organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-acetyl­phen­yl) selenide

aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, cLaboratoire VAREN, Département de Chimie, Faculté des Sciences Exactes, Université Mentouri-Constantine, 25000 Constantine, Algeria, and dUMR 6226 CNRS–Université Rennes 1 `Sciences Chimiques de Rennes', Equipe `Matière Condensée et Systèmes Electroactifs', 263 Avenue du Général Leclerc, F-35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 4 March 2011; accepted 16 March 2011; online 23 March 2011)

In the title compound, C16H14O2Se, the dihedral angle between the benzene rings is 87.08 (11)°. In the crystal, mol­ecules are linked into layers parallel to the bc plane by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the synthesis of the title compound, see: Henry (1943[Henry, M. L. (1943). Org. Synth. Coll. 2, 238-240.]). For biological properties and applications of organoselenide compounds, see: Clement et al. (1997[Clement, I., Lisk, D. J., Ganther, H. & Thompson, H. J. (1997). Anticancer Res. 17, 3195-3199.]); Anderson et al. (1996[Anderson, C. M., Hallberg, A. & Haegberg, T. (1996). Adv. Drug Res. 28, 65-180.]); Abdel-Hafez (2008[Abdel-Hafez, Sh. H. (2008). Eur. J. Med. Chem. 43, 1971-1977.]); Woods et al. (1993[Woods, J. A., Hadfield, J. A., McGown, A. T. & Fox, B. W. (1993). Bioorg. Med. Chem. 1, 333-340.]); Hellberg et al. (1997[Hellberg, J., Remonem, T. & Johansson, M. (1997). Synth. Meth. 84, 251-255.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O2Se

  • Mr = 317.23

  • Monoclinic, P 21 /c

  • a = 14.9290 (7) Å

  • b = 7.7223 (3) Å

  • c = 13.8345 (6) Å

  • β = 115.993 (2)°

  • V = 1433.60 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.61 mm−1

  • T = 295 K

  • 0.14 × 0.07 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 6274 measured reflections

  • 3272 independent reflections

  • 1904 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.04

  • 3272 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.47 3.272 (5) 145
C12—H12⋯O1ii 0.93 2.53 3.317 (4) 143
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: KappaCCD Reference Manual (Nonius, 1998[Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Organoselenides and derivatives are of considerable interest in academia as anti-cancer (Clement et al., 1997), anti-oxydant (Anderson et al., 1996), anti-inflammatory and antiallergic agents (Abdel-Hafez, 2008), and in industry because of their wide involvement as key intermediates for the synthesis of pharmaceuticals (Woods et al., 1993), perfumes, fine chemicals and polymers (Hellberg et al., 1997). In the framework of our ongoing program related to the synthesis and pharmaceutical evaluation of new organoselenide derivatives, we report here the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the selenium atom is linked to two phenyl acetyl groups. All bond distances and angles are within the ranges of accepted values (CSD; Allen, 2002). The molecule is not planar, as can be seen from the dihedral angle of 87.08 (11)° between the planes of the two benzene rings. In the crystal structure, molecules are linked into chains running parallel to the c axis by intermolecular C2—H2···O2 hydrogen interactions (Fig. 2, Table 1). The chains are further connected by C12—H12···O1 hydrogen bonds to form layers parallel to the bc plane (Fig. 3).

Related literature top

For the synthesis of the title compound, see: Henry (1943). For biological properties and applications of organoselenide compounds, see: Clement et al. (1997); Anderson et al. (1996); Abdel-Hafez (2008); Woods et al. (1993); Hellberg et al. (1997). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound was prepared according to a literature method (Henry, 1943). Methyl acyl chloride (2.4 mmol) and anhydrous aluminium chloride (3.0 mmol) were dissolved in dry methylene chloride (4 ml). The reaction mixture was cooled at 0–5 °C, protected from atmospheric moisture, and stirred continuously from 15 min. A solution of diphenyl selenide (1 mmol) in methylene chloride (0.5 ml) was then added dropwise over a period of 5 min. The reaction mixture was allowed to reach room temperature gradually and stirred at this temperature overnight. The solution was then washed with ice water-HCl and extracted with methylene chloride. The organic layer was separated and dried over Na2SO4. Removal of the solvent afforded the crude title product which was recrystallized from CH3OH. Some crystals suitable for X-ray diffraction analysis were carefully isolated under polarizing microscope.

Refinement top

All H atoms were localized in a Fourier difference map and introduced in calculated positions as riding on their parent C atoms, with Caryl—H = 0.93 Å, Cmethyl—H = 0.96 Å, and with Uiso(H) = 1.5Ueq(Cmethyl) or Uiso(H) = 1.2Ueq(Caryl).

Computing details top

Data collection: KappaCCD Reference Manual (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia,1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis showing the chains parallel to the c axis formed by hydrogen bonds (dashed line).
[Figure 3] Fig. 3. Crystal packing of the title compound viewed down the a axis showing a layer parallel to the bc plane. Hhydrogen bonds are shown as dashed lines.
1-{4-[(4-acetylphenylidene)selanyl]phenyl}ethanone top
Crystal data top
C16H14O2SeF(000) = 640
Mr = 317.23Dx = 1.47 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.9290 (7) ÅCell parameters from 9479 reflections
b = 7.7223 (3) Åθ = 2.9–27.5°
c = 13.8345 (6) ŵ = 2.61 mm1
β = 115.993 (2)°T = 295 K
V = 1433.60 (11) Å3Needle, white
Z = 40.14 × 0.07 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.027
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
CCD rotation images, thick slices scansh = 1919
6274 measured reflectionsk = 910
3272 independent reflectionsl = 1717
1904 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.5483P]
where P = (Fo2 + 2Fc2)/3
3272 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C16H14O2SeV = 1433.60 (11) Å3
Mr = 317.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.9290 (7) ŵ = 2.61 mm1
b = 7.7223 (3) ÅT = 295 K
c = 13.8345 (6) Å0.14 × 0.07 × 0.05 mm
β = 115.993 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1904 reflections with I > 2σ(I)
6274 measured reflectionsRint = 0.027
3272 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.04Δρmax = 0.48 e Å3
3272 reflectionsΔρmin = 0.59 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1305 (3)0.6107 (4)0.4328 (3)0.0693 (8)
C20.0389 (3)0.6402 (5)0.3498 (3)0.0807 (10)
H20.02750.61130.28010.097*
C30.0369 (3)0.7122 (5)0.3678 (3)0.0758 (9)
H30.09850.73270.31010.091*
C40.0222 (2)0.7546 (4)0.4719 (2)0.0631 (8)
C50.0705 (3)0.7225 (4)0.5546 (3)0.0699 (8)
H50.08200.74900.62470.084*
C60.1463 (3)0.6524 (4)0.5365 (3)0.0727 (9)
H60.20830.63300.59390.087*
C70.2962 (2)0.7077 (4)0.3840 (2)0.0610 (7)
C80.2529 (2)0.8705 (4)0.3634 (2)0.0643 (8)
H80.18960.88640.35940.077*
C90.3038 (2)1.0081 (4)0.3489 (2)0.0614 (7)
H90.27431.11700.33520.074*
C100.3987 (2)0.9885 (4)0.3543 (2)0.0550 (7)
C110.4414 (2)0.8249 (4)0.3750 (2)0.0618 (8)
H110.50490.80910.37930.074*
C120.3904 (2)0.6849 (4)0.3891 (3)0.0683 (8)
H120.41940.57550.40210.082*
C130.1026 (3)0.8262 (4)0.4962 (3)0.0715 (9)
C140.4524 (2)1.1412 (4)0.3393 (2)0.0613 (8)
C150.2035 (3)0.8594 (6)0.4069 (3)0.0998 (13)
H15A0.24450.91550.43500.150*
H15B0.23350.75150.37430.150*
H15C0.19740.93260.35400.150*
C160.5559 (2)1.1204 (5)0.3517 (3)0.0722 (9)
H16A0.58211.23150.34620.108*
H16B0.55571.04560.29620.108*
H16C0.59681.07070.42080.108*
O10.41088 (19)1.2823 (3)0.3175 (2)0.0912 (8)
O20.08802 (19)0.8541 (4)0.5879 (2)0.0940 (8)
Se10.23415 (3)0.50420 (5)0.40667 (4)0.08634 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.078 (2)0.068 (2)0.074 (2)0.0169 (17)0.0436 (19)0.0041 (16)
C20.092 (3)0.094 (3)0.064 (2)0.023 (2)0.041 (2)0.0082 (18)
C30.070 (2)0.095 (3)0.0593 (19)0.0153 (19)0.0254 (17)0.0016 (17)
C40.069 (2)0.0613 (18)0.0599 (19)0.0142 (15)0.0291 (17)0.0000 (14)
C50.076 (2)0.077 (2)0.0569 (18)0.0084 (18)0.0297 (17)0.0080 (16)
C60.071 (2)0.078 (2)0.070 (2)0.0039 (17)0.0309 (18)0.0003 (17)
C70.075 (2)0.0568 (17)0.0604 (17)0.0054 (15)0.0377 (15)0.0072 (14)
C80.0614 (19)0.068 (2)0.0678 (19)0.0008 (15)0.0326 (16)0.0010 (15)
C90.0596 (18)0.0568 (17)0.0649 (18)0.0086 (15)0.0245 (15)0.0081 (15)
C100.0651 (18)0.0518 (16)0.0498 (15)0.0013 (14)0.0268 (13)0.0029 (13)
C110.070 (2)0.0547 (17)0.0726 (19)0.0023 (15)0.0428 (17)0.0032 (14)
C120.088 (2)0.0492 (16)0.084 (2)0.0072 (15)0.0521 (19)0.0029 (15)
C130.074 (2)0.066 (2)0.073 (2)0.0098 (16)0.0311 (18)0.0018 (17)
C140.071 (2)0.0548 (18)0.0572 (17)0.0027 (15)0.0275 (16)0.0018 (14)
C150.073 (3)0.119 (4)0.097 (3)0.007 (2)0.028 (2)0.001 (2)
C160.079 (2)0.075 (2)0.072 (2)0.0066 (18)0.0422 (18)0.0016 (17)
O10.0897 (17)0.0572 (14)0.126 (2)0.0055 (13)0.0468 (16)0.0179 (14)
O20.0921 (18)0.116 (2)0.0801 (17)0.0134 (15)0.0433 (14)0.0069 (15)
Se10.1093 (3)0.0598 (2)0.1188 (4)0.0126 (2)0.0767 (3)0.0080 (2)
Geometric parameters (Å, º) top
C13—O21.209 (4)C2—H20.9300
C13—C41.486 (4)C3—C41.397 (4)
C13—C151.494 (5)C3—H30.9300
C14—O11.224 (4)C4—C51.378 (4)
C14—C161.488 (4)C5—C61.373 (4)
C14—C101.490 (4)C5—H50.9300
C15—H15A0.9600C6—H60.9300
C15—H15B0.9600C7—C81.385 (4)
C15—H15C0.9600C7—C121.389 (4)
C16—H16A0.9600C8—C91.371 (4)
C16—H16B0.9600C8—H80.9300
C16—H16C0.9600C9—C101.394 (4)
Se1—C71.918 (3)C9—H90.9300
Se1—C11.921 (3)C10—C111.387 (4)
C1—C21.366 (5)C11—C121.385 (4)
C1—C61.386 (4)C11—H110.9300
C2—C31.378 (5)C12—H120.9300
O2—C13—C4120.8 (3)C5—C4—C3117.4 (3)
O2—C13—C15119.3 (3)C5—C4—C13119.7 (3)
C4—C13—C15119.9 (3)C3—C4—C13122.9 (3)
O1—C14—C16120.8 (3)C6—C5—C4121.9 (3)
O1—C14—C10119.6 (3)C6—C5—H5119.1
C16—C14—C10119.6 (3)C4—C5—H5119.1
C13—C15—H15A109.5C5—C6—C1120.0 (3)
C13—C15—H15B109.5C5—C6—H6120.0
H15A—C15—H15B109.5C1—C6—H6120.0
C13—C15—H15C109.5C8—C7—C12119.7 (3)
H15A—C15—H15C109.5C8—C7—Se1124.2 (2)
H15B—C15—H15C109.5C12—C7—Se1116.0 (2)
C14—C16—H16A109.5C9—C8—C7119.7 (3)
C14—C16—H16B109.5C9—C8—H8120.1
H16A—C16—H16B109.5C7—C8—H8120.1
C14—C16—H16C109.5C8—C9—C10121.5 (3)
H16A—C16—H16C109.5C8—C9—H9119.2
H16B—C16—H16C109.5C10—C9—H9119.2
C7—Se1—C199.58 (13)C11—C10—C9118.3 (3)
C2—C1—C6119.0 (3)C11—C10—C14121.5 (3)
C2—C1—Se1120.3 (3)C9—C10—C14120.2 (3)
C6—C1—Se1120.6 (3)C12—C11—C10120.6 (3)
C1—C2—C3120.9 (3)C12—C11—H11119.7
C1—C2—H2119.5C10—C11—H11119.7
C3—C2—H2119.5C11—C12—C7120.1 (3)
C2—C3—C4120.7 (3)C11—C12—H12120.0
C2—C3—H3119.6C7—C12—H12120.0
C4—C3—H3119.6
C7—Se1—C1—C291.3 (3)C1—Se1—C7—C815.7 (3)
C7—Se1—C1—C691.3 (3)C1—Se1—C7—C12164.3 (2)
C6—C1—C2—C30.7 (5)C12—C7—C8—C90.4 (5)
Se1—C1—C2—C3178.2 (3)Se1—C7—C8—C9179.6 (2)
C1—C2—C3—C40.9 (5)C7—C8—C9—C100.0 (5)
C2—C3—C4—C50.3 (5)C8—C9—C10—C110.0 (4)
C2—C3—C4—C13177.6 (3)C8—C9—C10—C14179.4 (3)
O2—C13—C4—C51.2 (5)O1—C14—C10—C11177.4 (3)
C15—C13—C4—C5179.3 (3)C16—C14—C10—C112.9 (4)
O2—C13—C4—C3176.7 (3)O1—C14—C10—C93.3 (4)
C15—C13—C4—C31.5 (5)C16—C14—C10—C9176.4 (3)
C3—C4—C5—C60.3 (5)C9—C10—C11—C120.4 (4)
C13—C4—C5—C6178.3 (3)C14—C10—C11—C12179.7 (3)
C4—C5—C6—C10.5 (5)C10—C11—C12—C70.7 (5)
C2—C1—C6—C50.1 (5)C8—C7—C12—C110.7 (5)
Se1—C1—C6—C5177.5 (3)Se1—C7—C12—C11179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.473.272 (5)145
C12—H12···O1ii0.932.533.317 (4)143
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H14O2Se
Mr317.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)14.9290 (7), 7.7223 (3), 13.8345 (6)
β (°) 115.993 (2)
V3)1433.60 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.61
Crystal size (mm)0.14 × 0.07 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6274, 3272, 1904
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.04
No. of reflections3272
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.59

Computer programs: KappaCCD Reference Manual (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia,1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.473.272 (5)145
C12—H12···O1ii0.932.533.317 (4)143
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1, z.
 

Footnotes

Current address: Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, Oum El Bouaghi 04000, Algeria.

Acknowledgements

This work was supported by the Laboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, Algeria and UMR 6226 CNRS-Université Rennes 1 `Sciences Chimiques de Rennes', France.

References

First citationAbdel-Hafez, Sh. H. (2008). Eur. J. Med. Chem. 43, 1971–1977.  Web of Science PubMed CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnderson, C. M., Hallberg, A. & Haegberg, T. (1996). Adv. Drug Res. 28, 65–180.  CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationClement, I., Lisk, D. J., Ganther, H. & Thompson, H. J. (1997). Anticancer Res. 17, 3195–3199.  PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHellberg, J., Remonem, T. & Johansson, M. (1997). Synth. Meth. 84, 251–255.  CrossRef CAS Google Scholar
First citationHenry, M. L. (1943). Org. Synth. Coll. 2, 238–240.  Google Scholar
First citationNonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoods, J. A., Hadfield, J. A., McGown, A. T. & Fox, B. W. (1993). Bioorg. Med. Chem. 1, 333–340.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds