organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Oxoindolin-3-yl acetate

aXi'an Shiyou University, College of Chemistry and Chemical Engineering, Second Dianzi Road No.18, Xi'an 710065, Xi'an, People's Republic of China
*Correspondence e-mail: tougao88@163.com

(Received 10 February 2011; accepted 9 March 2011; online 15 March 2011)

In the title compound, C10H9NO3, the mean plane through the acetate group forms a dihedral angle of 83.39 (5)° with the plane of the indole ring system. In the crystal, pairs of centrosymmetrically related mol­ecules are linked into dimers by N—H⋯O hydrogen bonds. The dimers are further connected into layers parallel to the bc plane by C—H⋯O hydrogen bonds.

Related literature

For the synthesis and applications of indole-2,3-dione derivatives, see: Chen, He et al. (2009[Chen, G., He, H. P., Ding, J. & Hao, X. J. (2009). Heterocycl. Commun. 15, 355-360.]); Chen, Wang et al. (2009[Chen, G., Wang, Y., Gao, S., He, H. P., Li, S. L., Zhang, J. X., Ding, J. & Hao, X. J. (2009). J. Heterocycl. Chem. 46, 217-220.]); Chen, Hao et al. (2010[Chen, G., Hao, X. J., Sun, Q. Y. & Ding, J. (2010). Chem. Pap. 64, 673-677.]); Chen, Tang et al. (2010[Chen, G., Tang, Y., Zhang, Q. Z., Wu, Y. & Hao, X. J. (2010). J. Chem. Crystallogr. 40, 369-372.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO3

  • Mr = 191.18

  • Monoclinic, P 21 /c

  • a = 10.617 (2) Å

  • b = 12.256 (2) Å

  • c = 7.4453 (14) Å

  • β = 106.347 (2)°

  • V = 929.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.989

  • 4286 measured reflections

  • 1648 independent reflections

  • 1348 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.129

  • S = 1.01

  • 1648 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.03 2.8819 (19) 169
C2—H2A⋯O1ii 0.98 2.44 3.394 (2) 164
C4—H4A⋯O3iii 0.93 2.56 3.328 (3) 141
Symmetry codes: (i) -x+2, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y, z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Indole-2,3-dione derivatives have driven much attention for their anti-bacterial, anti-virus and neuroprotective activities (Chen, He et al., 2009; Chen, Wang et al., 2009; Chen, Hao et al., 2010; Chen, Tang et al., 2010). The title compound, whose structure is reported herein, has been synthesized by reduction of isatin with sodium borohydride followed by acylation. The X-ray structural analysis of the title compound revealed the molecular structure as depicted in Fig. 1. Geometric parameters are in the usual ranges. In the molecule, the mean plane through the ester group (O2/O3/C9/C10) is almost perpendicular to the plane of the indole ring system, forming a dihedral angle of 83.39 (5)°. In the crystal structure, centrosymmetrically related molecules are linked into dimers by N—H···O hydrogen bonds (Fig. 2; Table 1). The dimers are further connected into a layers parallel to the bc plane by weak C—H···O hydrogen bonds.

Related literature top

For the synthesis and applications of indole-2,3-dione derivatives, see: Chen, He et al. (2009); Chen, Wang et al. (2009); Chen, Hao et al. (2010); Chen, Tang et al. (2010).

Experimental top

To a solution of isatin (1.0 mmol) in methanol (20 ml), sodium borohydride (1.0 mmol) in methanol (10 ml) was added dropwise until the disappearance of isatin, as evidenced by thin-layer chromatography, then diluted hydrochloric acid (0.1 M) was added dropwise to eliminate the excess sodium borohydride. The solvent was removed in vacuo, and the residue was dissolved in 10 ml pyridine. Acetic anhydride (1.0 mmol) was then added, and the mixture was refluxed for 1 h. On completion of the reaction, the solvent was removed in vacuo, and the residue was separated by column chromatography (silica gel; petroleum ether/ethyl acetate 5:1 v/v), giving the title compound. 30 mg of the title compound was dissolved in 30 ml me thanol and the solution was kept at room temperature for 7 d, to give colourless single crystals suitable for X-ray analysis on slow evaporation of the solvent.

Refinement top

All H atoms were placed at calculated positions and refined as riding, with C—H = 0.93–0.98 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A dimer of the title compound. Intermolecular hydrogen bonds are drawn as dashed lines. Displacement ellipsoids are drawn at he 30% probability level.
2-Oxoindolin-3-yl acetate top
Crystal data top
C10H9NO3F(000) = 400
Mr = 191.18Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7180 reflections
a = 10.617 (2) Åθ = 1.6–25.0°
b = 12.256 (2) ŵ = 0.10 mm1
c = 7.4453 (14) ÅT = 296 K
β = 106.347 (2)°Block, colourless
V = 929.6 (3) Å30.35 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
1648 independent reflections
Radiation source: fine-focus sealed tube1348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1210
Tmin = 0.977, Tmax = 0.989k = 1414
4286 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
1648 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C10H9NO3V = 929.6 (3) Å3
Mr = 191.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.617 (2) ŵ = 0.10 mm1
b = 12.256 (2) ÅT = 296 K
c = 7.4453 (14) Å0.35 × 0.30 × 0.30 mm
β = 106.347 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1648 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1348 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.989Rint = 0.018
4286 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
1648 reflectionsΔρmin = 0.17 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.67729 (11)0.18607 (9)0.11848 (15)0.0419 (3)
O10.91573 (12)0.13689 (9)0.01094 (17)0.0479 (4)
O30.63567 (12)0.03276 (10)0.05054 (17)0.0509 (4)
N10.92299 (13)0.00916 (10)0.18474 (19)0.0386 (4)
H1A0.97720.04950.14780.046*
C70.86451 (16)0.03943 (12)0.3255 (2)0.0351 (4)
C20.79735 (15)0.13809 (12)0.2308 (2)0.0373 (4)
H2A0.84790.19570.31070.045*
C80.78545 (16)0.04492 (13)0.3545 (2)0.0370 (4)
C10.88381 (15)0.09027 (13)0.1153 (2)0.0371 (4)
C60.87970 (17)0.13532 (13)0.4245 (2)0.0414 (4)
H6A0.93370.19090.40410.050*
C90.60217 (16)0.12244 (13)0.0200 (2)0.0402 (4)
C50.81038 (19)0.14553 (15)0.5569 (2)0.0522 (5)
H5A0.81670.21020.62440.063*
C30.72078 (19)0.03455 (15)0.4902 (3)0.0494 (5)
H3A0.67000.09160.51410.059*
C100.47947 (19)0.17936 (17)0.1220 (3)0.0600 (6)
H10A0.42890.13300.21990.090*
H10B0.50090.24570.17550.090*
H10C0.42930.19620.03660.090*
C40.7324 (2)0.06214 (17)0.5909 (3)0.0561 (5)
H4A0.68770.07080.68100.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0401 (7)0.0339 (6)0.0487 (7)0.0061 (5)0.0075 (5)0.0026 (5)
O10.0483 (8)0.0417 (7)0.0596 (8)0.0022 (5)0.0247 (6)0.0110 (6)
O30.0482 (8)0.0489 (8)0.0540 (8)0.0011 (6)0.0120 (6)0.0137 (6)
N10.0360 (7)0.0337 (7)0.0471 (8)0.0039 (6)0.0133 (6)0.0002 (6)
C70.0332 (8)0.0352 (9)0.0335 (8)0.0036 (6)0.0035 (7)0.0055 (6)
C20.0359 (9)0.0322 (8)0.0412 (9)0.0002 (7)0.0067 (7)0.0054 (6)
C80.0379 (9)0.0347 (9)0.0358 (8)0.0019 (6)0.0061 (7)0.0067 (6)
C10.0315 (8)0.0319 (8)0.0456 (9)0.0015 (6)0.0070 (7)0.0017 (7)
C60.0448 (10)0.0341 (9)0.0385 (9)0.0010 (7)0.0005 (7)0.0008 (7)
C90.0389 (9)0.0408 (10)0.0428 (9)0.0021 (7)0.0148 (8)0.0005 (7)
C50.0627 (12)0.0488 (11)0.0376 (9)0.0080 (9)0.0020 (9)0.0066 (8)
C30.0559 (11)0.0500 (11)0.0449 (10)0.0008 (8)0.0181 (9)0.0090 (8)
C100.0486 (11)0.0603 (12)0.0637 (12)0.0017 (9)0.0037 (10)0.0078 (10)
C40.0689 (14)0.0615 (12)0.0418 (10)0.0084 (10)0.0221 (10)0.0012 (8)
Geometric parameters (Å, º) top
O2—C91.3582 (19)C8—C31.378 (2)
O2—C21.4385 (18)C6—C51.392 (3)
O1—C11.2263 (19)C6—H6A0.9300
O3—C91.1965 (19)C9—C101.484 (2)
N1—C11.343 (2)C5—C41.383 (3)
N1—C71.410 (2)C5—H5A0.9300
N1—H1A0.8600C3—C41.389 (3)
C7—C61.372 (2)C3—H3A0.9300
C7—C81.386 (2)C10—H10A0.9600
C2—C81.495 (2)C10—H10B0.9600
C2—C11.539 (2)C10—H10C0.9600
C2—H2A0.9800C4—H4A0.9300
C9—O2—C2116.20 (12)C7—C6—H6A121.6
C1—N1—C7111.81 (13)C5—C6—H6A121.6
C1—N1—H1A124.1O3—C9—O2121.95 (15)
C7—N1—H1A124.1O3—C9—C10126.84 (16)
C6—C7—C8122.64 (16)O2—C9—C10111.21 (15)
C6—C7—N1127.95 (15)C4—C5—C6121.75 (17)
C8—C7—N1109.41 (14)C4—C5—H5A119.1
O2—C2—C8117.11 (13)C6—C5—H5A119.1
O2—C2—C1113.65 (12)C8—C3—C4119.17 (17)
C8—C2—C1102.74 (12)C8—C3—H3A120.4
O2—C2—H2A107.6C4—C3—H3A120.4
C8—C2—H2A107.6C9—C10—H10A109.5
C1—C2—H2A107.6C9—C10—H10B109.5
C3—C8—C7119.61 (15)H10A—C10—H10B109.5
C3—C8—C2131.95 (15)C9—C10—H10C109.5
C7—C8—C2108.27 (14)H10A—C10—H10C109.5
O1—C1—N1126.53 (15)H10B—C10—H10C109.5
O1—C1—C2125.98 (15)C5—C4—C3119.92 (18)
N1—C1—C2107.41 (13)C5—C4—H4A120.0
C7—C6—C5116.86 (16)C3—C4—H4A120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.032.8819 (19)169
C2—H2A···O1ii0.982.443.394 (2)164
C4—H4A···O3iii0.932.563.328 (3)141
Symmetry codes: (i) x+2, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H9NO3
Mr191.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.617 (2), 12.256 (2), 7.4453 (14)
β (°) 106.347 (2)
V3)929.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.977, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
4286, 1648, 1348
Rint0.018
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.129, 1.01
No. of reflections1648
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.032.8819 (19)169
C2—H2A···O1ii0.982.443.394 (2)164
C4—H4A···O3iii0.932.563.328 (3)141
Symmetry codes: (i) x+2, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y, z+1.
 

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationChen, G., Hao, X. J., Sun, Q. Y. & Ding, J. (2010). Chem. Pap. 64, 673–677.  CrossRef CAS Google Scholar
First citationChen, G., He, H. P., Ding, J. & Hao, X. J. (2009). Heterocycl. Commun. 15, 355–360.  CrossRef CAS Google Scholar
First citationChen, G., Tang, Y., Zhang, Q. Z., Wu, Y. & Hao, X. J. (2010). J. Chem. Crystallogr. 40, 369–372.  CrossRef CAS Google Scholar
First citationChen, G., Wang, Y., Gao, S., He, H. P., Li, S. L., Zhang, J. X., Ding, J. & Hao, X. J. (2009). J. Heterocycl. Chem. 46, 217–220.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds