organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 3-benzyl-3-[(E)-2-benzyl­­idene-3-oxo­cyclo­pent­yl]-2-oxoindoline-1-carboxyl­ate

aBeijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
*Correspondence e-mail: lliu@iccas.ac.cn

(Received 15 February 2011; accepted 23 February 2011; online 12 March 2011)

In the title compound, C32H31NO4, the dihedral angles between the indoline ring and the two phenyl rings are 48.11 (9) and 66.55 (9)°. The mol­ecular conformation is stabilized by a weak intramolecular ππ stacking inter­action [centroid–centroid distance = 3.6377 (7) Å]. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds, which form chains along the b axis.

Related literature

For the preparation of chiral 3,3-disubstituted 2-oxindoles, see: Cozzi et al. (2009[Cozzi, P. G., Benfatti, F. & Zoli, L. (2009). Angew. Chem. Int. Ed. 48, 1313-1316.]); Qiao et al. (2010[Qiao, Z., Shafiq, Z., Liu, L., Yu, Z.-B., Zheng, Q.-Y., Wang, D. & Chen, Y.-J. (2010). Angew. Chem. Int. Ed. 49, 7294-7298.]); Zhou et al. (2010[Zhou, F., Liu, Y. L. & Zhou, J. A. (2010). Adv. Synth. Catal. 352, 1381-1407.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C32H31NO4

  • Mr = 493.58

  • Orthorhombic, P 21 21 21

  • a = 7.8695 (16) Å

  • b = 11.893 (2) Å

  • c = 28.346 (6) Å

  • V = 2652.9 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.35 × 0.26 × 0.12 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.525, Tmax = 1.000

  • 9151 measured reflections

  • 2967 independent reflections

  • 2651 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.132

  • S = 1.05

  • 2967 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21A⋯O4i 1.00 2.37 3.295 (4) 153
C28—H28A⋯O4i 0.95 2.47 3.401 (4) 165
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELTXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, as important substructures, chiral 3,3-disubstituted 2-oxindoles have constituted a ubiquitous class of heterocycles found in numerous natural products, marketed drugs, and drug candidates. Though a handful of synthetic methods are available for creating the single quaternary carbon centers at the C-3 position with complete control, the challenge still lies primarily in the efficient construction of a vicinal chiral tertiary carbon centre. Meanwhile, the direct catalytic asymmetric substitution of alcohols represents a highly challenging and persistent problem for synthetic methodology. Because of the inert leaving ability of the hydroxyl group, the catalytic activation of alcohols is generally difficult (Cozzi et al., 2009). By using our method we can overcome the problem mentioned above (Qiao et al., 2010; Zhou et al., 2010). We report here the crystal structure of the title compound.

In title compound (Fig. 1), all bond lengths are normal (Allen et al., 1987). The dihedral angle between the indoline (C6—C13/N1) and the C15—C20 and C27—C32 phenyl rings are 48.11 (9) and 66.55 (9) °, respectively. A weak intramolecular ππ interaction is indicated by the distance of 3.6377 (7) Å between the centroids of the pyrrole ring (N1/C6/C11–13) and C15—C20 phenyl ring. In the crystal structure, weak C—H···O intermolecular hydrogen interactions link molecules into chains along the b axis (Table 1).

Related literature top

For the preparation of chiral 3,3-disubstituted 2-oxindoles, see: Cozzi et al. (2009); Qiao et al. (2010); Zhou et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of catalyst salt 9-amino-9-deoxyepiquinine (20 mol %) in the combination with TFA (40 mol %) in 1 ml DCM, 5 min s later, the Baylis-Hillman adduct 2-(hydroxy(phenyl)methyl)cyclopent-2-enone (0.2 mmol) and tert-butyl 3-benzyl-2-oxoindoline-1-carboxylate (0.2 mmol) was added. The resulting reaction mixture was heated at 30° C and stirred for 96 h till completion as judged by TLC. Then the reaction mixture was purified by column chromatography over silica gel (gradient petroleum ether/EtOAc 6:1 v/v) to afford the title compound in 32% yield. Single crystals suitable for X-ray measurements were obtained by recrystallization from acetonitrile at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 Ueq(C) for CH and CH2 or 1.5 Ueq(C) for methyl H atoms. In the absence of anomalous dispersion effects, Friedel pairs were merged before the final cycles of refinement.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
tert-Butyl 3-benzyl-3-[(E)-2-benzylidene-3-oxocyclopentyl]-2- oxoindoline-1-carboxylate top
Crystal data top
C32H31NO4F(000) = 1048
Mr = 493.58Dx = 1.236 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7550 reflections
a = 7.8695 (16) Åθ = 1.4–26.0°
b = 11.893 (2) ŵ = 0.08 mm1
c = 28.346 (6) ÅT = 173 K
V = 2652.9 (9) Å3Block, colorless
Z = 40.35 × 0.26 × 0.12 mm
Data collection top
Rigaku Saturn724+
diffractometer
2967 independent reflections
Radiation source: Rotating Anode2651 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.088
Detector resolution: 28.5714 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω scans at fixed χ = 45°h = 96
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 1414
Tmin = 0.525, Tmax = 1.000l = 1834
9151 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.4619P]
where P = (Fo2 + 2Fc2)/3
2967 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C32H31NO4V = 2652.9 (9) Å3
Mr = 493.58Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.8695 (16) ŵ = 0.08 mm1
b = 11.893 (2) ÅT = 173 K
c = 28.346 (6) Å0.35 × 0.26 × 0.12 mm
Data collection top
Rigaku Saturn724+
diffractometer
2967 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
2651 reflections with I > 2σ(I)
Tmin = 0.525, Tmax = 1.000Rint = 0.088
9151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
2967 reflectionsΔρmin = 0.23 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1446 (3)0.51425 (19)0.50716 (6)0.0331 (5)
O20.1567 (4)0.6816 (2)0.46945 (7)0.0458 (7)
O30.1853 (3)0.66366 (19)0.37455 (7)0.0341 (5)
O40.0170 (4)0.7532 (2)0.26192 (8)0.0484 (7)
N10.1590 (3)0.5157 (2)0.42829 (7)0.0247 (5)
C10.2941 (6)0.6257 (4)0.56693 (13)0.0553 (11)
H1A0.30200.69340.54740.083*
H1B0.39160.57670.56050.083*
H1C0.29410.64710.60030.083*
C20.0256 (6)0.6350 (4)0.55892 (11)0.0488 (10)
H2A0.01190.70230.53930.073*
H2B0.04370.65740.59180.073*
H2C0.12380.59180.54780.073*
C30.1162 (7)0.4580 (3)0.58547 (10)0.0559 (12)
H3A0.01020.41890.57760.084*
H3B0.11540.47860.61890.084*
H3C0.21290.40830.57910.084*
C40.1317 (5)0.5638 (3)0.55551 (9)0.0381 (9)
C50.1538 (4)0.5817 (3)0.46984 (9)0.0302 (7)
C60.1527 (4)0.3956 (3)0.42408 (9)0.0248 (6)
C70.1196 (4)0.3132 (3)0.45733 (9)0.0316 (7)
H7A0.10440.33200.48960.038*
C80.1092 (5)0.2022 (3)0.44210 (10)0.0335 (8)
H8A0.08690.14490.46460.040*
C90.1304 (5)0.1729 (3)0.39534 (10)0.0368 (8)
H9A0.12130.09650.38580.044*
C100.1651 (5)0.2567 (3)0.36226 (9)0.0291 (7)
H10A0.18040.23790.33000.035*
C110.1771 (4)0.3667 (3)0.37675 (9)0.0252 (6)
C120.2152 (4)0.4694 (3)0.34814 (9)0.0241 (6)
C130.1835 (4)0.5643 (3)0.38325 (9)0.0250 (6)
C140.4084 (4)0.4752 (3)0.33532 (9)0.0262 (6)
H14A0.43530.41360.31310.031*
H14B0.43120.54720.31900.031*
C150.5246 (4)0.4662 (3)0.37767 (9)0.0270 (6)
C160.5679 (5)0.5611 (3)0.40327 (11)0.0352 (8)
H16A0.52540.63240.39390.042*
C170.6733 (5)0.5529 (3)0.44273 (11)0.0384 (8)
H17A0.70120.61830.46030.046*
C180.7361 (5)0.4508 (3)0.45593 (11)0.0376 (8)
H18A0.80810.44540.48270.045*
C190.6955 (5)0.3543 (3)0.43046 (11)0.0370 (8)
H19A0.74040.28340.43950.044*
C200.5884 (4)0.3630 (3)0.39157 (10)0.0303 (7)
H20A0.55880.29730.37440.036*
C210.1013 (4)0.4759 (3)0.30321 (8)0.0249 (6)
H21A0.11780.40610.28410.030*
C220.0884 (4)0.4869 (3)0.31628 (11)0.0350 (8)
H22A0.15900.44240.29420.042*
H22B0.10810.45870.34870.042*
C230.1352 (4)0.6112 (3)0.31313 (11)0.0365 (8)
H23A0.25160.62070.30050.044*
H23B0.12890.64730.34460.044*
C240.0066 (4)0.6608 (3)0.28029 (9)0.0332 (7)
C250.1313 (4)0.5785 (3)0.27179 (9)0.0247 (6)
C260.2475 (4)0.5990 (3)0.23824 (9)0.0292 (7)
H26A0.23900.67010.22310.035*
C270.3871 (4)0.5258 (3)0.22173 (9)0.0272 (7)
C280.3654 (5)0.4114 (3)0.21275 (9)0.0341 (8)
H28A0.25670.37800.21670.041*
C290.5013 (5)0.3463 (3)0.19813 (10)0.0377 (8)
H29A0.48440.26870.19180.045*
C300.6608 (5)0.3924 (3)0.19263 (10)0.0380 (8)
H30A0.75400.34690.18320.046*
C310.6829 (5)0.5059 (3)0.20108 (10)0.0370 (8)
H31A0.79230.53860.19740.044*
C320.5480 (4)0.5724 (3)0.21471 (9)0.0322 (8)
H32A0.56470.65070.21940.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0538 (14)0.0263 (12)0.0191 (8)0.0018 (12)0.0009 (9)0.0037 (8)
O20.082 (2)0.0251 (14)0.0307 (10)0.0009 (14)0.0073 (12)0.0026 (9)
O30.0499 (15)0.0230 (12)0.0293 (9)0.0013 (11)0.0010 (10)0.0023 (9)
O40.0520 (16)0.0397 (16)0.0535 (14)0.0141 (14)0.0082 (13)0.0196 (12)
N10.0321 (14)0.0203 (13)0.0218 (10)0.0001 (12)0.0004 (10)0.0006 (9)
C10.076 (3)0.048 (3)0.0428 (18)0.004 (2)0.0177 (19)0.0079 (18)
C20.068 (3)0.045 (2)0.0335 (15)0.007 (2)0.0099 (16)0.0113 (16)
C30.110 (4)0.036 (2)0.0212 (14)0.001 (3)0.0062 (18)0.0010 (14)
C40.064 (2)0.0310 (18)0.0191 (12)0.0043 (19)0.0019 (14)0.0052 (12)
C50.0381 (19)0.0288 (19)0.0237 (13)0.0013 (15)0.0017 (13)0.0013 (11)
C60.0274 (16)0.0228 (16)0.0242 (12)0.0024 (14)0.0005 (12)0.0012 (11)
C70.043 (2)0.0315 (18)0.0207 (12)0.0003 (16)0.0026 (12)0.0037 (11)
C80.049 (2)0.0223 (16)0.0293 (13)0.0013 (17)0.0012 (14)0.0100 (12)
C90.054 (2)0.0247 (18)0.0318 (14)0.0017 (17)0.0003 (15)0.0000 (13)
C100.0405 (19)0.0249 (16)0.0221 (12)0.0023 (15)0.0026 (13)0.0004 (11)
C110.0259 (16)0.0255 (17)0.0242 (12)0.0002 (14)0.0001 (12)0.0014 (11)
C120.0260 (15)0.0254 (17)0.0210 (12)0.0008 (13)0.0015 (11)0.0004 (11)
C130.0290 (16)0.0248 (17)0.0213 (12)0.0002 (14)0.0009 (11)0.0020 (11)
C140.0290 (15)0.0266 (16)0.0231 (11)0.0021 (14)0.0004 (11)0.0035 (11)
C150.0267 (15)0.0293 (17)0.0249 (12)0.0001 (14)0.0054 (11)0.0031 (12)
C160.0367 (19)0.0313 (19)0.0376 (15)0.0008 (16)0.0026 (14)0.0036 (14)
C170.042 (2)0.036 (2)0.0379 (16)0.0098 (18)0.0070 (15)0.0027 (14)
C180.0364 (19)0.042 (2)0.0346 (15)0.0053 (17)0.0077 (14)0.0086 (14)
C190.0358 (19)0.033 (2)0.0417 (16)0.0011 (17)0.0043 (14)0.0122 (14)
C200.0325 (17)0.0247 (17)0.0337 (14)0.0007 (15)0.0009 (13)0.0019 (12)
C210.0305 (16)0.0230 (16)0.0211 (11)0.0020 (14)0.0011 (11)0.0021 (10)
C220.0321 (17)0.040 (2)0.0333 (13)0.0024 (16)0.0023 (13)0.0053 (14)
C230.0325 (19)0.040 (2)0.0367 (14)0.0036 (17)0.0016 (13)0.0073 (14)
C240.0347 (18)0.038 (2)0.0263 (12)0.0012 (17)0.0016 (12)0.0075 (13)
C250.0288 (16)0.0253 (16)0.0200 (11)0.0006 (13)0.0015 (11)0.0015 (10)
C260.0380 (18)0.0260 (17)0.0237 (12)0.0022 (15)0.0013 (12)0.0045 (11)
C270.0352 (17)0.0280 (17)0.0184 (11)0.0012 (15)0.0039 (11)0.0051 (11)
C280.047 (2)0.0288 (18)0.0267 (14)0.0082 (17)0.0071 (14)0.0011 (12)
C290.052 (2)0.031 (2)0.0301 (13)0.0011 (18)0.0061 (15)0.0014 (13)
C300.046 (2)0.039 (2)0.0292 (14)0.0069 (18)0.0035 (14)0.0000 (14)
C310.0362 (18)0.042 (2)0.0325 (14)0.0014 (17)0.0020 (13)0.0014 (14)
C320.043 (2)0.0274 (18)0.0257 (13)0.0058 (15)0.0040 (13)0.0018 (11)
Geometric parameters (Å, º) top
O1—C51.330 (4)C14—H14B0.9900
O1—C41.495 (3)C15—C201.383 (4)
O2—C51.188 (4)C15—C161.384 (5)
O3—C131.207 (4)C16—C171.396 (4)
O4—C241.219 (4)C16—H16A0.9500
N1—C131.415 (3)C17—C181.363 (5)
N1—C51.416 (4)C17—H17A0.9500
N1—C61.434 (4)C18—C191.393 (5)
C1—C41.510 (6)C18—H18A0.9500
C1—H1A0.9800C19—C201.391 (4)
C1—H1B0.9800C19—H19A0.9500
C1—H1C0.9800C20—H20A0.9500
C2—C41.503 (6)C21—C251.529 (4)
C2—H2A0.9800C21—C221.544 (5)
C2—H2B0.9800C21—H21A1.0000
C2—H2C0.9800C22—C231.526 (5)
C3—C41.523 (5)C22—H22A0.9900
C3—H3A0.9800C22—H22B0.9900
C3—H3B0.9800C23—C241.496 (5)
C3—H3C0.9800C23—H23A0.9900
C6—C71.384 (4)C23—H23B0.9900
C6—C111.398 (4)C24—C251.481 (5)
C7—C81.391 (5)C25—C261.342 (4)
C7—H7A0.9500C26—C271.478 (4)
C8—C91.381 (4)C26—H26A0.9500
C8—H8A0.9500C27—C281.395 (4)
C9—C101.396 (4)C27—C321.396 (5)
C9—H9A0.9500C28—C291.384 (5)
C10—C111.375 (4)C28—H28A0.9500
C10—H10A0.9500C29—C301.379 (5)
C11—C121.496 (4)C29—H29A0.9500
C12—C131.526 (4)C30—C311.382 (5)
C12—C211.560 (4)C30—H30A0.9500
C12—C141.564 (4)C31—C321.379 (5)
C14—C151.513 (4)C31—H31A0.9500
C14—H14A0.9900C32—H32A0.9500
C5—O1—C4119.7 (2)C20—C15—C16119.0 (3)
C13—N1—C5121.9 (3)C20—C15—C14120.6 (3)
C13—N1—C6109.7 (2)C16—C15—C14120.4 (3)
C5—N1—C6128.3 (2)C15—C16—C17120.6 (3)
C4—C1—H1A109.5C15—C16—H16A119.7
C4—C1—H1B109.5C17—C16—H16A119.7
H1A—C1—H1B109.5C18—C17—C16119.8 (3)
C4—C1—H1C109.5C18—C17—H17A120.1
H1A—C1—H1C109.5C16—C17—H17A120.1
H1B—C1—H1C109.5C17—C18—C19120.6 (3)
C4—C2—H2A109.5C17—C18—H18A119.7
C4—C2—H2B109.5C19—C18—H18A119.7
H2A—C2—H2B109.5C20—C19—C18119.2 (3)
C4—C2—H2C109.5C20—C19—H19A120.4
H2A—C2—H2C109.5C18—C19—H19A120.4
H2B—C2—H2C109.5C15—C20—C19120.7 (3)
C4—C3—H3A109.5C15—C20—H20A119.6
C4—C3—H3B109.5C19—C20—H20A119.6
H3A—C3—H3B109.5C25—C21—C22102.8 (3)
C4—C3—H3C109.5C25—C21—C12115.3 (2)
H3A—C3—H3C109.5C22—C21—C12111.4 (2)
H3B—C3—H3C109.5C25—C21—H21A109.1
O1—C4—C2109.7 (3)C22—C21—H21A109.1
O1—C4—C1109.3 (3)C12—C21—H21A109.1
C2—C4—C1114.1 (3)C23—C22—C21107.5 (3)
O1—C4—C3101.0 (2)C23—C22—H22A110.2
C2—C4—C3111.3 (3)C21—C22—H22A110.2
C1—C4—C3110.6 (3)C23—C22—H22B110.2
O2—C5—O1127.7 (3)C21—C22—H22B110.2
O2—C5—N1123.1 (3)H22A—C22—H22B108.5
O1—C5—N1109.2 (3)C24—C23—C22104.8 (3)
C7—C6—C11120.4 (3)C24—C23—H23A110.8
C7—C6—N1130.9 (3)C22—C23—H23A110.8
C11—C6—N1108.6 (2)C24—C23—H23B110.8
C6—C7—C8118.1 (3)C22—C23—H23B110.8
C6—C7—H7A120.9H23A—C23—H23B108.9
C8—C7—H7A120.9O4—C24—C25125.2 (3)
C9—C8—C7122.1 (3)O4—C24—C23125.2 (3)
C9—C8—H8A119.0C25—C24—C23109.6 (3)
C7—C8—H8A119.0C26—C25—C24119.6 (3)
C8—C9—C10119.2 (3)C26—C25—C21131.5 (3)
C8—C9—H9A120.4C24—C25—C21108.6 (2)
C10—C9—H9A120.4C25—C26—C27128.6 (3)
C11—C10—C9119.5 (3)C25—C26—H26A115.7
C11—C10—H10A120.2C27—C26—H26A115.7
C9—C10—H10A120.2C28—C27—C32118.2 (3)
C10—C11—C6120.7 (3)C28—C27—C26122.8 (3)
C10—C11—C12128.9 (2)C32—C27—C26119.0 (3)
C6—C11—C12110.3 (3)C29—C28—C27120.4 (3)
C11—C12—C13102.6 (2)C29—C28—H28A119.8
C11—C12—C21111.6 (2)C27—C28—H28A119.8
C13—C12—C21113.7 (2)C30—C29—C28121.0 (3)
C11—C12—C14110.9 (2)C30—C29—H29A119.5
C13—C12—C14106.1 (2)C28—C29—H29A119.5
C21—C12—C14111.5 (2)C29—C30—C31118.9 (4)
O3—C13—N1125.9 (3)C29—C30—H30A120.6
O3—C13—C12126.1 (2)C31—C30—H30A120.6
N1—C13—C12108.0 (2)C32—C31—C30120.8 (4)
C15—C14—C12113.6 (2)C32—C31—H31A119.6
C15—C14—H14A108.9C30—C31—H31A119.6
C12—C14—H14A108.9C31—C32—C27120.7 (3)
C15—C14—H14B108.9C31—C32—H32A119.6
C12—C14—H14B108.9C27—C32—H32A119.6
H14A—C14—H14B107.7
C5—O1—C4—C259.8 (4)C21—C12—C14—C15178.5 (3)
C5—O1—C4—C166.0 (4)C12—C14—C15—C2093.2 (3)
C5—O1—C4—C3177.4 (3)C12—C14—C15—C1686.4 (4)
C4—O1—C5—O21.7 (6)C20—C15—C16—C170.5 (5)
C4—O1—C5—N1178.0 (3)C14—C15—C16—C17179.2 (3)
C13—N1—C5—O25.8 (6)C15—C16—C17—C180.8 (5)
C6—N1—C5—O2178.5 (4)C16—C17—C18—C190.2 (5)
C13—N1—C5—O1174.5 (3)C17—C18—C19—C200.7 (5)
C6—N1—C5—O11.2 (5)C16—C15—C20—C190.4 (5)
C13—N1—C6—C7174.9 (3)C14—C15—C20—C19179.9 (3)
C5—N1—C6—C78.9 (6)C18—C19—C20—C151.0 (5)
C13—N1—C6—C111.4 (4)C11—C12—C21—C25179.9 (2)
C5—N1—C6—C11174.7 (3)C13—C12—C21—C2564.5 (3)
C11—C6—C7—C80.9 (5)C14—C12—C21—C2555.4 (3)
N1—C6—C7—C8175.1 (3)C11—C12—C21—C2263.3 (3)
C6—C7—C8—C90.2 (5)C13—C12—C21—C2252.1 (4)
C7—C8—C9—C100.7 (6)C14—C12—C21—C22172.0 (3)
C8—C9—C10—C110.2 (5)C25—C21—C22—C2325.9 (3)
C9—C10—C11—C60.8 (5)C12—C21—C22—C2398.1 (3)
C9—C10—C11—C12179.1 (3)C21—C22—C23—C2423.3 (3)
C7—C6—C11—C101.4 (5)C22—C23—C24—O4166.2 (3)
N1—C6—C11—C10175.4 (3)C22—C23—C24—C2511.2 (3)
C7—C6—C11—C12178.5 (3)O4—C24—C25—C266.9 (5)
N1—C6—C11—C124.7 (4)C23—C24—C25—C26170.5 (3)
C10—C11—C12—C13171.8 (3)O4—C24—C25—C21177.5 (3)
C6—C11—C12—C138.3 (3)C23—C24—C25—C215.1 (3)
C10—C11—C12—C2149.8 (4)C22—C21—C25—C26156.1 (3)
C6—C11—C12—C21130.3 (3)C12—C21—C25—C2682.6 (4)
C10—C11—C12—C1475.3 (4)C22—C21—C25—C2418.9 (3)
C6—C11—C12—C14104.6 (3)C12—C21—C25—C24102.5 (3)
C5—N1—C13—O37.8 (5)C24—C25—C26—C27175.3 (3)
C6—N1—C13—O3175.8 (3)C21—C25—C26—C270.8 (5)
C5—N1—C13—C12169.7 (3)C25—C26—C27—C2844.4 (4)
C6—N1—C13—C126.7 (3)C25—C26—C27—C32135.6 (3)
C11—C12—C13—O3173.6 (3)C32—C27—C28—C291.1 (4)
C21—C12—C13—O353.0 (4)C26—C27—C28—C29178.9 (3)
C14—C12—C13—O370.0 (4)C27—C28—C29—C300.8 (4)
C11—C12—C13—N19.0 (3)C28—C29—C30—C311.3 (5)
C21—C12—C13—N1129.6 (3)C29—C30—C31—C320.1 (5)
C14—C12—C13—N1107.5 (3)C30—C31—C32—C272.0 (4)
C11—C12—C14—C1553.5 (3)C28—C27—C32—C312.5 (4)
C13—C12—C14—C1557.2 (3)C26—C27—C32—C31177.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O4i1.002.373.295 (4)153
C28—H28A···O4i0.952.473.401 (4)165
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC32H31NO4
Mr493.58
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)7.8695 (16), 11.893 (2), 28.346 (6)
V3)2652.9 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.26 × 0.12
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.525, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9151, 2967, 2651
Rint0.088
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.132, 1.05
No. of reflections2967
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O4i1.002.373.295 (4)153
C28—H28A···O4i0.952.473.401 (4)165
Symmetry code: (i) x, y1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCozzi, P. G., Benfatti, F. & Zoli, L. (2009). Angew. Chem. Int. Ed. 48, 1313–1316.  CrossRef CAS Google Scholar
First citationQiao, Z., Shafiq, Z., Liu, L., Yu, Z.-B., Zheng, Q.-Y., Wang, D. & Chen, Y.-J. (2010). Angew. Chem. Int. Ed. 49, 7294–7298.  CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, F., Liu, Y. L. & Zhou, J. A. (2010). Adv. Synth. Catal. 352, 1381–1407.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds