.26 (15)
C1—C3—H3119.2O2—C19—C20113.32 (15)
C6—C3—H3119.2N1—C19—C20101.33 (14)
C5—C4—C2118.9 (2)C7—C19—C20110.82 (16)
C5—C4—H4120.6C1—C20—C21116.98 (16)
C2—C4—H4120.6C1—C20—C19114.49 (16)
C4—C5—C6122.3 (2)C21—C20—C19105.44 (15)
C4—C5—F1119.2 (3)C1—C20—H20106.4
C6—C5—F1118.5 (3)C21—C20—H20106.4
C5—C6—C3118.5 (2)C19—C20—H20106.4
C5—C6—H6120.7C22—C21—C20104.83 (15)
C3—C6—H6120.7C22—C21—C23106.58 (15)
C9—C7—C8118.89 (18)C20—C21—C23113.56 (16)
C9—C7—C19120.76 (17)C22—C21—H21110.5
C8—C7—C19120.06 (17)C20—C21—H21110.5
C7—C8—C11120.8 (2)C23—C21—H21110.5
C7—C8—H8119.6O1—C22—N1125.51 (18)
C11—C8—H8119.6O1—C22—C21124.65 (17)
C7—C9—C10120.45 (19)N1—C22—C21109.84 (16)
C7—C9—H9119.8O3—C23—C24122.0 (2)
C10—C9—H9119.8O3—C23—C21119.63 (19)
C12—C10—C9118.8 (2)C24—C23—C21118.35 (19)
C12—C10—H10120.6C23—C24—C26107.1 (2)
C9—C10—H10120.6C23—C24—C25111.3 (2)
C12—C11—C8118.0 (2)C26—C24—C25112.3 (2)
C12—C11—H11121.0C23—C24—H24108.7
C8—C11—H11121.0C26—C24—H24108.7
C10—C12—C11123.0 (2)C25—C24—H24108.7
C10—C12—F2118.7 (2)C24—C25—H25A109.5
C11—C12—F2118.3 (2)C24—C25—H25B109.5
C15—C13—C14119.70 (19)H25A—C25—H25B109.5
C15—C13—N1121.04 (18)C24—C25—H25C109.5
C14—C13—N1119.25 (18)H25A—C25—H25C109.5
C16—C14—C13120.3 (2)H25B—C25—H25C109.5
C16—C14—H14119.9C24—C26—H26C109.5
C13—C14—H14119.9C24—C26—H26B109.5
C13—C15—C18118.9 (2)H26C—C26—H26B109.5
C13—C15—H15120.5C24—C26—H26A109.5
C18—C15—H15120.5H26C—C26—H26A109.5
C17—C16—C14120.5 (2)H26B—C26—H26A109.5
C3—C1—C2—C40.2 (3)C13—N1—C19—C20167.56 (16)
C20—C1—C2—C4179.5 (2)C9—C7—C19—O213.9 (2)
C2—C1—C3—C61.2 (4)C8—C7—C19—O2172.30 (17)
C20—C1—C3—C6178.5 (2)C9—C7—C19—N1136.22 (19)
C1—C2—C4—C51.4 (4)C8—C7—C19—N150.0 (2)
C2—C4—C5—C62.1 (4)C9—C7—C19—C20110.7 (2)
C2—C4—C5—F1178.5 (2)C8—C7—C19—C2063.1 (2)
C4—C5—C6—C31.1 (4)C3—C1—C20—C2119.1 (3)
F1—C5—C6—C3179.5 (2)C2—C1—C20—C21160.69 (19)
C1—C3—C6—C50.6 (4)C3—C1—C20—C19105.0 (2)
C9—C7—C8—C112.1 (3)C2—C1—C20—C1975.2 (2)
C19—C7—C8—C11171.8 (2)O2—C19—C20—C134.5 (2)
C8—C7—C9—C102.3 (3)N1—C19—C20—C1152.52 (15)
C19—C7—C9—C10171.51 (19)C7—C19—C20—C187.0 (2)
C7—C9—C10—C120.4 (3)O2—C19—C20—C2195.51 (18)
C7—C8—C11—C120.0 (3)N1—C19—C20—C2122.51 (18)
C9—C10—C12—C111.9 (4)C7—C19—C20—C21142.99 (15)
C9—C10—C12—F2178.2 (2)C1—C20—C21—C22142.77 (17)
C8—C11—C12—C102.1 (4)C19—C20—C21—C2214.23 (19)
C8—C11—C12—F2178.0 (2)C1—C20—C21—C23101.3 (2)
C22—N1—C13—C15139.4 (2)C19—C20—C21—C23130.18 (17)
C19—N1—C13—C1527.3 (3)C13—N1—C22—O13.7 (3)
C22—N1—C13—C1441.9 (3)C19—N1—C22—O1164.41 (18)
C19—N1—C13—C14151.38 (18)C13—N1—C22—C21175.28 (16)
C15—C13—C14—C160.6 (3)C19—N1—C22—C2116.6 (2)
N1—C13—C14—C16179.30 (19)C20—C21—C22—O1179.48 (18)
C14—C13—C15—C180.3 (3)C23—C21—C22—O158.8 (2)
N1—C13—C15—C18179.03 (19)C20—C21—C22—N10.5 (2)
C13—C14—C16—C170.6 (3)C23—C21—C22—N1120.22 (17)
C14—C16—C17—C180.3 (4)C22—C21—C23—O385.3 (2)
C16—C17—C18—C150.1 (4)C20—C21—C23—O329.6 (3)
C13—C15—C18—C170.1 (4)C22—C21—C23—C2494.0 (2)
C22—N1—C19—O295.72 (18)C20—C21—C23—C24151.10 (19)
C13—N1—C19—O272.2 (2)O3—C23—C24—C2688.0 (3)
C22—N1—C19—C7143.26 (17)C21—C23—C24—C2692.8 (3)
C13—N1—C19—C748.8 (2)O3—C23—C24—C2535.2 (3)
C22—N1—C19—C2024.53 (19)C21—C23—C24—C25144.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.952.593.489 (3)157
O2—H2···O1ii0.841.932.7625 (18)174
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC26H23F2NO3
Mr435.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)24.506 (4), 10.2180 (15), 20.554 (3)
β (°) 121.963 (2)
V3)4366.5 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.15 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.986, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
10716, 4091, 2471
Rint0.033
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.02
No. of reflections4091
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.952.593.489 (3)157
O2—H2···O1ii0.841.932.7625 (18)174
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Education Department of Zhejiang Province (No. Y200906515) and Zhejiang Gong Shang University (No. X-106).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaumann, K. L., Butler, D. E., Deering, C. F., Mennen, K. E., Millar, A., Nanninga, T. N., Palmer, C. W. & Roth, B. D. (1992). Tetrahedron Lett. 33, 2283–2284.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLea, A. P. & McTavish, D. (1997). Drugs, 53, 828–847.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSagyam, R. R., Vurimidi, H., Padi, P. R. & Ghanta, M. R. (2007). J. Heterocycl. Chem. 44, 923–926.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o873-o874
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds