organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Hy­dr­oxy­indan-1-one

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan, and bInstitute of Chemistry, Academia Sinica, 115 Taipei, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 24 February 2011; accepted 15 March 2011; online 19 March 2011)

In the title compound, C9H8O2, an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring. The dihedral angle between the mean plane of the S(6) ring and the benzene ring is 1.89 (2)°. In the crystal, inversion-related mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming a cyclic dimers with R22(12) graph-set motif. Weak inter­molecular C—H⋯Ocarbon­yl and C—H⋯Ohy­droxy hydrogen bonds link the dimers into chains along [010], generating two C(6) motifs that overlap three C atoms, forming R22(8) ring motifs.

Related literature

For the spectroscopy and the dynamic processes related to the intramolecular proton transfer of the title compound, see: Aquino et al. (2005[Aquino, A. J. A., Lischka, H. & Hättig, C. (2005). J. Phys. Chem. A, 109, 3201-3208.]); Chou et al. (1991[Chou, P.-T., Martinez, M. L. & Studer, S. L. (1991). J. Phys. Chem. 95, 10306-10310.]); Nagaoka et al. (1984[Nagaoka, S., Hirota, N., Sumitani, M., Yoshihara, K., Lipczynska-Kochany, E. & Iwamura, H. (1984). J. Am. Chem. Soc. 106, 6913-6916.]); Nishiya et al. (1986[Nishiya, T., Yamauchi, S., Hirota, N., Fujiwara, Y. & Itoh, M. (1986). J. Am. Chem. Soc. 108, 3880-3884.]). For its preparation, see: Tadić et al. (1988[Tadić, D., Cassels, B. K. & Cavé, A. (1988). Heterocycles, 27, 407-421.]). For related structures, see: Li et al. (2007[Li, Z., Xu, J.-H., Rosli, M. M. & Fun, H.-K. (2007). Acta Cryst. E63, o3435.]); Saeed et al. (2007[Saeed, A. & Bolte, M. (2007). Acta Cryst. E63, o2757.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8O2

  • Mr = 148.15

  • Monoclinic, P 21 /n

  • a = 7.3457 (3) Å

  • b = 13.3767 (5) Å

  • c = 7.3693 (3) Å

  • β = 108.584 (2)°

  • V = 686.36 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.28 × 0.24 × 0.24 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.676, Tmax = 0.745

  • 5437 measured reflections

  • 1400 independent reflections

  • 1252 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.04

  • 1400 reflections

  • 133 parameters

  • All H-atom parameters refined

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.880 (17) 2.182 (18) 2.899 (1) 138 (1)
O2—H2⋯O1i 0.880 (17) 2.219 (14) 2.864 (1) 130 (1)
C1—H1B⋯O2ii 0.985 (14) 2.519 (14) 3.478 (1) 164 (1)
C4—H4⋯O1iii 0.964 (16) 2.527 (16) 3.467 (1) 165 (1)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The excited-state intramolecular proton transfer (ESIPT) reaction of 7-hydroxy-1-indanone (7HIN) has been investigated for past decades (Aquino et al., 2005; Nagaoka et al., 1984; Nishiya et al., 1986), which incorporates transfer of a hydroxy proton to the carbonyl oxygen through a intramolecular six-membered-ring hydrogen-bonding system (Chou et al., 1991).

The ORTEP diagram of the title compound is shown in Figure 1. The indane moiety is essentially planar (r.m.s. deviation for the nine C atoms = 0.014 Å), which is consistent with previous studies (Li, et al., 2007; Saeed et al., 2007). 7HIN possesses a intramolecular six-membered ring hydrogen bond, which generates an S(6) ring motif. The dihedral angle between the mean plane of the S(6) ring and the mean plane of the benzene ring is 1.89 (2)°. This, together with 2.182 (18) Å of O2—H2···O1 distance and 138 (1)° of O2—H2—O1 (Table 1), strongly supports the S(6) ring formation. (Bernstein et al., 1995). In the crystal structure, two inversion related molecules are linked by dual O—H···O hydrogen bonds (black dashed line) to form a cyclic dimer of R22(12) ring system (Fig. 2). Furthermore, weak intermolecular C4—H4···O1 (green dashed line) and C1—H1B···O2 (blue dashed line) hydrogen bonds link the dimers into the chains along [0 1 0], generating two C(6) motifs that overlap three C atoms (C2, C8 and C3) to form R22(8) ring motifs.

Related literature top

For the spectroscopy and dynamics of 7HIN, see: Aquino et al. (2005); Chou et al. (1991); Nagaoka et al. (1984); Nishiya et al. (1986). For the preparation of 7HIN, see: Tadić et al. (1988). For related structures, see: Li et al. (2007); Saeed et al. (2007). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

7-hydroxy-1-indanone was purchased from Sigma-Aldrich (>97% purity) and used as received without further purification. White needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of two weeks by slow evaporation from a cyclohexane solution.

Refinement top

H atoms bonded to O and C atoms were located in a difference electron density map and refined freely with respective distances of 0.88 (2) Å for O—H, and for C—H in the range 0.95 (2) - 1.01 (1) Å. The freely refined Uiso(H) were found in ranges between 0.019 (3) and 0.024 (4) Å-2 (bound to C atoms), for the hydroxy H atom a value of 0.044 (5) Å-2 was observed.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed down the a axis.
7-Hydroxyindan-1-one top
Crystal data top
C9H8O2F(000) = 312
Mr = 148.15Dx = 1.434 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2865 reflections
a = 7.3457 (3) Åθ = 3.3–26.4°
b = 13.3767 (5) ŵ = 0.10 mm1
c = 7.3693 (3) ÅT = 100 K
β = 108.584 (2)°Prism, colourless
V = 686.36 (5) Å30.28 × 0.24 × 0.24 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1400 independent reflections
Radiation source: fine-focus sealed tube1252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.676, Tmax = 0.745k = 1616
5437 measured reflectionsl = 97
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033All H-atom parameters refined
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.2373P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1400 reflectionsΔρmax = 0.28 e Å3
133 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (4)
Crystal data top
C9H8O2V = 686.36 (5) Å3
Mr = 148.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3457 (3) ŵ = 0.10 mm1
b = 13.3767 (5) ÅT = 100 K
c = 7.3693 (3) Å0.28 × 0.24 × 0.24 mm
β = 108.584 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1400 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1252 reflections with I > 2σ(I)
Tmin = 0.676, Tmax = 0.745Rint = 0.022
5437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.089All H-atom parameters refined
S = 1.04Δρmax = 0.28 e Å3
1400 reflectionsΔρmin = 0.18 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08166 (12)0.42309 (6)0.66091 (12)0.0198 (2)
O20.23230 (12)0.62427 (6)0.67482 (12)0.0187 (2)
C10.13603 (16)0.35050 (9)0.97988 (17)0.0164 (3)
C20.14647 (15)0.42957 (8)0.83566 (17)0.0147 (3)
C30.28549 (15)0.60687 (8)0.86582 (17)0.0141 (3)
C40.38227 (16)0.68108 (9)0.99239 (17)0.0158 (3)
C50.43377 (16)0.66351 (9)1.18845 (17)0.0168 (3)
C60.39144 (16)0.57428 (9)1.26467 (17)0.0168 (3)
C70.23864 (17)0.39569 (9)1.17926 (18)0.0170 (3)
C80.24541 (15)0.51652 (8)0.94170 (16)0.0139 (3)
C90.29761 (15)0.49992 (8)1.13835 (17)0.0143 (3)
H1A0.001 (2)0.3364 (10)0.9591 (19)0.019 (3)*
H1B0.1971 (19)0.2884 (10)0.9566 (19)0.019 (3)*
H20.164 (2)0.5745 (14)0.609 (2)0.044 (5)*
H40.414 (2)0.7437 (12)0.945 (2)0.026 (4)*
H50.5008 (19)0.7159 (10)1.2762 (19)0.019 (3)*
H60.425 (2)0.5649 (11)1.398 (2)0.024 (4)*
H7A0.154 (2)0.3975 (11)1.264 (2)0.024 (4)*
H7B0.354 (2)0.3563 (10)1.250 (2)0.021 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0216 (5)0.0187 (5)0.0167 (5)0.0005 (3)0.0025 (4)0.0018 (3)
O20.0228 (5)0.0171 (4)0.0146 (5)0.0036 (3)0.0038 (3)0.0006 (3)
C10.0153 (6)0.0142 (6)0.0200 (6)0.0005 (4)0.0061 (5)0.0003 (5)
C20.0113 (5)0.0144 (6)0.0187 (6)0.0021 (4)0.0051 (4)0.0008 (4)
C30.0117 (5)0.0157 (6)0.0151 (6)0.0024 (4)0.0043 (4)0.0009 (4)
C40.0140 (5)0.0130 (5)0.0204 (7)0.0002 (4)0.0057 (5)0.0005 (4)
C50.0143 (5)0.0153 (6)0.0195 (6)0.0006 (4)0.0035 (5)0.0044 (5)
C60.0159 (6)0.0198 (6)0.0141 (6)0.0024 (4)0.0037 (5)0.0003 (5)
C70.0178 (6)0.0154 (6)0.0180 (6)0.0008 (4)0.0059 (5)0.0019 (5)
C80.0110 (5)0.0140 (5)0.0170 (6)0.0017 (4)0.0050 (4)0.0010 (4)
C90.0118 (5)0.0145 (6)0.0173 (6)0.0033 (4)0.0054 (4)0.0007 (4)
Geometric parameters (Å, º) top
O1—C21.2255 (14)C4—C51.3919 (17)
O2—C31.3556 (14)C4—H40.962 (16)
O2—H20.883 (19)C5—C61.3958 (17)
C1—C21.5185 (16)C5—H50.974 (14)
C1—C71.5448 (17)C6—C91.3864 (16)
C1—H1A0.976 (15)C6—H60.945 (15)
C1—H1B0.984 (14)C7—C91.5184 (16)
C2—C81.4594 (15)C7—H7A1.011 (14)
C3—C41.3922 (16)C7—H7B0.993 (14)
C3—C81.4017 (16)C8—C91.3937 (16)
C3—O2—H2111.7 (11)C4—C5—H5118.7 (8)
C2—C1—C7105.96 (9)C6—C5—H5118.6 (8)
C2—C1—H1A107.5 (8)C9—C6—C5118.04 (11)
C7—C1—H1A112.9 (8)C9—C6—H6121.0 (9)
C2—C1—H1B109.8 (8)C5—C6—H6120.9 (9)
C7—C1—H1B112.6 (8)C9—C7—C1104.72 (9)
H1A—C1—H1B107.9 (11)C9—C7—H7A111.8 (8)
O1—C2—C8125.41 (11)C1—C7—H7A112.6 (8)
O1—C2—C1126.65 (10)C9—C7—H7B110.0 (8)
C8—C2—C1107.94 (10)C1—C7—H7B111.6 (8)
O2—C3—C4119.33 (10)H7A—C7—H7B106.3 (11)
O2—C3—C8122.32 (10)C9—C8—C3121.94 (10)
C4—C3—C8118.35 (11)C9—C8—C2110.78 (10)
C5—C4—C3119.14 (11)C3—C8—C2127.28 (11)
C5—C4—H4120.3 (9)C6—C9—C8119.80 (11)
C3—C4—H4120.5 (9)C6—C9—C7129.62 (11)
C4—C5—C6122.71 (11)C8—C9—C7110.57 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.880 (17)2.182 (18)2.899 (1)138 (1)
O2—H2···O1i0.880 (17)2.219 (14)2.864 (1)130 (1)
C1—H1B···O2ii0.985 (14)2.519 (14)3.478 (1)164 (1)
C4—H4···O1iii0.964 (16)2.527 (16)3.467 (1)165 (1)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H8O2
Mr148.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.3457 (3), 13.3767 (5), 7.3693 (3)
β (°) 108.584 (2)
V3)686.36 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.24 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.676, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
5437, 1400, 1252
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.04
No. of reflections1400
No. of parameters133
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.28, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.880 (17)2.182 (18)2.899 (1)138 (1)
O2—H2···O1i0.880 (17)2.219 (14)2.864 (1)130 (1)
C1—H1B···O2ii0.985 (14)2.519 (14)3.478 (1)164 (1)
C4—H4···O1iii0.964 (16)2.527 (16)3.467 (1)165 (1)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

Financial support from the National Science Council of the Republic of China is gratefully acknowledged.

References

First citationAquino, A. J. A., Lischka, H. & Hättig, C. (2005). J. Phys. Chem. A, 109, 3201–3208.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChou, P.-T., Martinez, M. L. & Studer, S. L. (1991). J. Phys. Chem. 95, 10306–10310.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLi, Z., Xu, J.-H., Rosli, M. M. & Fun, H.-K. (2007). Acta Cryst. E63, o3435.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagaoka, S., Hirota, N., Sumitani, M., Yoshihara, K., Lipczynska-Kochany, E. & Iwamura, H. (1984). J. Am. Chem. Soc. 106, 6913–6916.  CrossRef CAS Google Scholar
First citationNishiya, T., Yamauchi, S., Hirota, N., Fujiwara, Y. & Itoh, M. (1986). J. Am. Chem. Soc. 108, 3880–3884.  CrossRef CAS Google Scholar
First citationSaeed, A. & Bolte, M. (2007). Acta Cryst. E63, o2757.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadić, D., Cassels, B. K. & Cavé, A. (1988). Heterocycles, 27, 407–421.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds