inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cu2ZnSiS4

aDepartment of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
*Correspondence e-mail: aitkenj@duq.edu

(Received 12 February 2011; accepted 8 March 2011; online 15 March 2011)

Single crystals of Cu2ZnSiS4, dicopper(I) zinc silicon tetrasulfide, have been prepared via high-temperature solid-state synthesis. Cu2ZnSiS4 was found to have the wurtz-stannite structure type, like that of Li2CdGeS4, Li2CdSnS4, and Cu2CdSiS4. Each sulfur anion is tetra­hedrally coordinated by two Cu cations, one Si cation, and one Zn cation, forming a three-dimensional honeycomb structure. When viewed along the c axis, the atoms are aligned in rows in which each cation alternates with the sulfur anions.

Related literature

For synthetic procedures, see: Himmrich & Haeuseler (1991[Himmrich, M. & Haeuseler, H. (1991). Spectrochim. Acta, 47A, 933-942.]); Nitsche et al. (1967[Nitsche, R., Sargent, D. F. & Wild, P. (1967). J. Cryst. Growth, 1, 52-53.]); Yao et al. (1987[Yao, G. Q., Shen, H. S., Honig, E. D., Kershaw, R. & Dwight, K. (1987). Solid State Ionics, 24, 249-252.]). For related structures, see: Chapuis & Niggli (1972[Chapuis, G. & Niggli, A. (1972). Acta Cryst. B28, 1626-1628.]); Lekse et al. (2008[Lekse, J. W., Leverett, B. M., Lake, C. H. & Aitken, J. A. (2008). J. Solid State Chem. 181, 3217-3222.], 2009[Lekse, J. W., Moreau, M. A., McNerny, K. L., Yeon, J., Halasyamani, P. S. & Aitken, J. A. (2009). Inorg. Chem. 48, 7516-7518.]); Schäfer & Nitsche (1974[Schäfer, W. & Nitsche, R. (1974). Mater. Res. Bull. 9, 645-654.]). For optical properties, see: Levcenco et al. (2010[Levcenco, S., Dumcenco, D., Huang, Y. S., Arushanov, E., Tezlevan, V., Tiong, K. K. & Du, C. H. (2010). J. Appl. Phys. 108, 073508.]).

Experimental

Crystal data
  • Cu2ZnSiS4

  • Mr = 348.78

  • Orthorhombic, P m n 21

  • a = 7.4374 (1) Å

  • b = 6.4001 (1) Å

  • c = 6.1394 (1) Å

  • V = 292.24 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 12.77 mm−1

  • T = 296 K

  • 0.13 × 0.07 × 0.06 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.290, Tmax = 0.500

  • 5153 measured reflections

  • 1078 independent reflections

  • 1023 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.051

  • S = 1.14

  • 1078 reflections

  • 44 parameters

  • 1 restraint

  • Δρmax = 0.72 e Å−3

  • Δρmin = −1.01 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 449 Friedel pairs

  • Flack parameter: 0.02 (1)

Table 1
Selected bond lengths (Å)

Cu1—S2i 2.3170 (7)
Cu1—S3 2.325 (1)
Cu1—S1 2.3270 (6)
Cu1—S3ii 2.3426 (7)
Zn1—S2 2.322 (1)
Zn1—S1 2.322 (1)
Zn1—S3iii 2.3650 (7)
Zn1—S3iv 2.3650 (7)
Si1—S1 2.131 (1)
Si1—S3v 2.136 (1)
Si1—S3vi 2.136 (1)
Si1—S2vii 2.143 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iii) -x, y, z+1; (iv) x, y, z+1; (v) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (vii) x, y, z-1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2010[Palmer, D. (2010). Crystal Maker. CrystalMaker Software Ltd, Oxfordshire, England.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Cu2ZnSiS4 was prepared as crystals via iodine vapor transport reactions as early as 1967 (Nitsche et al., 1967); however, only lattice parameters were reported. Using the same synthetic method to prepare Cu2ZnSiS4, Yao et al. reported the infrared spectrum of this compound (Yao et al., 1987). Alternatively Cu2ZnSiS4 can be synthesized by grinding stoichiometric amounts of the elements and reacting them in a vibrational mill multiple times during the heating process (Himmrich & Haeuseler, 1991). More recently, the band gap of the title compound has been reported (Levcenco et al., 2010). In this paper, Cu2ZnSiS4 was prepared as relatively small single crystals using a simple high-temperature solid-state synthesis.

Cu2ZnSiS4 possesses the wurtz-stannite structure type (Schäfer, & Nitsche, 1974) like that of Li2CdGeS4, Li2CdSnS4 (Lekse et al., 2009), and Cu2CdSiS4 (Chapuis & Niggli, 1972). The asymmetric unit can be observed in Figure 1. Cu2ZnSiS4 has a diamond-like structure, where every cation is tetrahedrally coordinated with sulfur anions. The bond lengths for M—S range from 2.3170 (7)–2.3426 (7)Å for M=Cu, 2.322 (1)–2.3650 (7)Å for M=Zn, and 2.131 (1)–2.143 (3)Å for M=Si (Table 1). Every MS4 tetrahedron points in the same direction along the crystallographic b axis rendering the structure noncentrosymmetric (Fig.2). When viewed down the c axis, the ions are aligned in rows where each cation alternates with the sulfur anions (Fig.3).

Recently second harmonic generation for a couple of compounds of this structure type, Li2CdGeS4 and Li2CdSnS4, have been reported on powder samples (Lekse et al., 2009). Therefore it is of interest to further study Cu2ZnSiS4.

Related literature top

For synthetic procedures, see: Himmrich & Haeuseler (1991); Nitsche et al. (1967); Yao et al. (1987). For related structures, see: Chapuis & Niggli (1972); Lekse et al. (2008); Lekse et al. (2009); Schäfer & Nitsche (1974). For optical properties, see: Levcenco et al. (2010).

Experimental top

Cu2ZnSiS4 was prepared via high-temperature solid-state synthesis. Stoichiometric ratios of the elements were weighed and then ground for 30 min in an argon-filled glovebox using an agate mortar and pestle. The sample was placed into a graphite crucible, which was then inserted in a 12 mm outer diameter fused-silica tube. The tube was flame sealed under a vacuum of 10-3 mbar and transported to a computer-controlled furnace. The sample was heated to 1000°C in 12hrs, held at 1000°C for 168hrs and then cooled at 7.5°C/hr to room temperature. When removed from the furnace, blue rod-like crystals of approximate size 0.13 x 0.07 x 0.6 mm were found under a light microscope.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Asymetric unit of Cu2ZnSiS4 using 95% probability thermal ellipsoids.
[Figure 2] Fig. 2. Polyhedral view down the b axis of Cu2ZnSiS4 with sulfur anions as the corners of each tetrahedron.
[Figure 3] Fig. 3. Cu2ZnSiS4 viewed along the c axis showing a three-dimensional honeycomb structure where the atoms are aligned in rows with each cation alternating with sulfur anions. Color code: Cu - green, Zn - blue, Si - red, and S - yellow.
dicopper(I) zinc silicon tetrasulfide top
Crystal data top
Cu2ZnSiS4F(000) = 332
Mr = 348.78Dx = 3.964 Mg m3
Orthorhombic, Pmn21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac -2Cell parameters from 3127 reflections
a = 7.4374 (1) Åθ = 3.2–32.2°
b = 6.4001 (1) ŵ = 12.77 mm1
c = 6.1394 (1) ÅT = 296 K
V = 292.24 (1) Å3Rod, blue
Z = 20.13 × 0.07 × 0.06 mm
Data collection top
Bruker SMART APEX
diffractometer
1078 independent reflections
Radiation source: fine-focus sealed tube1023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 32.9°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1111
Tmin = 0.290, Tmax = 0.500k = 99
5153 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0067P)2 + 0.2702P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020(Δ/σ)max < 0.001
wR(F2) = 0.051Δρmax = 0.72 e Å3
S = 1.14Δρmin = 1.01 e Å3
1078 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
44 parametersExtinction coefficient: 0.025 (1)
1 restraintAbsolute structure: Flack (1983), 449 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (1)
Crystal data top
Cu2ZnSiS4V = 292.24 (1) Å3
Mr = 348.78Z = 2
Orthorhombic, Pmn21Mo Kα radiation
a = 7.4374 (1) ŵ = 12.77 mm1
b = 6.4001 (1) ÅT = 296 K
c = 6.1394 (1) Å0.13 × 0.07 × 0.06 mm
Data collection top
Bruker SMART APEX
diffractometer
1078 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1023 reflections with I > 2σ(I)
Tmin = 0.290, Tmax = 0.500Rint = 0.021
5153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0201 restraint
wR(F2) = 0.051Δρmax = 0.72 e Å3
S = 1.14Δρmin = 1.01 e Å3
1078 reflectionsAbsolute structure: Flack (1983), 449 Friedel pairs
44 parametersAbsolute structure parameter: 0.02 (1)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.24741 (3)0.17426 (4)0.33723 (8)0.0133 (1)
Zn10.00000.34747 (7)0.84124 (15)0.0211 (1)
Si10.00000.6743 (1)0.3451 (4)0.0071 (1)
S10.00000.3611 (1)0.4632 (1)0.0094 (1)
S20.00000.6784 (1)0.9961 (2)0.0089 (2)
S30.26269 (8)0.1724 (1)0.0411 (1)0.0100 (1)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0141 (1)0.0135 (1)0.0125 (2)0.0007 (1)0.0008 (1)0.0000 (2)
Zn10.0235 (2)0.0210 (2)0.0191 (3)0.0000.0000.0016 (3)
Si10.0078 (3)0.0077 (3)0.0058 (5)0.0000.0000.0007 (4)
S10.0126 (3)0.0072 (3)0.0085 (5)0.0000.0000.0011 (4)
S20.0099 (3)0.0104 (3)0.0064 (6)0.0000.0000.0001 (3)
S30.0089 (2)0.0101 (3)0.0110 (5)0.0012 (1)0.0006 (3)0.0000 (3)
Geometric parameters (Å, º) top
Cu1—S2i2.3170 (7)Si1—S3vi2.136 (1)
Cu1—S32.325 (1)Si1—S2vii2.143 (3)
Cu1—S12.3270 (6)S1—Cu1viii2.3270 (6)
Cu1—S3ii2.3426 (7)S2—Si1iv2.143 (3)
Zn1—S22.322 (1)S2—Cu1vi2.3170 (7)
Zn1—S12.322 (1)S2—Cu1v2.3170 (7)
Zn1—S3iii2.3650 (7)S3—Si1i2.136 (1)
Zn1—S3iv2.3650 (7)S3—Cu1ix2.3426 (7)
Si1—S12.131 (1)S3—Zn1vii2.3650 (7)
Si1—S3v2.136 (1)
S2i—Cu1—S3112.51 (4)Si1—S1—Zn1112.05 (8)
S2i—Cu1—S1106.98 (3)Si1—S1—Cu1viii111.72 (5)
S3—Cu1—S1111.92 (4)Zn1—S1—Cu1viii108.24 (4)
S2i—Cu1—S3ii106.09 (4)Si1—S1—Cu1111.72 (5)
S3—Cu1—S3ii108.38 (3)Zn1—S1—Cu1108.24 (4)
S1—Cu1—S3ii110.82 (4)Cu1viii—S1—Cu1104.51 (4)
S2—Zn1—S1112.01 (5)Si1iv—S2—Cu1vi115.21 (4)
S2—Zn1—S3iii107.88 (4)Si1iv—S2—Cu1v115.21 (4)
S1—Zn1—S3iii108.84 (4)Cu1vi—S2—Cu1v108.34 (5)
S2—Zn1—S3iv107.88 (4)Si1iv—S2—Zn1113.46 (6)
S1—Zn1—S3iv108.84 (4)Cu1vi—S2—Zn1101.47 (4)
S3iii—Zn1—S3iv111.40 (5)Cu1v—S2—Zn1101.47 (4)
S1—Si1—S3v108.68 (7)Si1i—S3—Cu1111.38 (7)
S1—Si1—S3vi108.68 (7)Si1i—S3—Cu1ix110.92 (5)
S3v—Si1—S3vi111.40 (7)Cu1—S3—Cu1ix108.76 (3)
S1—Si1—S2vii110.60 (9)Si1i—S3—Zn1vii111.42 (5)
S3v—Si1—S2vii108.74 (7)Cu1—S3—Zn1vii105.21 (4)
S3vi—Si1—S2vii108.74 (7)Cu1ix—S3—Zn1vii108.95 (3)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y, z+1/2; (iii) x, y, z+1; (iv) x, y, z+1; (v) x+1/2, y+1, z+1/2; (vi) x1/2, y+1, z+1/2; (vii) x, y, z1; (viii) x, y, z; (ix) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaCu2ZnSiS4
Mr348.78
Crystal system, space groupOrthorhombic, Pmn21
Temperature (K)296
a, b, c (Å)7.4374 (1), 6.4001 (1), 6.1394 (1)
V3)292.24 (1)
Z2
Radiation typeMo Kα
µ (mm1)12.77
Crystal size (mm)0.13 × 0.07 × 0.06
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.290, 0.500
No. of measured, independent and
observed [I > 2σ(I)] reflections
5153, 1078, 1023
Rint0.021
(sin θ/λ)max1)0.763
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.051, 1.14
No. of reflections1078
No. of parameters44
No. of restraints1
Δρmax, Δρmin (e Å3)0.72, 1.01
Absolute structureFlack (1983), 449 Friedel pairs
Absolute structure parameter0.02 (1)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2010), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—S2i2.3170 (7)Zn1—S3iii2.3650 (7)
Cu1—S32.325 (1)Zn1—S3iv2.3650 (7)
Cu1—S12.3270 (6)Si1—S12.131 (1)
Cu1—S3ii2.3426 (7)Si1—S3v2.136 (1)
Zn1—S22.322 (1)Si1—S3vi2.136 (1)
Zn1—S12.322 (1)Si1—S2vii2.143 (3)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y, z+1/2; (iii) x, y, z+1; (iv) x, y, z+1; (v) x+1/2, y+1, z+1/2; (vi) x1/2, y+1, z+1/2; (vii) x, y, z1.
 

Acknowledgements

Special thanks are extended to Dr Tomislav Pintauer and Dr William T. Eckenhoff. The project was funded by the National Science Foundation (CRIF-0234872) and a CAREER Award (DMR-0645304).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChapuis, G. & Niggli, A. (1972). Acta Cryst. B28, 1626–1628.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHimmrich, M. & Haeuseler, H. (1991). Spectrochim. Acta, 47A, 933–942.  CrossRef CAS Google Scholar
First citationLekse, J. W., Leverett, B. M., Lake, C. H. & Aitken, J. A. (2008). J. Solid State Chem. 181, 3217–3222.  CrossRef CAS Google Scholar
First citationLekse, J. W., Moreau, M. A., McNerny, K. L., Yeon, J., Halasyamani, P. S. & Aitken, J. A. (2009). Inorg. Chem. 48, 7516–7518.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLevcenco, S., Dumcenco, D., Huang, Y. S., Arushanov, E., Tezlevan, V., Tiong, K. K. & Du, C. H. (2010). J. Appl. Phys. 108, 073508.  CrossRef Google Scholar
First citationNitsche, R., Sargent, D. F. & Wild, P. (1967). J. Cryst. Growth, 1, 52–53.  CrossRef CAS Google Scholar
First citationPalmer, D. (2010). Crystal Maker. CrystalMaker Software Ltd, Oxfordshire, England.  Google Scholar
First citationSchäfer, W. & Nitsche, R. (1974). Mater. Res. Bull. 9, 645–654.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, G. Q., Shen, H. S., Honig, E. D., Kershaw, R. & Dwight, K. (1987). Solid State Ionics, 24, 249–252.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds