organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Fluoro-4-oxochromene-3-carbaldehyde

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 February 2011; accepted 24 February 2011; online 2 March 2011)

In the title compound, C10H5FO3, the chromenone ring is essentially planar, with a maximum deviation of 0.039 (1) Å. The dihedral angle between the fluoro-subsituted benzene ring and the pyran ring is 1.92 (4)°. In the crystal, mol­ecules are connected via weak inter­molecular C—H⋯O hydrogen bonds, forming supra­molecular ribbons along the b axis. These ribbons are stacked down the a axis.

Related literature

For the biological activity of chromones, see: Masami et al. (2007[Masami, K., Toru, T., Hiroyuki, K., Satoru, T., Hideki, N. & Hiroshi, S. (2007). In Vivo, 21, 829-834.]); Ellis et al. (1978[Ellis, G. P., Becket, G. J. P., Shaw, D., Wilson, H. K., Vardey, C. J. & Skidmore, I. F. (1978). J. Med. Chem. 21, 1120-1126.]); Raj et al. (2010[Raj, T., Bhatia, R. K., Kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790-794.]); Nawrot-Modranka et al. (2006[Nawrot-Modranka, J., Nawrot, E. & Graczyk, J. (2006). Eur. J. Med Chem. 41, 1301-1309.]); Gomes et al. (2010[Gomes, A., Freitas, M., Fernandes, E. & Lima, J. L. F. C. (2010). Mini-Rev. Med. Chem. 10, 1-7.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H5FO3

  • Mr = 192.14

  • Monoclinic, P 21 /c

  • a = 3.7294 (1) Å

  • b = 6.2347 (2) Å

  • c = 34.6518 (11) Å

  • β = 90.740 (1)°

  • V = 805.65 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.52 × 0.20 × 0.08 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.990

  • 20369 measured reflections

  • 2937 independent reflections

  • 2622 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.03

  • 2937 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O3i 0.93 2.39 3.2147 (11) 148
C3—H3A⋯O2ii 0.93 2.29 3.1419 (12) 152
C10—H10A⋯O3iii 0.93 2.58 3.3010 (14) 135
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y-1, z; (iii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A large number of chromones and their derivatives possess a broad range of biological activities such as anti-HIV (Masami et al., 2007), antiallergic (Ellis et al., 1978), anticancer (Raj et al., 2010), antibacterial (Nawrot-Modranka et al., 2006), antiviral and antioxidant (Gomes et al., 2010) properties. We report here the structure of a newly synthesized chromone derivative, 7-fluoro-3-formylchromone. It was synthesized by own experimental process and structure elucidation was primarily carried out by elemental analysis, 1H NMR and IR spectroscopic techniques.

The asymmetric unit of the title compound is shown in Fig. 1. The chromenone (O1/C1–C9) ring is essentially planar, with a maximum deviation of 0.039 (1) Å for atom C8. The dihedral angle between the fluoro-substituted benzene (C2–C7) ring and the pyran (O1/C1/C2/C7–C9) ring is 1.92 (4)°.

In the crystal structure (Fig. 2), adjacent molecules are connected via intermolecular C1—H1A···O3; C3—H3A···O2 and C10—H10A···O3 (Table 1) hydrogen bonds to form supramolecular ribbons along the b axis. These ribbons are stacked down the a axis.

Related literature top

For the biological activity of chromones, see: Masami et al. (2007); Ellis et al. (1978); Raj et al. (2010); Nawrot-Modranka et al. (2006); Gomes et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a well stirred solution of 4-fluoro-2-hydroxyacetophenone (6.5 mmol, 1.0 g) in DMF (4 ml), POCl3 (26.1 mmol, 2.4 ml) was added dropwise with stirring in ice bath. After 15 minutes, the ice bath was removed and the reaction mixture was continued to be stirred at room temperature for overnight. The resultant reaction mixture was then decomposed by crushed ice and the final product was collected by filtration, washed with ethanol-water and recrystallized from acetone to afford the title compound in 75% yield.

Refinement top

All the H atoms were positioned geometrically [ C–H = 0.93 Å ] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). The highest peak in the final difference map was found at a distance of 0.68 Å from C3 and the deepest hole was 0.79 Å from C2.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis, showing a hydrogen-bonded (dashed lines) network.
7-Fluoro-4-oxochromene-3-carbaldehyde top
Crystal data top
C10H5FO3F(000) = 392
Mr = 192.14Dx = 1.584 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9357 reflections
a = 3.7294 (1) Åθ = 3.3–32.6°
b = 6.2347 (2) ŵ = 0.13 mm1
c = 34.6518 (11) ÅT = 100 K
β = 90.740 (1)°Plate, yellow
V = 805.65 (4) Å30.52 × 0.20 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2937 independent reflections
Radiation source: fine-focus sealed tube2622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 32.6°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.935, Tmax = 0.990k = 99
20369 measured reflectionsl = 5152
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.3007P]
where P = (Fo2 + 2Fc2)/3
2937 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H5FO3V = 805.65 (4) Å3
Mr = 192.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.7294 (1) ŵ = 0.13 mm1
b = 6.2347 (2) ÅT = 100 K
c = 34.6518 (11) Å0.52 × 0.20 × 0.08 mm
β = 90.740 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2937 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2622 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.990Rint = 0.022
20369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.68 e Å3
2937 reflectionsΔρmin = 0.18 e Å3
127 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.11979 (18)0.11518 (12)0.279011 (18)0.02856 (16)
O10.12537 (18)0.31079 (11)0.409211 (19)0.01826 (15)
O20.6366 (2)0.87750 (12)0.38719 (2)0.02381 (17)
O30.2976 (2)0.75507 (14)0.49717 (2)0.02861 (18)
C10.1927 (2)0.45457 (15)0.43718 (2)0.01768 (17)
H1A0.12550.41940.46210.021*
C20.2137 (2)0.36246 (14)0.37194 (2)0.01554 (16)
C30.1252 (2)0.20906 (15)0.34431 (3)0.01823 (17)
H3A0.01800.07960.35080.022*
C40.2053 (2)0.25964 (16)0.30674 (3)0.01986 (18)
C50.3659 (2)0.45082 (17)0.29548 (3)0.02122 (19)
H5A0.41340.47830.26970.025*
C60.4525 (2)0.59831 (16)0.32376 (3)0.01913 (18)
H6A0.56170.72680.31700.023*
C70.3775 (2)0.55659 (14)0.36268 (2)0.01570 (16)
C80.4695 (2)0.71039 (14)0.39326 (3)0.01698 (17)
C90.3518 (2)0.64737 (15)0.43164 (3)0.01704 (17)
C100.4046 (3)0.79260 (17)0.46468 (3)0.02236 (19)
H10A0.52660.92050.46060.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0312 (3)0.0358 (4)0.0187 (3)0.0032 (3)0.0015 (2)0.0083 (2)
O10.0214 (3)0.0184 (3)0.0151 (3)0.0049 (2)0.0026 (2)0.0025 (2)
O20.0249 (3)0.0205 (3)0.0260 (3)0.0073 (3)0.0031 (3)0.0042 (3)
O30.0367 (4)0.0295 (4)0.0198 (3)0.0090 (3)0.0056 (3)0.0039 (3)
C10.0181 (4)0.0201 (4)0.0149 (3)0.0024 (3)0.0014 (3)0.0023 (3)
C20.0140 (3)0.0185 (4)0.0141 (3)0.0006 (3)0.0022 (3)0.0030 (3)
C30.0164 (4)0.0203 (4)0.0180 (4)0.0014 (3)0.0014 (3)0.0008 (3)
C40.0169 (4)0.0264 (4)0.0162 (4)0.0007 (3)0.0000 (3)0.0022 (3)
C50.0182 (4)0.0300 (5)0.0155 (4)0.0007 (3)0.0024 (3)0.0044 (3)
C60.0162 (4)0.0233 (4)0.0179 (4)0.0007 (3)0.0025 (3)0.0064 (3)
C70.0133 (3)0.0178 (4)0.0160 (3)0.0004 (3)0.0012 (3)0.0037 (3)
C80.0145 (3)0.0178 (4)0.0187 (4)0.0007 (3)0.0016 (3)0.0043 (3)
C90.0164 (3)0.0185 (4)0.0162 (3)0.0023 (3)0.0006 (3)0.0013 (3)
C100.0244 (4)0.0230 (4)0.0198 (4)0.0041 (3)0.0010 (3)0.0013 (3)
Geometric parameters (Å, º) top
F1—C41.3521 (11)C3—H3A0.9300
O1—C11.3414 (11)C4—C51.3921 (14)
O1—C21.3751 (10)C5—C61.3791 (14)
O2—C81.2334 (11)C5—H5A0.9300
O3—C101.2218 (12)C6—C71.4052 (12)
C1—C91.3551 (12)C6—H6A0.9300
C1—H1A0.9300C7—C81.4664 (13)
C2—C31.3902 (12)C8—C91.4599 (12)
C2—C71.3950 (12)C9—C101.4711 (13)
C3—C41.3759 (12)C10—H10A0.9300
C1—O1—C2118.49 (7)C5—C6—C7120.72 (9)
O1—C1—C9124.66 (8)C5—C6—H6A119.6
O1—C1—H1A117.7C7—C6—H6A119.6
C9—C1—H1A117.7C2—C7—C6118.33 (8)
O1—C2—C3115.35 (8)C2—C7—C8120.02 (8)
O1—C2—C7122.02 (8)C6—C7—C8121.65 (8)
C3—C2—C7122.63 (8)O2—C8—C9122.77 (9)
C4—C3—C2116.20 (9)O2—C8—C7122.90 (8)
C4—C3—H3A121.9C9—C8—C7114.32 (8)
C2—C3—H3A121.9C1—C9—C8120.34 (8)
F1—C4—C3117.88 (9)C1—C9—C10119.36 (8)
F1—C4—C5118.01 (8)C8—C9—C10120.30 (8)
C3—C4—C5124.11 (9)O3—C10—C9123.87 (9)
C6—C5—C4118.01 (8)O3—C10—H10A118.1
C6—C5—H5A121.0C9—C10—H10A118.1
C4—C5—H5A121.0
C2—O1—C1—C91.81 (13)C5—C6—C7—C20.03 (13)
C1—O1—C2—C3177.90 (8)C5—C6—C7—C8179.56 (8)
C1—O1—C2—C71.50 (12)C2—C7—C8—O2174.82 (8)
O1—C2—C3—C4178.80 (8)C6—C7—C8—O24.70 (14)
C7—C2—C3—C40.59 (13)C2—C7—C8—C94.23 (12)
C2—C3—C4—F1179.36 (8)C6—C7—C8—C9176.24 (8)
C2—C3—C4—C50.09 (14)O1—C1—C9—C81.12 (14)
F1—C4—C5—C6179.89 (8)O1—C1—C9—C10178.88 (9)
C3—C4—C5—C60.45 (15)O2—C8—C9—C1175.04 (9)
C4—C5—C6—C70.49 (14)C7—C8—C9—C14.01 (12)
O1—C2—C7—C6178.81 (8)O2—C8—C9—C104.95 (14)
C3—C2—C7—C60.54 (13)C7—C8—C9—C10175.99 (8)
O1—C2—C7—C81.65 (13)C1—C9—C10—O33.67 (15)
C3—C2—C7—C8178.99 (8)C8—C9—C10—O3176.33 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.932.393.2147 (11)148
C3—H3A···O2ii0.932.293.1419 (12)152
C10—H10A···O3iii0.932.583.3010 (14)135
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y1, z; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC10H5FO3
Mr192.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)3.7294 (1), 6.2347 (2), 34.6518 (11)
β (°) 90.740 (1)
V3)805.65 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.52 × 0.20 × 0.08
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.935, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
20369, 2937, 2622
Rint0.022
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.03
No. of reflections2937
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.932.393.2147 (11)148
C3—H3A···O2ii0.932.293.1419 (12)152
C10—H10A···O3iii0.932.583.3010 (14)135
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y1, z; (iii) x+1, y+2, z+1.
 

Footnotes

Additional correspondence author, e-mail: oocw@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MA, CWO and HO thank Universiti Sains Malaysia (USM) for providing necessary research facilities and RU research funding under grant No. 1001/PKIMIA/811134. MA also thanks USM for the award of post-doctoral fellowship. HKF and MH thank the Malaysian Government and USM for the Research University grant No. 1001/PFIZIK/811160. MH also thanks USM for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEllis, G. P., Becket, G. J. P., Shaw, D., Wilson, H. K., Vardey, C. J. & Skidmore, I. F. (1978). J. Med. Chem. 21, 1120–1126.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGomes, A., Freitas, M., Fernandes, E. & Lima, J. L. F. C. (2010). Mini-Rev. Med. Chem. 10, 1–7.  CrossRef CAS Google Scholar
First citationMasami, K., Toru, T., Hiroyuki, K., Satoru, T., Hideki, N. & Hiroshi, S. (2007). In Vivo, 21, 829–834.  Web of Science PubMed Google Scholar
First citationNawrot-Modranka, J., Nawrot, E. & Graczyk, J. (2006). Eur. J. Med Chem. 41, 1301–1309.  Web of Science PubMed CAS Google Scholar
First citationRaj, T., Bhatia, R. K., Kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790–794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds