organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[2-(2-Benzyl­­idene­hydrazin­yl­idene)-3,6-di­hydro-2H-1,3,4-thia­diazin-5-yl]-3-(4-meth­­oxy­phen­yl)­sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 2 March 2011; accepted 11 March 2011; online 19 March 2011)

In the title compound, C19H16N6O3S, the 3,6-dihydro-1,3,4-thia­diazine ring adopts a twist-boat conformation. The dihedral angle between the meth­oxy-substituted benzene ring and the oxadiazole ring is 71.91 (7)°. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers via pairs of inter­molecular N—H⋯N hydrogen bonds, generating R22(8) ring motifs. There is an intra­molecular C—H⋯O hydrogen bond which generates an S(6) ring motif.

Related literature

For applications of sydnones, see: Baker et al. (1949[Baker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307-314.]); Hedge et al. (2008[Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Kalluraya et al. (2003[Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355-356.]). For the definition of ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the definition of graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N6O3S

  • Mr = 408.44

  • Monoclinic, P 21 /n

  • a = 14.9236 (15) Å

  • b = 5.9331 (7) Å

  • c = 21.425 (2) Å

  • β = 99.338 (2)°

  • V = 1871.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.77 × 0.07 × 0.04 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.856, Tmax = 0.992

  • 15668 measured reflections

  • 4269 independent reflections

  • 2889 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.106

  • S = 1.03

  • 4269 reflections

  • 267 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N2i 0.87 (3) 2.04 (3) 2.905 (2) 173 (2)
C9—H9B⋯O2 0.97 2.39 3.057 (3) 126
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones constitute a well defined class of mesoionic compounds consisting of 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in the year 1949 has proved to be a fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structures and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008). Encouraged by these reports and in continuation of our research for biologically active nitrogen-containing heterocycles, a thiadiazine moiety at the 4-position of the phenylsydnone was introduced. A series of thiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with N'-[phenylmethylidene]carbonohydrazide. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

In the title compound (Fig. 1), the 3,6-dihydro-1,3,4-thiadiazine ring (C8–C10/N3/N4/S1) adopts twist-boat conformation, with puckering parameters Q = 0.5852 (18) Å, Θ = 109.67 (18)° and ϕ = 138.84 (19)° (Cremer & Pople, 1975). The dihedral angle between the methoxy-substituted benzene ring (C13–C18) and the oxadiazole ring (C11–C12/O1/N5–N6) is 71.91 (7)°. In the crystal structure (Fig. 2), centrosymmetrically related molecules are linked into dimers via pairs of intermolecular N—H···N hydrogen bonds, generating an R22(8) ring motif. There is an intramolecular C—H···O hydrogen bond which generates an S(6) ring motif.

Related literature top

For applications of sydnones, see: Baker et al. (1949); Hedge et al. (2008); Rai et al. (2008); Kalluraya et al. (2003). For the definition of ring-puckering parameters, see: Cremer & Pople (1975). For the definition of graph-set notation, see: Bernstein et al. (1995). [Please note added references and correct as necessary]

Experimental top

To a mixture of 4-bromoacetyl-3-(p-anisyl)sydnone (0.01 mol) and N'-(phenylmethylidene) carbonohydrazide (0.01 mol) in ethanol, a catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2–3 hours. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained by slow evaporation of a DMF/ethanol solution (1:2 v/v).

Refinement top

Atom H1N3 was located from a difference Fourier map and refined freely [N—H = 0.87 (2) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.
4-[2-(2-Benzylidenehydrazinylidene)-3,6-dihydro-2H-1,3,4-thiadiazin- 5-yl]-3-(4-methoxyphenyl)-1,2,3-oxadiazol-3-ylium-5-olate top
Crystal data top
C19H16N6O3SF(000) = 848
Mr = 408.44Dx = 1.449 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1908 reflections
a = 14.9236 (15) Åθ = 3.0–27.3°
b = 5.9331 (7) ŵ = 0.21 mm1
c = 21.425 (2) ÅT = 296 K
β = 99.338 (2)°Needle, orange
V = 1871.9 (4) Å30.77 × 0.07 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4269 independent reflections
Radiation source: fine-focus sealed tube2889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.856, Tmax = 0.992k = 77
15668 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.4767P]
where P = (Fo2 + 2Fc2)/3
4269 reflections(Δ/σ)max = 0.001
267 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C19H16N6O3SV = 1871.9 (4) Å3
Mr = 408.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.9236 (15) ŵ = 0.21 mm1
b = 5.9331 (7) ÅT = 296 K
c = 21.425 (2) Å0.77 × 0.07 × 0.04 mm
β = 99.338 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4269 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2889 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.992Rint = 0.062
15668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
4269 reflectionsΔρmin = 0.29 e Å3
267 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51196 (3)0.06066 (11)0.18109 (2)0.02408 (16)
O10.29051 (9)0.7158 (3)0.24009 (6)0.0274 (4)
O20.43051 (9)0.5875 (3)0.28329 (6)0.0261 (4)
O30.03886 (9)0.2449 (3)0.06332 (6)0.0302 (4)
N10.58722 (11)0.3462 (3)0.10107 (7)0.0197 (4)
N20.53281 (10)0.1897 (3)0.06401 (7)0.0203 (4)
N30.45763 (11)0.1430 (3)0.06974 (7)0.0189 (4)
N40.39709 (10)0.2843 (3)0.09276 (7)0.0185 (4)
N50.26615 (11)0.5345 (3)0.15329 (7)0.0202 (4)
N60.22703 (11)0.6811 (4)0.18620 (7)0.0264 (5)
C10.73234 (13)0.6171 (4)0.16329 (9)0.0242 (5)
H1A0.72050.48460.18370.029*
C20.79578 (14)0.7681 (5)0.19293 (10)0.0320 (6)
H2A0.82640.73690.23340.038*
C30.81414 (15)0.9647 (5)0.16313 (11)0.0339 (6)
H3A0.85741.06450.18330.041*
C40.76819 (14)1.0137 (5)0.10314 (10)0.0287 (6)
H4A0.77961.14760.08330.034*
C50.70513 (13)0.8620 (4)0.07295 (9)0.0230 (5)
H5A0.67530.89360.03230.028*
C60.68565 (13)0.6638 (4)0.10230 (8)0.0199 (5)
C70.62003 (13)0.5032 (4)0.06982 (8)0.0204 (5)
H7A0.60180.51420.02630.025*
C80.50177 (12)0.0383 (4)0.09904 (8)0.0181 (5)
C90.49414 (13)0.2359 (4)0.19578 (8)0.0221 (5)
H9A0.54700.32130.18860.026*
H9B0.48660.25660.23950.026*
C100.41158 (12)0.3220 (4)0.15311 (8)0.0191 (5)
C110.34998 (13)0.4661 (4)0.18046 (8)0.0189 (5)
C120.36813 (13)0.5822 (4)0.23935 (8)0.0220 (5)
C130.21053 (12)0.4579 (4)0.09497 (8)0.0199 (5)
C140.17263 (14)0.2452 (4)0.09297 (9)0.0240 (5)
H14A0.18570.14800.12730.029*
C150.11479 (14)0.1796 (5)0.03878 (9)0.0266 (5)
H15A0.08810.03760.03650.032*
C160.09668 (13)0.3280 (5)0.01245 (8)0.0227 (5)
C170.13592 (13)0.5395 (5)0.00988 (9)0.0247 (5)
H17A0.12420.63630.04440.030*
C180.19321 (13)0.6064 (4)0.04498 (9)0.0234 (5)
H18A0.21940.74900.04780.028*
C190.01814 (14)0.3879 (5)0.11771 (9)0.0340 (7)
H19A0.02400.31280.14960.051*
H19B0.00840.52580.10590.051*
H19C0.07290.42100.13400.051*
H1N30.4553 (16)0.161 (5)0.0291 (12)0.041 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0287 (3)0.0285 (4)0.0149 (2)0.0068 (3)0.00304 (18)0.0044 (2)
O10.0302 (8)0.0318 (12)0.0200 (6)0.0042 (8)0.0033 (6)0.0077 (7)
O20.0281 (7)0.0319 (12)0.0177 (6)0.0013 (8)0.0016 (5)0.0023 (7)
O30.0242 (7)0.0414 (13)0.0238 (7)0.0037 (8)0.0003 (6)0.0051 (7)
N10.0198 (8)0.0190 (12)0.0199 (7)0.0040 (9)0.0022 (6)0.0060 (8)
N20.0207 (8)0.0229 (13)0.0170 (7)0.0048 (9)0.0018 (6)0.0034 (8)
N30.0239 (8)0.0198 (12)0.0134 (7)0.0055 (9)0.0043 (6)0.0014 (7)
N40.0185 (8)0.0200 (12)0.0176 (7)0.0032 (8)0.0046 (6)0.0006 (7)
N50.0213 (8)0.0217 (12)0.0186 (7)0.0008 (9)0.0059 (6)0.0017 (8)
N60.0282 (9)0.0287 (14)0.0218 (8)0.0087 (10)0.0021 (7)0.0045 (8)
C10.0245 (10)0.0246 (16)0.0233 (9)0.0005 (11)0.0030 (8)0.0008 (10)
C20.0273 (11)0.0363 (19)0.0287 (10)0.0002 (13)0.0061 (9)0.0048 (11)
C30.0263 (11)0.0294 (18)0.0441 (12)0.0085 (12)0.0003 (10)0.0118 (12)
C40.0258 (10)0.0220 (16)0.0404 (11)0.0015 (11)0.0113 (9)0.0006 (11)
C50.0225 (10)0.0235 (15)0.0237 (9)0.0006 (11)0.0063 (8)0.0005 (10)
C60.0188 (9)0.0213 (15)0.0203 (9)0.0011 (10)0.0052 (7)0.0033 (9)
C70.0216 (9)0.0217 (15)0.0175 (8)0.0005 (10)0.0021 (7)0.0023 (9)
C80.0156 (8)0.0227 (14)0.0156 (8)0.0003 (10)0.0011 (7)0.0040 (9)
C90.0215 (9)0.0277 (16)0.0166 (8)0.0040 (11)0.0018 (7)0.0024 (9)
C100.0187 (9)0.0217 (15)0.0173 (8)0.0001 (10)0.0042 (7)0.0026 (9)
C110.0191 (9)0.0207 (14)0.0172 (8)0.0008 (10)0.0039 (7)0.0004 (9)
C120.0259 (10)0.0223 (15)0.0196 (9)0.0026 (11)0.0093 (8)0.0001 (9)
C130.0165 (9)0.0244 (15)0.0187 (8)0.0056 (10)0.0026 (7)0.0009 (9)
C140.0274 (10)0.0234 (15)0.0219 (9)0.0004 (12)0.0059 (8)0.0014 (10)
C150.0297 (11)0.0238 (16)0.0271 (10)0.0012 (12)0.0069 (8)0.0014 (10)
C160.0161 (9)0.0309 (17)0.0215 (9)0.0018 (11)0.0047 (7)0.0035 (10)
C170.0235 (10)0.0282 (16)0.0226 (9)0.0046 (12)0.0041 (8)0.0049 (10)
C180.0211 (9)0.0241 (16)0.0251 (9)0.0014 (11)0.0039 (8)0.0023 (10)
C190.0268 (11)0.051 (2)0.0227 (10)0.0061 (13)0.0011 (8)0.0030 (11)
Geometric parameters (Å, º) top
S1—C81.7448 (17)C4—C51.384 (3)
S1—C91.814 (3)C4—H4A0.9300
O1—N61.385 (2)C5—C61.387 (3)
O1—C121.406 (3)C5—H5A0.9300
O2—C121.212 (2)C6—C71.459 (3)
O3—C161.368 (2)C7—H7A0.9300
O3—C191.434 (3)C9—C101.500 (3)
N1—C71.289 (3)C9—H9A0.9700
N1—N21.394 (2)C9—H9B0.9700
N2—C81.303 (3)C10—C111.447 (3)
N3—C81.360 (3)C11—C121.425 (3)
N3—N41.381 (2)C13—C181.379 (3)
N3—H1N30.87 (2)C13—C141.381 (3)
N4—C101.295 (2)C14—C151.385 (3)
N5—N61.314 (2)C14—H14A0.9300
N5—C111.354 (2)C15—C161.399 (3)
N5—C131.456 (2)C15—H15A0.9300
C1—C21.381 (3)C16—C171.382 (3)
C1—C61.405 (3)C17—C181.394 (3)
C1—H1A0.9300C17—H17A0.9300
C2—C31.378 (4)C18—H18A0.9300
C2—H2A0.9300C19—H19A0.9600
C3—C41.386 (3)C19—H19B0.9600
C3—H3A0.9300C19—H19C0.9600
C8—S1—C996.30 (10)C10—C9—H9A109.5
N6—O1—C12111.11 (15)S1—C9—H9A109.5
C16—O3—C19117.3 (2)C10—C9—H9B109.5
C7—N1—N2114.88 (15)S1—C9—H9B109.5
C8—N2—N1111.09 (15)H9A—C9—H9B108.1
C8—N3—N4127.66 (15)N4—C10—C11119.49 (18)
C8—N3—H1N3119.9 (18)N4—C10—C9122.47 (18)
N4—N3—H1N3111.0 (17)C11—C10—C9117.88 (16)
C10—N4—N3116.66 (16)N5—C11—C12105.40 (18)
N6—N5—C11115.31 (16)N5—C11—C10127.34 (17)
N6—N5—C13115.21 (16)C12—C11—C10127.04 (17)
C11—N5—C13129.33 (17)O2—C12—O1120.48 (19)
N5—N6—O1104.03 (15)O2—C12—C11135.4 (2)
C2—C1—C6119.9 (2)O1—C12—C11104.12 (16)
C2—C1—H1A120.0C18—C13—C14122.39 (19)
C6—C1—H1A120.0C18—C13—N5118.4 (2)
C3—C2—C1120.6 (2)C14—C13—N5119.06 (18)
C3—C2—H2A119.7C13—C14—C15118.6 (2)
C1—C2—H2A119.7C13—C14—H14A120.7
C2—C3—C4120.1 (2)C15—C14—H14A120.7
C2—C3—H3A120.0C14—C15—C16119.7 (2)
C4—C3—H3A120.0C14—C15—H15A120.1
C5—C4—C3119.6 (2)C16—C15—H15A120.1
C5—C4—H4A120.2O3—C16—C17124.6 (2)
C3—C4—H4A120.2O3—C16—C15114.5 (2)
C4—C5—C6121.07 (19)C17—C16—C15120.89 (19)
C4—C5—H5A119.5C16—C17—C18119.3 (2)
C6—C5—H5A119.5C16—C17—H17A120.3
C5—C6—C1118.7 (2)C18—C17—H17A120.3
C5—C6—C7120.74 (18)C13—C18—C17119.0 (2)
C1—C6—C7120.5 (2)C13—C18—H18A120.5
N1—C7—C6120.39 (17)C17—C18—H18A120.5
N1—C7—H7A119.8O3—C19—H19A109.5
C6—C7—H7A119.8O3—C19—H19B109.5
N2—C8—N3118.03 (16)H19A—C19—H19B109.5
N2—C8—S1123.16 (17)O3—C19—H19C109.5
N3—C8—S1118.79 (15)H19A—C19—H19C109.5
C10—C9—S1110.72 (15)H19B—C19—H19C109.5
C7—N1—N2—C8179.44 (19)N6—N5—C11—C10174.4 (2)
C8—N3—N4—C1033.8 (3)C13—N5—C11—C1010.3 (4)
C11—N5—N6—O10.5 (2)N4—C10—C11—N514.9 (4)
C13—N5—N6—O1176.51 (17)C9—C10—C11—N5169.6 (2)
C12—O1—N6—N51.3 (2)N4—C10—C11—C12158.9 (2)
C6—C1—C2—C30.2 (3)C9—C10—C11—C1216.6 (3)
C1—C2—C3—C40.7 (4)N6—O1—C12—O2178.8 (2)
C2—C3—C4—C51.3 (3)N6—O1—C12—C111.6 (2)
C3—C4—C5—C61.4 (3)N5—C11—C12—O2179.3 (3)
C4—C5—C6—C11.0 (3)C10—C11—C12—O25.8 (4)
C4—C5—C6—C7179.12 (19)N5—C11—C12—O11.2 (2)
C2—C1—C6—C50.4 (3)C10—C11—C12—O1173.7 (2)
C2—C1—C6—C7178.52 (19)N6—N5—C13—C1871.5 (2)
N2—N1—C7—C6173.51 (17)C11—N5—C13—C18113.2 (3)
C5—C6—C7—N1164.7 (2)N6—N5—C13—C14104.6 (2)
C1—C6—C7—N117.2 (3)C11—N5—C13—C1470.7 (3)
N1—N2—C8—N3171.36 (17)C18—C13—C14—C150.3 (3)
N1—N2—C8—S110.1 (2)N5—C13—C14—C15175.62 (17)
N4—N3—C8—N2158.81 (19)C13—C14—C15—C160.5 (3)
N4—N3—C8—S119.8 (3)C19—O3—C16—C170.3 (3)
C9—S1—C8—N2160.46 (18)C19—O3—C16—C15179.43 (17)
C9—S1—C8—N321.05 (18)C14—C15—C16—O3179.88 (18)
C8—S1—C9—C1049.20 (14)C14—C15—C16—C170.1 (3)
N3—N4—C10—C11179.15 (19)O3—C16—C17—C18179.35 (17)
N3—N4—C10—C95.5 (3)C15—C16—C17—C181.0 (3)
S1—C9—C10—N448.2 (3)C14—C13—C18—C170.5 (3)
S1—C9—C10—C11136.34 (18)N5—C13—C18—C17176.44 (17)
N6—N5—C11—C120.4 (3)C16—C17—C18—C131.1 (3)
C13—N5—C11—C12174.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N2i0.87 (3)2.04 (3)2.905 (2)173 (2)
C9—H9B···O20.972.393.057 (3)126
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H16N6O3S
Mr408.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)14.9236 (15), 5.9331 (7), 21.425 (2)
β (°) 99.338 (2)
V3)1871.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.77 × 0.07 × 0.04
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.856, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
15668, 4269, 2889
Rint0.062
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 1.03
No. of reflections4269
No. of parameters267
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N2i0.87 (3)2.04 (3)2.905 (2)173 (2)
C9—H9B···O20.97002.39003.057 (3)126.00
Symmetry code: (i) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationBaker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307–314.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science PubMed Google Scholar
First citationKalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355–356.  CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds