organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o1015-o1016

A cocrystal of 3α-hy­dr­oxy­tirucalla-8,24-dien-21-oic acid and 3β-fluoro­tirucalla-7,24-dien-21-oic acid (0.897:0.103)

aH.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, bDepartment of Chemistry, Higher Teachers Training College, University of Yaounde I, PO Box 48 Yaounde, Cameroon, cDepartment of Organic Chemistry, University of Yaounde I, PO Box 812 Yaounde, Cameroon, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 11 March 2011; accepted 25 March 2011; online 31 March 2011)

The title compound, 0.897C30H48O3.0.103C30H47O2F is a co-crystal of two triterpenes isolated from the resin of Canarium schweinfurthiiand Engl. Both triterpenes consists of four trans-fused rings having chair/half-chair/half-chair and envelope conformations. The mol­ecular conformations are stabilized by intra­molecular C—H⋯O hydrogen bonds, forming rings of S(7) graph-set motif. In the crystal, mol­ecules are linked by inter­molecular O—H⋯O and C—H⋯O inter­actions, forming sheets parallel to (001). All atoms. excepting the axially-oriented hydroxyl group in the major component and the equatorially-oriented fluorine atom in the minor component, are overlapping.

Related literature

For the crystal structure of 3α-hy­droxy­tirucalla-7,24-diene-21-oic acid, see: Mora et al. (2001[Mora, A. J., Delgado, G., Díaz de Delgado, G., Usubillaga, A., Khouri, N. & Bahsas, A. (2001). Acta Cryst. C57, 638-640.]). For the crystal structure of 3α-hy­droxy­tirucalla-8,24-diene-21-oic acid, see: Yousuf et al. (2011[Yousuf, S., Kamdem, R. S. T., Ngadjui, B. T., Wafo, P. & Fun, H.-K. (2011). Acta Cryst. E67, o937-o938.]). For the biological activity of canarium schweinfurthiiand, see: Atawodi (2010)[Atawodi, S. E. (2010). Adv. Biol. Res. 4, 314-322.]; Dongmo et al. (2010[Dongmo, P. M., Tchoumbougnang, F., Ndongson, B., Agwannande, W., Sandjon, B., Zollo, P. H. A. & Menut, C. (2010). Agri. Biol. J. N. Am. 1 pp. 606-6011.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 0.897C30H48O3·0.103C30H47O2F

  • Mr = 455.88

  • Trigonal, P 31 21

  • a = 11.2868 (9) Å

  • c = 36.446 (3) Å

  • V = 4020.9 (5) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.29 × 0.24 × 0.13 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.980, Tmax = 0.991

  • 27808 measured reflections

  • 4454 independent reflections

  • 4347 reflections with I > 2σ(I)

  • Rint = 0.105

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.153

  • S = 1.18

  • 4454 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.87 1.81 2.654 (3) 165
O3—H3A⋯O2ii 0.84 2.04 2.818 (4) 154
C12—H12B⋯O1 0.99 2.56 3.262 (4) 128
C22—H22A⋯O3iii 0.99 2.40 3.300 (5) 151
Symmetry codes: (i) [-x, -x+y, -z+{\script{1\over 3}}]; (ii) x+1, y+1, z; (iii) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is a co-crystal of two triterpenes namely 3α-hydroxytirucalla-7,24-dien-21-oic acid (or epielemadienolic acid, I) as a major component (89.7%) and 3β-fluorotirucalla- 7,24-dien-21-oic acid (II) as minor component (10.3%). The co-crystal was isolated during the phytochemical investigation of the dichloromethane soluble part of the resins of the medicinally important plant Canarium schweinfurthii of Cameroon. The plant has been used for the treatment of a wide range of ailments including malaria, fever and diarrhea (Atawodi, 2010; Dongmo et al., 2010). The refinement of the crystal structure revealed I and II as major (89.7%) and minor (10.3%) component, respectively with the difference that in II the axially oriented hydroxyl group attached to C3 has been replaced by the equatorially oriented fluorine atom. The asymmetric unit of the co-crystal (Fig. 1) consists of the mixture of I (Fig. 2) and II (Fig. 3). The crystal structure of the major component I has already been reported and the space group (P3121) and cell parameters were found to be similar to those previously reported (Mora et al.. 2001, Yousuf et al., 2011). However the minor component II was found to be a new triterpene. In both components the molecular structure showed that the trans fused rings A/B/C and D adopt chair [Q= 0.550 (4) Å, θ = 7.1 (4)° and ϕ = 88 (3)°] / half-chair [Q= 0.530 (4) Å, θ = 49.5 (4)° and ϕ = 323.5 (6)°] / half-chair [Q= 0.652 (4) Å, θ = 100.4 (4)° and ϕ = 83.8 (3)°] and envelope [Q= 0.483 (2)Å and ϕ = 10.7 (4)°] conformations respectively. The chair and envelop conformations of rings C and D are stabilized by C12—H12B···O1 intramolecular hydrogen bond. In the crystal structure, the molecules are linked to form two-dimensional molecular sheets via O3—H3A···O2, O1—H1O1···O2 and C22—H22A···O3 intermolecular hydrogen bonds (symmetry codes as in Table 1) and arranged parallel to the (001) plane (Fig.2).The absolute configuration was assigned on the basis of our recently published triterpene crystal data (Yousuf et al., 2011).

Related literature top

For the crystal structure of 3α-hydroxytirucalla-7,24-diene-21-oic acid, see: Mora et al. (2001). For the crystal structure of 3α-hydroxytirucalla-8,24-diene-21-oic acid, see: Yousuf et al. (2011). For the biological activity of canarium schweinfurthiiand, see: Atawodi (2010); Dongmo et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The resin (100 g) of Canarium schweinfurthii Engl. was collected in Yaounde, Cameroon, in May 2010 and identified by Professor Noumi, a botanist at the Department of Biology, University of Yaounde-1. A voucher specimen (HNC 25918.) was deposited at the National Herbarium of Cameroon in Yaounde. The resin (100 g) of C. schweinfurthii was allowed to dry under shade and extracted with dichloromethane. The extract (70 g) was subjected to column chromatography over silica gel (300 g, 60 × 5 cm) eluting with hexane followed by a mixture of n-hexane–EtOAc in order to increase polarity. The fractions eluted were monitored by thin layer chromatography and similar fractions were combined to give seven fraction FrA-FrG. Fraction FrA (200 mg), obtained on elution with a mixture of n-hexane-EtOAc (8:2 v/v), was subjected to further column chromatography over silica gel (70 g, 60 cm3 × 3, hexane-acetone equimolar solution) to yield crystals of the title compound. Recrystallization from n-hexane gave colourless crystals (60 mg).

Refinement top

H atoms on the C of methyl, methylene, methine and oxygen were positioned geomatrically with C–H = 0.98–1.00 Å and O–H = 0.86 Å, respectively and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(CH2, CH) and 1.5Ueq(CH3, OH). A rotating group model was applied to the methyl groups. The crystal is a twin with twin law -1 0 0 0 - 1 0 0 0 1 and BASF = 0.1815 (16). Friedel pairs were merged in the last refinement cycles.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of the major component I, showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
[Figure 3] Fig. 3. The molecular structure of the minor component II, showing 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.
[Figure 4] Fig. 4. Crystal packing of the major component of the title compound, showing a two-dimensional molecular sheet parallel to the (001) plane. Only hydrogen atoms involved in hydrogen bonding (dashed lines) are shown.
3α-Hydroxytirucalla-8,24-dien-21-oic acid– 3β-fluorotirucalla-7,24-dien-21-oic acid (0.897:0.103) top
Crystal data top
0.897C30H48O3·0.103C30H47O2FDx = 1.130 Mg m3
Mr = 455.88Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3121Cell parameters from 10350 reflections
Hall symbol: p 31 2"θ = 2.1–30.1°
a = 11.2868 (9) ŵ = 0.07 mm1
c = 36.446 (3) ÅT = 100 K
V = 4020.9 (5) Å3Block, colourles
Z = 60.29 × 0.24 × 0.13 mm
F(000) = 1506
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4454 independent reflections
Radiation source: fine-focus sealed tube4347 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
ϕ and ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.980, Tmax = 0.991k = 1315
27808 measured reflectionsl = 5138
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0644P)2 + 1.6942P]
where P = (Fo2 + 2Fc2)/3
4454 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
0.897C30H48O3·0.103C30H47O2FZ = 6
Mr = 455.88Mo Kα radiation
Trigonal, P3121µ = 0.07 mm1
a = 11.2868 (9) ÅT = 100 K
c = 36.446 (3) Å0.29 × 0.24 × 0.13 mm
V = 4020.9 (5) Å3
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4454 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4347 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.991Rint = 0.105
27808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.18Δρmax = 0.39 e Å3
4454 reflectionsΔρmin = 0.33 e Å3
316 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.1191 (2)0.0008 (2)0.12753 (5)0.0221 (4)
H1O10.11190.00770.15110.033*
O20.1057 (2)0.0844 (2)0.13357 (5)0.0230 (4)
O30.6534 (3)0.8965 (3)0.10496 (7)0.0330 (8)0.898 (8)
H3A0.72040.91580.11870.049*0.898 (8)
F10.693 (3)1.048 (3)0.1287 (7)0.042 (7)0.102 (8)
C10.4098 (3)0.7220 (4)0.14860 (7)0.0268 (7)
H1A0.36510.67720.17200.032*
H1B0.46510.68110.14030.032*
C20.5056 (4)0.8752 (4)0.15562 (8)0.0335 (8)
H2A0.45240.91530.16600.040*
H2B0.57610.88750.17380.040*
C30.5750 (3)0.9496 (4)0.12011 (8)0.0278 (7)
H3B0.63691.04870.12570.033*0.898 (8)
H3C0.60790.89250.11030.033*0.102 (8)
C40.4725 (3)0.9373 (3)0.09109 (9)0.0249 (6)
C50.3685 (3)0.7821 (3)0.08498 (8)0.0241 (6)
H5A0.42490.74440.07460.029*
C60.2630 (5)0.7560 (4)0.05513 (13)0.0500 (13)
H6A0.21070.80140.06220.060*
H6B0.31160.79790.03190.060*
C70.1654 (3)0.6078 (3)0.04875 (8)0.0257 (6)
H7A0.11040.58130.02730.031*
C80.1521 (3)0.5079 (3)0.07283 (8)0.0217 (5)
C90.2374 (4)0.5422 (3)0.10692 (8)0.0299 (7)
H9A0.31930.53670.09890.036*
C100.2987 (3)0.6922 (3)0.11976 (8)0.0206 (5)
C110.1746 (4)0.4342 (3)0.13671 (7)0.0252 (6)
H11A0.17660.45890.16170.030*
C120.1076 (4)0.2838 (3)0.12501 (7)0.0277 (7)
H12A0.01640.23230.13670.033*
H12B0.16390.24530.13420.033*
C130.0908 (3)0.2624 (3)0.08335 (7)0.0180 (5)
C140.0440 (3)0.3596 (3)0.06687 (7)0.0176 (5)
C150.0125 (4)0.3087 (3)0.02691 (8)0.0273 (6)
H15A0.09670.35170.01190.033*
H15B0.05490.33010.01590.033*
C160.0472 (3)0.1517 (3)0.02956 (7)0.0237 (6)
H16A0.00090.12210.01240.028*
H16B0.14580.10270.02340.028*
C170.0255 (3)0.1210 (3)0.06995 (7)0.0180 (5)
H17A0.11000.10000.08400.022*
C180.2267 (3)0.2887 (4)0.06574 (10)0.0294 (7)
H18A0.26460.24200.08010.044*
H18B0.29200.38720.06540.044*
H18C0.20940.25360.04060.044*
C190.1860 (4)0.7155 (4)0.13545 (15)0.0473 (11)
H19A0.13950.65110.15560.071*
H19B0.11970.70110.11610.071*
H19C0.22670.80940.14470.071*
C200.0046 (3)0.0042 (3)0.07384 (7)0.0191 (5)
H20A0.08540.01870.06270.023*
C210.0021 (3)0.0331 (3)0.11447 (7)0.0184 (5)
C220.1189 (3)0.1329 (3)0.05494 (7)0.0215 (5)
H22A0.20730.15810.06680.026*
H22B0.12490.11120.02890.026*
C230.0965 (4)0.2561 (4)0.05649 (9)0.0274 (6)
H23A0.00410.22850.04700.033*
H23B0.10060.28460.08240.033*
C240.2013 (4)0.3758 (4)0.03450 (8)0.0269 (6)
H24A0.18610.37180.00880.032*
C250.3113 (4)0.4852 (4)0.04663 (8)0.0288 (6)
C260.3528 (5)0.5105 (6)0.08649 (10)0.0518 (12)
H26A0.27750.44370.10180.078*
H26B0.37410.60310.09330.078*
H26C0.43370.50130.09030.078*
C270.4081 (5)0.5985 (4)0.02111 (11)0.0418 (9)
H27A0.37880.57220.00430.063*
H27B0.50100.61380.02420.063*
H27C0.40720.68280.02690.063*
C280.5494 (4)0.9980 (4)0.05503 (9)0.0338 (8)
H28A0.62341.09190.05930.051*
H28B0.48600.99820.03670.051*
H28C0.58800.94250.04610.051*
C290.4101 (4)1.0252 (4)0.10225 (15)0.0462 (10)
H29A0.48191.12170.10280.069*
H29B0.36890.99750.12670.069*
H29C0.33971.01270.08440.069*
C300.0905 (3)0.3400 (3)0.08398 (10)0.0267 (6)
H30A0.11710.40030.07160.040*
H30B0.07630.36270.11020.040*
H30C0.16310.24460.08100.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0217 (10)0.0320 (12)0.0167 (7)0.0165 (9)0.0016 (8)0.0012 (8)
O20.0198 (10)0.0313 (11)0.0140 (7)0.0099 (9)0.0026 (7)0.0030 (8)
O30.0163 (12)0.053 (2)0.0305 (13)0.0177 (13)0.0012 (10)0.0023 (13)
F10.040 (13)0.043 (14)0.053 (14)0.029 (11)0.008 (11)0.003 (10)
C10.0229 (14)0.0342 (17)0.0131 (10)0.0067 (13)0.0047 (10)0.0013 (11)
C20.0304 (16)0.0350 (18)0.0138 (11)0.0003 (15)0.0012 (12)0.0055 (12)
C30.0149 (12)0.0386 (18)0.0187 (11)0.0049 (13)0.0020 (11)0.0049 (12)
C40.0150 (12)0.0214 (14)0.0306 (14)0.0033 (11)0.0048 (11)0.0039 (12)
C50.0181 (13)0.0188 (13)0.0281 (13)0.0037 (11)0.0092 (11)0.0005 (11)
C60.042 (2)0.0203 (16)0.064 (3)0.0024 (15)0.035 (2)0.0129 (17)
C70.0215 (13)0.0218 (14)0.0230 (12)0.0027 (12)0.0109 (11)0.0036 (12)
C80.0145 (12)0.0195 (13)0.0246 (12)0.0036 (10)0.0066 (10)0.0032 (11)
C90.0392 (18)0.0205 (14)0.0191 (11)0.0068 (14)0.0115 (13)0.0016 (11)
C100.0146 (12)0.0222 (13)0.0229 (11)0.0078 (10)0.0029 (10)0.0015 (10)
C110.0350 (17)0.0234 (13)0.0114 (10)0.0103 (13)0.0001 (12)0.0007 (10)
C120.045 (2)0.0203 (13)0.0131 (10)0.0129 (14)0.0069 (13)0.0013 (10)
C130.0182 (12)0.0217 (13)0.0133 (9)0.0093 (11)0.0010 (9)0.0026 (9)
C140.0158 (12)0.0164 (12)0.0139 (10)0.0031 (10)0.0026 (9)0.0020 (10)
C150.0366 (17)0.0253 (14)0.0160 (11)0.0125 (14)0.0072 (12)0.0045 (11)
C160.0257 (14)0.0232 (14)0.0157 (10)0.0075 (12)0.0049 (11)0.0005 (11)
C170.0177 (12)0.0189 (12)0.0128 (9)0.0056 (10)0.0007 (9)0.0007 (9)
C180.0154 (13)0.0244 (16)0.0435 (17)0.0062 (12)0.0006 (13)0.0051 (14)
C190.0253 (17)0.0253 (17)0.090 (3)0.0118 (15)0.022 (2)0.010 (2)
C200.0190 (12)0.0225 (13)0.0137 (9)0.0088 (11)0.0023 (9)0.0024 (10)
C210.0219 (13)0.0179 (12)0.0159 (9)0.0104 (11)0.0010 (10)0.0002 (9)
C220.0256 (14)0.0227 (13)0.0142 (9)0.0107 (12)0.0007 (10)0.0005 (10)
C230.0264 (15)0.0269 (16)0.0289 (14)0.0134 (13)0.0018 (12)0.0012 (12)
C240.0357 (18)0.0276 (15)0.0185 (11)0.0166 (14)0.0020 (12)0.0010 (11)
C250.0286 (16)0.0325 (16)0.0245 (13)0.0147 (14)0.0019 (12)0.0009 (12)
C260.033 (2)0.068 (3)0.0296 (16)0.007 (2)0.0078 (16)0.0082 (19)
C270.040 (2)0.036 (2)0.0409 (18)0.0125 (18)0.0050 (17)0.0098 (17)
C280.0324 (18)0.0280 (16)0.0263 (14)0.0041 (14)0.0089 (13)0.0011 (13)
C290.0299 (19)0.0209 (16)0.084 (3)0.0097 (15)0.005 (2)0.0034 (19)
C300.0164 (13)0.0207 (14)0.0383 (16)0.0059 (12)0.0006 (12)0.0005 (13)
Geometric parameters (Å, º) top
O1—C211.312 (4)C14—C301.552 (4)
O1—H1O10.8651C15—C161.552 (5)
O2—C211.229 (3)C15—H15A0.9900
O3—C31.406 (5)C15—H15B0.9900
O3—H3A0.8400C16—C171.559 (4)
O3—H3C0.5288C16—H16A0.9900
F1—C31.27 (3)C16—H16B0.9900
C1—C21.534 (5)C17—C201.551 (4)
C1—C101.539 (4)C17—H17A1.0000
C1—H1A0.9900C18—H18A0.9800
C1—H1B0.9900C18—H18B0.9800
C2—C31.529 (4)C18—H18C0.9800
C2—H2A0.9900C19—H19A0.9800
C2—H2B0.9900C19—H19B0.9800
C3—C41.521 (4)C19—H19C0.9800
C3—H3B1.0000C20—C211.519 (3)
C3—H3C0.9601C20—C221.541 (4)
C4—C291.532 (5)C20—H20A1.0000
C4—C281.535 (5)C22—C231.533 (5)
C4—C51.562 (4)C22—H22A0.9900
C5—C61.528 (4)C22—H22B0.9900
C5—C101.568 (4)C23—C241.506 (5)
C5—H5A1.0000C23—H23A0.9900
C6—C71.491 (5)C23—H23B0.9900
C6—H6A0.9900C24—C251.314 (5)
C6—H6B0.9900C24—H24A0.9500
C7—C81.376 (4)C25—C261.509 (5)
C7—H7A0.9500C25—C271.516 (5)
C8—C91.499 (4)C26—H26A0.9800
C8—C141.516 (4)C26—H26B0.9800
C9—C111.517 (4)C26—H26C0.9800
C9—C101.547 (4)C27—H27A0.9800
C9—H9A1.0000C27—H27B0.9800
C10—C191.533 (5)C27—H27C0.9800
C11—C121.534 (4)C28—H28A0.9800
C11—H11A0.9500C28—H28B0.9800
C12—C131.534 (4)C28—H28C0.9800
C12—H12A0.9900C29—H29A0.9800
C12—H12B0.9900C29—H29B0.9800
C13—C181.548 (4)C29—H29C0.9800
C13—C171.554 (4)C30—H30A0.9800
C13—C141.556 (4)C30—H30B0.9800
C14—C151.540 (4)C30—H30C0.9800
C21—O1—H1O1107.6C14—C15—C16104.7 (2)
C3—O3—H3A109.5C14—C15—H15A110.8
C3—O3—H3C26.1C16—C15—H15A110.8
H3A—O3—H3C121.0C14—C15—H15B110.8
C2—C1—C10113.4 (3)C16—C15—H15B110.8
C2—C1—H1A108.9H15A—C15—H15B108.9
C10—C1—H1A108.9C15—C16—C17106.6 (2)
C2—C1—H1B108.9C15—C16—H16A110.4
C10—C1—H1B108.9C17—C16—H16A110.4
H1A—C1—H1B107.7C15—C16—H16B110.4
C3—C2—C1110.9 (2)C17—C16—H16B110.4
C3—C2—H2A109.5H16A—C16—H16B108.6
C1—C2—H2A109.5C20—C17—C13118.1 (2)
C3—C2—H2B109.5C20—C17—C16113.6 (2)
C1—C2—H2B109.5C13—C17—C16102.4 (2)
H2A—C2—H2B108.0C20—C17—H17A107.4
F1—C3—O382.0 (11)C13—C17—H17A107.4
F1—C3—C4131.7 (11)C16—C17—H17A107.4
O3—C3—C4107.4 (2)C13—C18—H18A109.5
F1—C3—C2107.2 (11)C13—C18—H18B109.5
O3—C3—C2110.9 (3)H18A—C18—H18B109.5
C4—C3—C2112.4 (3)C13—C18—H18C109.5
F1—C3—H3B30.0H18A—C18—H18C109.5
O3—C3—H3B108.7H18B—C18—H18C109.5
C4—C3—H3B108.7C10—C19—H19A109.5
C2—C3—H3B108.7C10—C19—H19B109.5
F1—C3—H3C95.1H19A—C19—H19B109.5
O3—C3—H3C14.0C10—C19—H19C109.5
C4—C3—H3C102.1H19A—C19—H19C109.5
C2—C3—H3C102.2H19B—C19—H19C109.5
H3B—C3—H3C122.6C21—C20—C22109.3 (2)
C3—C4—C29109.3 (3)C21—C20—C17108.2 (2)
C3—C4—C28108.7 (3)C22—C20—C17112.4 (2)
C29—C4—C28106.2 (3)C21—C20—H20A109.0
C3—C4—C5108.2 (3)C22—C20—H20A109.0
C29—C4—C5115.7 (3)C17—C20—H20A109.0
C28—C4—C5108.6 (3)O2—C21—O1122.7 (2)
C6—C5—C4113.2 (3)O2—C21—C20122.5 (3)
C6—C5—C10111.1 (3)O1—C21—C20114.8 (2)
C4—C5—C10117.6 (2)C23—C22—C20113.5 (3)
C6—C5—H5A104.5C23—C22—H22A108.9
C4—C5—H5A104.5C20—C22—H22A108.9
C10—C5—H5A104.5C23—C22—H22B108.9
C7—C6—C5113.2 (3)C20—C22—H22B108.9
C7—C6—H6A108.9H22A—C22—H22B107.7
C5—C6—H6A108.9C24—C23—C22112.5 (3)
C7—C6—H6B108.9C24—C23—H23A109.1
C5—C6—H6B108.9C22—C23—H23A109.1
H6A—C6—H6B107.7C24—C23—H23B109.1
C8—C7—C6122.4 (3)C22—C23—H23B109.1
C8—C7—H7A118.8H23A—C23—H23B107.8
C6—C7—H7A118.8C25—C24—C23127.8 (3)
C7—C8—C9121.6 (3)C25—C24—H24A116.1
C7—C8—C14120.8 (2)C23—C24—H24A116.1
C9—C8—C14117.5 (2)C24—C25—C26124.0 (3)
C8—C9—C11113.8 (3)C24—C25—C27122.0 (3)
C8—C9—C10114.3 (3)C26—C25—C27114.0 (3)
C11—C9—C10115.9 (2)C25—C26—H26A109.5
C8—C9—H9A103.6C25—C26—H26B109.5
C11—C9—H9A103.6H26A—C26—H26B109.5
C10—C9—H9A103.6C25—C26—H26C109.5
C19—C10—C1111.3 (3)H26A—C26—H26C109.5
C19—C10—C9110.2 (3)H26B—C26—H26C109.5
C1—C10—C9108.4 (3)C25—C27—H27A109.5
C19—C10—C5112.4 (3)C25—C27—H27B109.5
C1—C10—C5108.7 (2)H27A—C27—H27B109.5
C9—C10—C5105.6 (2)C25—C27—H27C109.5
C9—C11—C12117.6 (2)H27A—C27—H27C109.5
C9—C11—H11A121.2H27B—C27—H27C109.5
C12—C11—H11A121.2C4—C28—H28A109.5
C11—C12—C13113.8 (2)C4—C28—H28B109.5
C11—C12—H12A108.8H28A—C28—H28B109.5
C13—C12—H12A108.8C4—C28—H28C109.5
C11—C12—H12B108.8H28A—C28—H28C109.5
C13—C12—H12B108.8H28B—C28—H28C109.5
H12A—C12—H12B107.7C4—C29—H29A109.5
C12—C13—C18110.3 (3)C4—C29—H29B109.5
C12—C13—C17116.6 (2)H29A—C29—H29B109.5
C18—C13—C17108.3 (2)C4—C29—H29C109.5
C12—C13—C14109.3 (2)H29A—C29—H29C109.5
C18—C13—C14111.0 (2)H29B—C29—H29C109.5
C17—C13—C14101.1 (2)C14—C30—H30A109.5
C8—C14—C15117.1 (2)C14—C30—H30B109.5
C8—C14—C30106.8 (3)H30A—C30—H30B109.5
C15—C14—C30107.4 (3)C14—C30—H30C109.5
C8—C14—C13110.7 (2)H30A—C30—H30C109.5
C15—C14—C13101.5 (2)H30B—C30—H30C109.5
C30—C14—C13113.4 (2)
C10—C1—C2—C357.4 (4)C9—C11—C12—C1310.5 (5)
C1—C2—C3—F1148.0 (12)C11—C12—C13—C1881.3 (4)
C1—C2—C3—O360.1 (4)C11—C12—C13—C17154.6 (3)
C1—C2—C3—C460.2 (4)C11—C12—C13—C1440.9 (4)
F1—C3—C4—C2970.9 (16)C7—C8—C14—C1535.8 (4)
O3—C3—C4—C29165.7 (3)C9—C8—C14—C15147.8 (3)
C2—C3—C4—C2972.0 (4)C7—C8—C14—C3084.6 (4)
F1—C3—C4—C2844.6 (16)C9—C8—C14—C3091.8 (3)
O3—C3—C4—C2850.3 (4)C7—C8—C14—C13151.4 (3)
C2—C3—C4—C28172.6 (3)C9—C8—C14—C1332.2 (4)
F1—C3—C4—C5162.4 (15)C12—C13—C14—C863.1 (3)
O3—C3—C4—C567.5 (3)C18—C13—C14—C858.8 (3)
C2—C3—C4—C554.8 (4)C17—C13—C14—C8173.5 (2)
C3—C4—C5—C6177.7 (3)C12—C13—C14—C15171.9 (3)
C29—C4—C5—C659.3 (5)C18—C13—C14—C1566.2 (3)
C28—C4—C5—C659.9 (4)C17—C13—C14—C1548.5 (3)
C3—C4—C5—C1050.5 (4)C12—C13—C14—C3057.0 (3)
C29—C4—C5—C1072.5 (4)C18—C13—C14—C30178.9 (3)
C28—C4—C5—C10168.3 (3)C17—C13—C14—C3066.4 (3)
C4—C5—C6—C7178.8 (4)C8—C14—C15—C16156.0 (3)
C10—C5—C6—C746.3 (5)C30—C14—C15—C1683.9 (3)
C5—C6—C7—C814.2 (6)C13—C14—C15—C1635.4 (3)
C6—C7—C8—C91.1 (6)C14—C15—C16—C179.2 (3)
C6—C7—C8—C14175.2 (4)C12—C13—C17—C2073.7 (3)
C7—C8—C9—C11157.2 (3)C18—C13—C17—C2051.4 (3)
C14—C8—C9—C1119.2 (4)C14—C13—C17—C20168.0 (2)
C7—C8—C9—C1021.0 (5)C12—C13—C17—C16160.6 (3)
C14—C8—C9—C10155.4 (3)C18—C13—C17—C1674.3 (3)
C2—C1—C10—C1974.9 (3)C14—C13—C17—C1642.4 (3)
C2—C1—C10—C9163.8 (3)C15—C16—C17—C20149.2 (3)
C2—C1—C10—C549.5 (3)C15—C16—C17—C1320.7 (3)
C8—C9—C10—C1971.6 (4)C13—C17—C20—C2166.8 (3)
C11—C9—C10—C1963.7 (4)C16—C17—C20—C21173.3 (2)
C8—C9—C10—C1166.4 (3)C13—C17—C20—C22172.4 (2)
C11—C9—C10—C158.4 (4)C16—C17—C20—C2252.5 (3)
C8—C9—C10—C550.0 (4)C22—C20—C21—O249.3 (4)
C11—C9—C10—C5174.7 (3)C17—C20—C21—O273.4 (4)
C6—C5—C10—C1956.8 (4)C22—C20—C21—O1130.6 (3)
C4—C5—C10—C1975.9 (4)C17—C20—C21—O1106.7 (3)
C6—C5—C10—C1179.5 (3)C21—C20—C22—C2363.1 (3)
C4—C5—C10—C147.7 (4)C17—C20—C22—C23176.8 (2)
C6—C5—C10—C963.4 (4)C20—C22—C23—C24174.0 (2)
C4—C5—C10—C9163.9 (3)C22—C23—C24—C2599.7 (4)
C8—C9—C11—C1242.2 (5)C23—C24—C25—C260.2 (7)
C10—C9—C11—C12177.7 (3)C23—C24—C25—C27179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.871.812.654 (3)165
O3—H3A···O2ii0.842.042.818 (4)154
C12—H12B···O10.992.563.262 (4)128
C22—H22A···O3iii0.992.403.300 (5)151
Symmetry codes: (i) x, x+y, z+1/3; (ii) x+1, y+1, z; (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formula0.897C30H48O3·0.103C30H47O2F
Mr455.88
Crystal system, space groupTrigonal, P3121
Temperature (K)100
a, c (Å)11.2868 (9), 36.446 (3)
V3)4020.9 (5)
Z6
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.29 × 0.24 × 0.13
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.980, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
27808, 4454, 4347
Rint0.105
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.153, 1.18
No. of reflections4454
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.871.812.654 (3)165
O3—H3A···O2ii0.842.042.818 (4)154
C12—H12B···O10.992.563.262 (4)128
C22—H22A···O3iii0.992.403.300 (5)151
Symmetry codes: (i) x, x+y, z+1/3; (ii) x+1, y+1, z; (iii) x1, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RSTK thanks the H.E.J. Research Institute of Chemistry, Inter­national Center for Chemical and Biological Sciences, University of Karachi, for providing research facilities. SY thanks the School of Physics, Universiti Sains Malaysia, for providing X-ray diffraction research facilities. HKF thanks the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAtawodi, S. E. (2010). Adv. Biol. Res. 4, 314–322.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDongmo, P. M., Tchoumbougnang, F., Ndongson, B., Agwannande, W., Sandjon, B., Zollo, P. H. A. & Menut, C. (2010). Agri. Biol. J. N. Am. 1 pp. 606–6011.  Google Scholar
First citationMora, A. J., Delgado, G., Díaz de Delgado, G., Usubillaga, A., Khouri, N. & Bahsas, A. (2001). Acta Cryst. C57, 638–640.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYousuf, S., Kamdem, R. S. T., Ngadjui, B. T., Wafo, P. & Fun, H.-K. (2011). Acta Cryst. E67, o937–o938.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o1015-o1016
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds