metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m471-m472

Polymeric strontium ranelate nona­hydrate

aDepartment of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
*Correspondence e-mail: kenny@kemi.dtu.dk

(Received 9 March 2011; accepted 17 March 2011; online 23 March 2011)

The title compound, poly[[μ-aqua-tetra­aqua{μ-5-[bis­(carboxyl­atometh­yl)amino]-3-carboxyl­atomethyl-4-cyano­thio­phene-2-carboxyl­ato}distrontium(II)] tetra­hydrate], [Sr2(C12H6N2O8S)(H2O)5]·3.79H2O, crystallizes with nine- and eight-coordinated Sr2+ cations. They are bound to seven of the eight ranelate O atoms and five of the water mol­ecules. The SrO8 and SrO9 polyhedra are inter­connected by edge-sharing, forming hollow layers parallel to (011). The layers are, in turn, inter­connected by ranelate anions, forming a metal–organic framework (MOF) structure with channels along the a axis. The four water mol­ecules not coordinated to strontium are located in these channels and hydrogen bonded to each other and to the ranelates. Part of the water H atoms are disordered. The compound dehydrates very easily and 0.210 (4) water mol­ecules out of nine were lost during crystal mounting causing additional disorder in the water structure.

Related literature

For the effect of strontium on osteroporosis, see Schrooten et al. (2003)[Schrooten, I., Behets, G. J. S., Cabrera, W. E., Vercauteren, S. R., Lamberts, L. W., Verberckmoes, S. C., Bervoets, A. J., Dams, G., Goodman, W. G., De Broe, M. E. & D Haese, P. C. (2003). Kidney Intl, 63, 927-935.]. For a patent describing the synthesis and powder diffraction pattern of the title compound, see Horvath et al. (2008[Horvath, S., Demuynck, I. & Damien, G. (2008). US Patent No. 7459568.]). For related strontium carboxyl­ate structures, see, for example: Stahl et al. (2006[Stahl, K., Andersen, J. E. T. & Christgau, S. (2006). Acta Cryst. C62, m144-m149.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr2(C12H6N2O8S)(H2O)5]·3.79H2O

  • Mr = 671.84

  • Triclinic, [P \overline 1]

  • a = 8.3585 (3) Å

  • b = 12.3865 (5) Å

  • c = 12.6474 (5) Å

  • α = 109.880 (1)°

  • β = 97.148 (1)°

  • γ = 105.321 (1)°

  • V = 1154.00 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.80 mm−1

  • T = 120 K

  • 0.15 × 0.10 × 0.07 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany]) Tmin = 0.574, Tmax = 0.710

  • 17404 measured reflections

  • 6617 independent reflections

  • 5375 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.075

  • S = 1.02

  • 6617 reflections

  • 375 parameters

  • 21 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.48 e Å−3

  • Δρmin = −1.23 e Å−3

Table 1
Selected bond lengths (Å)

Sr1—O8 2.4557 (18)
Sr1—O3i 2.4782 (19)
Sr1—O5 2.5234 (16)
Sr1—O7ii 2.6149 (19)
Sr1—O25 2.652 (2)
Sr1—O22 2.6560 (19)
Sr1—O27 2.657 (2)
Sr1—O8ii 2.7834 (17)
Sr2—O6iii 2.5452 (16)
Sr2—O23 2.5921 (18)
Sr2—O2i 2.6222 (17)
Sr2—O21 2.6445 (17)
Sr2—O6 2.6628 (16)
Sr2—O2iv 2.6848 (16)
Sr2—O1iv 2.6944 (17)
Sr2—O22 2.7108 (18)
Sr2—O5 2.7228 (16)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) -x, -y, -z+1; (iv) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O21—H21A⋯O25 0.81 (2) 1.98 (2) 2.781 (3) 169 (3)
O21—H21B⋯O24iii 0.85 (2) 1.93 (2) 2.765 (3) 169 (3)
O22—H22A⋯O2i 0.81 (2) 2.16 (3) 2.761 (2) 131 (3)
O22—H22B⋯O26iv 0.82 (2) 1.94 (2) 2.755 (3) 173 (3)
O23—H23A⋯O21iii 0.81 (2) 1.96 (2) 2.766 (3) 174 (4)
O23—H23B⋯O26i 0.80 (2) 2.11 (2) 2.867 (3) 159 (3)
O24—H24A⋯O1v 0.82 (2) 2.03 (2) 2.760 (3) 148 (3)
O24—H24B⋯O4 0.84 (2) 1.93 (2) 2.756 (3) 172 (3)
O25—H25A⋯N1ii 0.82 (2) 2.15 (2) 2.898 (3) 152 (3)
O25—H25B⋯O27ii 0.80 (2) 1.93 (2) 2.648 (3) 150 (4)
O26—H26A⋯O28vi 0.85 (2) 1.90 (2) 2.731 (3) 164 (5)
O26—H26C⋯N1 0.85 (2) 2.37 (4) 3.108 (3) 146 (5)
O27—H27A⋯O4i 0.83 (2) 1.79 (2) 2.615 (3) 172 (4)
O27—H27B⋯O29vii 0.82 (2) 1.94 (2) 2.727 (4) 160 (4)
O28—H28A⋯O24v 0.80 (2) 1.97 (2) 2.756 (3) 167 (4)
O28—H28B⋯O28viii 0.82 (2) 2.02 (2) 2.835 (4) 174 (8)
O28—H28C⋯O29 0.82 (2) 2.04 (3) 2.836 (4) 164 (7)
O29—H29A⋯O7 0.83 (2) 1.78 (2) 2.595 (3) 168 (7)
O29—H29B⋯O28 0.83 (2) 2.03 (3) 2.836 (4) 164 (7)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) -x, -y, -z+1; (iv) x, y-1, z; (v) -x, -y+1, -z+1; (vi) -x+1, -y+2, -z+2; (vii) x+1, y, z; (viii) -x, -y+2, -z+2.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and ATOMS (Dowty, 2000[Dowty, E. (2000). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years it has been found that Sr has a significant influence on the development and growth of bone and the effect of dose on bone structure has been investigated in great detail (Schrooten et al. 2003). Strontium ranelate (5-[bis(carboxymethyl) amino]-3-carboxymetyl- 4-cyano-2-thiophenecarboxylate) is one promising pharmaceutical compound for treating osteoporosis marketed as ProtelosR by Servier (Horvath et al., 2008). Strontium ranelate is known to form several hydrates with totally nine, eight, seven or four waters (Horvath et al., 2008). The initial dehydration observed here results from an expulsion of O27 or O29 and migration of the remaining water to site O30. As a consequence Sr1 is partially seven-coordinated (c.f. Table 1). The water hydrogen sites connected to O26, O28 and O29 are disordered. In essence, the alternating hydrogen bonding scheme between O28 and O29 is transmitted to a partial O26 - O28 hydrogen bond, and leaves H26B and H29C without hydrogen bond acceptors (c.f. Table 2).

Related literature top

For the effect of strontium on osteroporosis, see Schrooten et al. (2003). For a patent describing the synthesis and powder diffraction pattern, see Horvath et al. (2008). For related strontium carboxylate structures, see, for example: Stahl et al. (2006).

Experimental top

Strontium ranelate nona hydrate of 97% purity (Clauson-Kaas A/S) was recrystallized at different temperatures. Recrystallization at temperatures above 353 K appeared to produce the crystals of better quality. Upon cooling to room temperature large crystals of millimeter dimensions were obtained in the saturated solution. However, when the crystals were removed from the solution they rapidly degraded into smaller units of micron dimension. The smaller crystals showed out to contain less crystal water, as compared to the large crystals, presumably seven or five water molecules per formula unit. Thus, wet crystals were quickly transferred to the goniometer for X-ray data collection at 120 K. Several crystal were tried before an acceptable structure refinement was achieved. For all cases of lower quality data the SOF of O30 was about 0.3, confirming its role in the initial dehydration of strontium ranelate and the deterioration of the crystals.

Refinement top

The H atoms of the CH2 groups were placed in calculated positions with C—H = 0.99, and refined as riding atoms. The H atoms of the water molecules were located in difference Fourier maps and refined with restrained O—H distances of 0.82 (2) Å. The H atoms of the partially occupied O30 (SOF=0.210 (4)) could not be located. The H displacement parameters were set to 1.2 (CH2) or 1.5 (H2O) times Ueq of the corresponding C or O atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing 50% probability displacement ellipsoids and the atomic numbering. Hydrogen atoms are represented by circles of arbitrary size and shows one consistent set of water H atoms.
[Figure 2] Fig. 2. The crystal packing of (I) viewed down the a-axis. Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. The polyhedral layer of (I) viewed down the (011) direction.
Poly[[µ-aqua-tetraaqua{µ-5-[bis(carboxylatomethyl)amino]-3- carboxylatomethyl-4-cyanothiophene-2-carboxylato}distrontium(II)] tetrahydrate] top
Crystal data top
[Sr2(C12H6N2O8S)(H2O)5]·3.79H2OZ = 2
Mr = 671.84F(000) = 671.8
Triclinic, P1Dx = 1.933 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3585 (3) ÅCell parameters from 6752 reflections
b = 12.3865 (5) Åθ = 2.6–30.6°
c = 12.6474 (5) ŵ = 4.80 mm1
α = 109.880 (1)°T = 120 K
β = 97.148 (1)°Tabular, colorless
γ = 105.321 (1)°0.15 × 0.10 × 0.07 mm
V = 1154.00 (8) Å3
Data collection top
Bruker SMART APEX
diffractometer
6617 independent reflections
Radiation source: fine-focus sealed tube5375 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scan, frame data integrationθmax = 30.9°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1212
Tmin = 0.574, Tmax = 0.710k = 1717
17404 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0383P)2]
where P = (Fo2 + 2Fc2)/3
6617 reflections(Δ/σ)max = 0.002
375 parametersΔρmax = 1.48 e Å3
21 restraintsΔρmin = 1.23 e Å3
Crystal data top
[Sr2(C12H6N2O8S)(H2O)5]·3.79H2Oγ = 105.321 (1)°
Mr = 671.84V = 1154.00 (8) Å3
Triclinic, P1Z = 2
a = 8.3585 (3) ÅMo Kα radiation
b = 12.3865 (5) ŵ = 4.80 mm1
c = 12.6474 (5) ÅT = 120 K
α = 109.880 (1)°0.15 × 0.10 × 0.07 mm
β = 97.148 (1)°
Data collection top
Bruker SMART APEX
diffractometer
6617 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
5375 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 0.710Rint = 0.032
17404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03321 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.48 e Å3
6617 reflectionsΔρmin = 1.23 e Å3
375 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr10.52281 (3)0.38668 (2)0.836097 (18)0.01665 (6)
Sr20.26745 (3)0.029136 (18)0.557006 (17)0.01072 (6)
S10.13839 (8)0.40229 (5)0.50122 (5)0.01584 (12)
C10.1878 (3)0.4919 (2)0.6477 (2)0.0160 (5)
C20.3059 (3)0.6056 (2)0.6709 (2)0.0183 (5)
C30.3561 (3)0.6182 (2)0.5698 (2)0.0168 (5)
C40.2738 (3)0.5158 (2)0.4721 (2)0.0169 (5)
C50.3781 (4)0.7012 (2)0.7831 (2)0.0237 (6)
N10.4382 (4)0.7807 (2)0.8712 (2)0.0373 (7)
C60.4862 (3)0.7305 (2)0.5736 (2)0.0187 (5)
H6A0.54310.70770.50910.022*
H6B0.57450.76630.64700.022*
C70.4063 (3)0.8258 (2)0.5642 (2)0.0140 (4)
O10.3026 (2)0.85078 (16)0.62454 (15)0.0218 (4)
O20.4503 (2)0.87870 (15)0.49792 (15)0.0168 (3)
C80.2835 (3)0.4871 (2)0.3498 (2)0.0208 (5)
O30.3592 (3)0.57144 (17)0.32159 (17)0.0293 (4)
O40.2095 (3)0.37659 (16)0.28052 (16)0.0253 (4)
N20.1127 (3)0.44571 (17)0.71912 (16)0.0138 (4)
C90.0097 (3)0.3176 (2)0.6705 (2)0.0147 (4)
H9A0.08500.30360.60670.018*
H9B0.04150.29780.73090.018*
C100.1092 (3)0.2303 (2)0.62385 (19)0.0125 (4)
O50.2644 (2)0.25859 (14)0.67064 (14)0.0150 (3)
O60.0259 (2)0.13041 (14)0.54187 (13)0.0141 (3)
C110.0937 (3)0.5241 (2)0.82968 (19)0.0167 (5)
H11A0.02070.48700.83980.020*
H11B0.09770.60330.82590.020*
C120.2261 (3)0.5475 (2)0.9357 (2)0.0177 (5)
O70.2069 (3)0.60995 (17)1.03249 (15)0.0266 (4)
O80.3467 (2)0.50536 (16)0.92535 (15)0.0213 (4)
O210.1336 (2)0.04188 (16)0.73788 (14)0.0177 (4)
H21A0.195 (3)0.096 (2)0.7968 (19)0.027*
H21B0.111 (4)0.021 (2)0.753 (3)0.027*
O220.5486 (2)0.16837 (18)0.73157 (15)0.0218 (4)
H22A0.608 (4)0.162 (3)0.686 (2)0.033*
H22B0.572 (4)0.129 (3)0.768 (3)0.033*
O230.2011 (2)0.02488 (19)0.33592 (16)0.0246 (4)
H23A0.102 (3)0.035 (3)0.311 (3)0.037*
H23B0.249 (4)0.006 (3)0.291 (2)0.037*
O240.0724 (3)0.17943 (17)0.24069 (16)0.0233 (4)
H24A0.138 (4)0.198 (3)0.282 (3)0.035*
H24B0.015 (3)0.240 (2)0.260 (3)0.035*
O250.3787 (3)0.23012 (19)0.92443 (16)0.0299 (5)
H25A0.430 (4)0.204 (3)0.965 (3)0.045*
H25B0.316 (4)0.259 (3)0.958 (3)0.045*
O260.6112 (3)1.0182 (2)0.83803 (19)0.0321 (5)
H26A0.686 (5)1.030 (5)0.897 (3)0.048*0.67
H26B0.549 (6)1.037 (5)0.885 (4)0.048*0.67
H26C0.532 (5)0.952 (3)0.823 (5)0.048*0.67
O270.7186 (3)0.6180 (2)0.91336 (19)0.0194 (6)0.790 (4)
H27A0.740 (5)0.626 (4)0.854 (2)0.029*0.79
H27B0.811 (4)0.640 (4)0.959 (3)0.029*0.79
O280.1058 (3)0.92663 (19)0.99457 (17)0.0302 (5)
H28A0.111 (5)0.896 (3)0.9290 (18)0.045*
H28B0.041 (8)0.966 (6)1.000 (7)0.045*0.50
H28C0.059 (8)0.873 (5)1.015 (6)0.045*0.50
O290.0120 (4)0.7429 (3)1.0829 (2)0.0287 (7)0.790 (4)
H29A0.073 (7)0.701 (5)1.058 (6)0.043*0.53
H29B0.045 (9)0.806 (4)1.071 (6)0.043*0.53
H29C0.024 (10)0.732 (8)1.016 (3)0.043*0.53
O300.0951 (12)0.6963 (8)0.9739 (8)0.023 (2)*0.210 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01489 (12)0.02075 (12)0.00915 (10)0.00204 (9)0.00133 (8)0.00307 (9)
Sr20.01086 (11)0.01068 (10)0.00940 (10)0.00340 (8)0.00144 (7)0.00290 (8)
S10.0195 (3)0.0115 (3)0.0149 (3)0.0032 (2)0.0029 (2)0.0051 (2)
C10.0158 (12)0.0144 (11)0.0177 (11)0.0064 (9)0.0008 (9)0.0067 (9)
C20.0197 (12)0.0133 (11)0.0215 (12)0.0061 (10)0.0004 (10)0.0078 (10)
C30.0133 (11)0.0122 (11)0.0255 (12)0.0049 (9)0.0006 (9)0.0087 (10)
C40.0164 (12)0.0138 (11)0.0241 (12)0.0060 (9)0.0057 (10)0.0105 (10)
C50.0287 (15)0.0139 (12)0.0256 (13)0.0010 (11)0.0027 (11)0.0120 (11)
N10.0485 (17)0.0204 (12)0.0261 (13)0.0078 (11)0.0058 (12)0.0083 (10)
C60.0129 (11)0.0152 (12)0.0301 (13)0.0046 (9)0.0032 (10)0.0122 (10)
C70.0120 (11)0.0104 (10)0.0167 (11)0.0015 (8)0.0008 (9)0.0042 (9)
O10.0269 (10)0.0231 (9)0.0262 (9)0.0140 (8)0.0147 (8)0.0152 (8)
O20.0174 (9)0.0160 (8)0.0201 (8)0.0055 (7)0.0065 (7)0.0101 (7)
C80.0220 (13)0.0200 (13)0.0260 (13)0.0100 (11)0.0119 (11)0.0111 (11)
O30.0386 (12)0.0209 (10)0.0317 (11)0.0058 (9)0.0167 (9)0.0141 (9)
O40.0348 (11)0.0179 (9)0.0252 (10)0.0072 (8)0.0152 (8)0.0092 (8)
N20.0185 (10)0.0084 (9)0.0109 (9)0.0030 (8)0.0002 (7)0.0016 (7)
C90.0142 (11)0.0121 (11)0.0150 (11)0.0029 (9)0.0014 (9)0.0038 (9)
C100.0157 (11)0.0109 (10)0.0106 (10)0.0022 (9)0.0027 (8)0.0056 (8)
O50.0125 (8)0.0144 (8)0.0140 (8)0.0033 (6)0.0023 (6)0.0032 (6)
O60.0140 (8)0.0104 (8)0.0127 (8)0.0016 (6)0.0014 (6)0.0016 (6)
C110.0195 (12)0.0164 (11)0.0125 (11)0.0096 (10)0.0008 (9)0.0017 (9)
C120.0235 (13)0.0113 (11)0.0151 (11)0.0023 (9)0.0003 (9)0.0055 (9)
O70.0378 (12)0.0255 (10)0.0124 (8)0.0109 (9)0.0040 (8)0.0028 (7)
O80.0213 (9)0.0194 (9)0.0199 (9)0.0077 (7)0.0036 (7)0.0056 (7)
O210.0200 (9)0.0184 (9)0.0120 (8)0.0043 (7)0.0025 (7)0.0046 (7)
O220.0186 (9)0.0305 (10)0.0139 (9)0.0109 (8)0.0024 (7)0.0043 (8)
O230.0172 (9)0.0421 (12)0.0195 (9)0.0106 (9)0.0070 (8)0.0164 (9)
O240.0270 (11)0.0201 (9)0.0198 (9)0.0028 (8)0.0098 (8)0.0066 (8)
O250.0413 (13)0.0248 (11)0.0151 (9)0.0009 (9)0.0046 (9)0.0060 (8)
O260.0299 (12)0.0322 (12)0.0283 (11)0.0011 (10)0.0029 (9)0.0131 (10)
O270.0243 (13)0.0161 (11)0.0129 (11)0.0003 (9)0.0054 (9)0.0042 (9)
O280.0422 (14)0.0295 (12)0.0163 (9)0.0133 (10)0.0022 (9)0.0060 (9)
O290.0313 (15)0.0330 (15)0.0249 (14)0.0161 (12)0.0070 (11)0.0107 (12)
Geometric parameters (Å, º) top
Sr1—O82.4557 (18)N2—C111.462 (3)
Sr1—O3i2.4782 (19)C9—C101.540 (3)
Sr1—O52.5234 (16)C9—H9A0.9900
Sr1—O7ii2.6149 (19)C9—H9B0.9900
Sr1—O252.652 (2)C10—O51.258 (3)
Sr1—O222.6560 (19)C10—O61.258 (3)
Sr1—O272.657 (2)C11—C121.517 (3)
Sr1—O8ii2.7834 (17)C11—H11A0.9900
Sr2—O6iii2.5452 (16)C11—H11B0.9900
Sr2—O232.5921 (18)C12—O81.253 (3)
Sr2—O2i2.6222 (17)C12—O71.262 (3)
Sr2—O212.6445 (17)O21—H21A0.809 (18)
Sr2—O62.6628 (16)O21—H21B0.845 (17)
Sr2—O2iv2.6848 (16)O22—H22A0.808 (18)
Sr2—O1iv2.6944 (17)O22—H22B0.819 (17)
Sr2—O222.7108 (18)O23—H23A0.807 (18)
Sr2—O52.7228 (16)O23—H23B0.798 (18)
S1—C11.733 (2)O24—H24A0.823 (18)
S1—C41.735 (2)O24—H24B0.837 (18)
C1—N21.358 (3)O25—H25A0.819 (18)
C1—C21.398 (3)O25—H25B0.796 (18)
C2—C51.431 (4)O26—H26A0.850 (19)
C2—C31.439 (4)O26—H26B0.849 (19)
C3—C41.368 (3)O26—H26C0.85 (2)
C3—C61.504 (3)O27—H27A0.827 (19)
C4—C81.482 (4)O27—H27B0.823 (19)
C5—N11.148 (3)O28—H28A0.799 (18)
C6—C71.532 (3)O28—H28B0.82 (2)
C6—H6A0.9900O28—H28C0.82 (2)
C6—H6B0.9900O29—H29A0.83 (2)
C7—O11.256 (3)O29—H29B0.83 (2)
C7—O21.261 (3)O29—H29C0.82 (2)
C8—O31.257 (3)O27—O30v1.534 (10)
C8—O41.275 (3)O29—O301.383 (10)
N2—C91.456 (3)
O8—Sr1—O3i117.69 (6)O22—Sr2—O567.10 (5)
O8—Sr1—O587.39 (5)C1—S1—C492.44 (12)
O3i—Sr1—O581.32 (6)N2—C1—C2130.8 (2)
O8—Sr1—O7ii118.97 (6)N2—C1—S1119.08 (17)
O3i—Sr1—O7ii101.51 (7)C2—C1—S1110.09 (19)
O5—Sr1—O7ii146.34 (5)C1—C2—C5125.2 (2)
O8—Sr1—O2585.98 (7)C1—C2—C3113.4 (2)
O3i—Sr1—O25150.13 (6)C5—C2—C3121.3 (2)
O5—Sr1—O2581.94 (6)C4—C3—C2111.8 (2)
O7ii—Sr1—O2579.69 (7)C4—C3—C6124.9 (2)
O8—Sr1—O22147.38 (6)C2—C3—C6123.3 (2)
O3i—Sr1—O2283.58 (6)C3—C4—C8131.1 (2)
O5—Sr1—O2270.82 (5)C3—C4—S1112.22 (19)
O7ii—Sr1—O2276.14 (6)C8—C4—S1116.67 (18)
O25—Sr1—O2267.59 (6)N1—C5—C2177.5 (3)
O8—Sr1—O2774.49 (7)C3—C6—C7112.26 (19)
O3i—Sr1—O2770.14 (7)C3—C6—H6A109.2
O5—Sr1—O27132.72 (6)C7—C6—H6A109.2
O7ii—Sr1—O2777.82 (7)C3—C6—H6B109.2
O25—Sr1—O27137.67 (6)C7—C6—H6B109.2
O22—Sr1—O27138.07 (7)H6A—C6—H6B107.9
O8—Sr1—O8ii70.87 (6)O1—C7—O2122.2 (2)
O3i—Sr1—O8ii130.40 (6)O1—C7—C6119.1 (2)
O5—Sr1—O8ii147.09 (6)O2—C7—C6118.7 (2)
O7ii—Sr1—O8ii48.19 (5)O3—C8—O4125.2 (2)
O25—Sr1—O8ii72.41 (6)O3—C8—C4118.9 (2)
O22—Sr1—O8ii115.58 (5)O4—C8—C4115.9 (2)
O27—Sr1—O8ii65.82 (6)C1—N2—C9117.63 (19)
O6iii—Sr2—O2369.11 (6)C1—N2—C11121.82 (19)
O6iii—Sr2—O2i138.88 (5)C9—N2—C11118.5 (2)
O23—Sr2—O2i71.52 (6)N2—C9—C10114.24 (19)
O6iii—Sr2—O2179.58 (5)N2—C9—H9A108.7
O23—Sr2—O21145.03 (6)C10—C9—H9A108.7
O2i—Sr2—O21141.51 (5)N2—C9—H9B108.7
O6iii—Sr2—O668.34 (6)C10—C9—H9B108.7
O23—Sr2—O681.03 (5)H9A—C9—H9B107.6
O2i—Sr2—O6116.53 (5)O5—C10—O6123.3 (2)
O21—Sr2—O673.03 (5)O5—C10—C9119.92 (19)
O6iii—Sr2—O2iv96.94 (5)O6—C10—C9116.7 (2)
O23—Sr2—O2iv81.54 (6)N2—C11—C12115.7 (2)
O2i—Sr2—O2iv65.68 (6)N2—C11—H11A108.3
O21—Sr2—O2iv118.40 (5)C12—C11—H11A108.3
O6—Sr2—O2iv160.37 (5)N2—C11—H11B108.3
O6iii—Sr2—O1iv79.58 (5)C12—C11—H11B108.3
O23—Sr2—O1iv116.26 (6)H11A—C11—H11B107.4
O2i—Sr2—O1iv108.25 (5)O8—C12—O7122.9 (2)
O21—Sr2—O1iv71.00 (5)O8—C12—C11120.5 (2)
O6—Sr2—O1iv135.19 (5)O7—C12—C11116.7 (2)
O2iv—Sr2—O1iv48.34 (5)H21A—O21—H21B106 (3)
O6iii—Sr2—O22156.57 (6)H22A—O22—H22B104 (3)
O23—Sr2—O22133.65 (6)H23A—O23—H23B104 (3)
O2i—Sr2—O2262.33 (5)H24A—O24—H24B108 (3)
O21—Sr2—O2279.68 (6)H25A—O25—H25B109 (4)
O6—Sr2—O22115.27 (5)H26A—O26—H26B87 (5)
O2iv—Sr2—O2283.49 (5)H26A—O26—H26C108 (5)
O1iv—Sr2—O2283.47 (6)H26B—O26—H26C75 (5)
O6iii—Sr2—O5114.87 (5)H27A—O27—H27B107 (4)
O23—Sr2—O5109.66 (6)H28A—O28—H28B111 (6)
O2i—Sr2—O589.11 (5)H28A—O28—H28C109 (6)
O21—Sr2—O569.47 (5)H28B—O28—H28C103 (7)
O6—Sr2—O548.56 (5)H29A—O29—H29B107 (7)
O2iv—Sr2—O5148.19 (5)H29A—O29—H29C87 (6)
O1iv—Sr2—O5133.93 (5)H29B—O29—H29C68 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y, z+1; (iv) x, y1, z; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21A···O250.81 (2)1.98 (2)2.781 (3)169 (3)
O21—H21B···O24iii0.85 (2)1.93 (2)2.765 (3)169 (3)
O22—H22A···O2i0.81 (2)2.16 (3)2.761 (2)131 (3)
O22—H22B···O26iv0.82 (2)1.94 (2)2.755 (3)173 (3)
O23—H23A···O21iii0.81 (2)1.96 (2)2.766 (3)174 (4)
O23—H23B···O26i0.80 (2)2.11 (2)2.867 (3)159 (3)
O24—H24A···O1vi0.82 (2)2.03 (2)2.760 (3)148 (3)
O24—H24B···O40.84 (2)1.93 (2)2.756 (3)172 (3)
O25—H25A···N1ii0.82 (2)2.15 (2)2.898 (3)152 (3)
O25—H25B···O27ii0.80 (2)1.93 (2)2.648 (3)150 (4)
O26—H26A···O28vii0.85 (2)1.90 (2)2.731 (3)164 (5)
O26—H26C···N10.85 (2)2.37 (4)3.108 (3)146 (5)
O27—H27A···O4i0.83 (2)1.79 (2)2.615 (3)172 (4)
O27—H27B···O29v0.82 (2)1.94 (2)2.727 (4)160 (4)
O28—H28A···O24vi0.80 (2)1.97 (2)2.756 (3)167 (4)
O28—H28B···O28viii0.82 (2)2.02 (2)2.835 (4)174 (8)
O28—H28C···O290.82 (2)2.04 (3)2.836 (4)164 (7)
O29—H29A···O70.83 (2)1.78 (2)2.595 (3)168 (7)
O29—H29B···O280.83 (2)2.03 (3)2.836 (4)164 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y, z+1; (iv) x, y1, z; (v) x+1, y, z; (vi) x, y+1, z+1; (vii) x+1, y+2, z+2; (viii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Sr2(C12H6N2O8S)(H2O)5]·3.79H2O
Mr671.84
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.3585 (3), 12.3865 (5), 12.6474 (5)
α, β, γ (°)109.880 (1), 97.148 (1), 105.321 (1)
V3)1154.00 (8)
Z2
Radiation typeMo Kα
µ (mm1)4.80
Crystal size (mm)0.15 × 0.10 × 0.07
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.574, 0.710
No. of measured, independent and
observed [I > 2σ(I)] reflections
17404, 6617, 5375
Rint0.032
(sin θ/λ)max1)0.722
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.075, 1.02
No. of reflections6617
No. of parameters375
No. of restraints21
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.48, 1.23

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 2000).

Selected bond lengths (Å) top
Sr1—O82.4557 (18)Sr2—O232.5921 (18)
Sr1—O3i2.4782 (19)Sr2—O2i2.6222 (17)
Sr1—O52.5234 (16)Sr2—O212.6445 (17)
Sr1—O7ii2.6149 (19)Sr2—O62.6628 (16)
Sr1—O252.652 (2)Sr2—O2iv2.6848 (16)
Sr1—O222.6560 (19)Sr2—O1iv2.6944 (17)
Sr1—O272.657 (2)Sr2—O222.7108 (18)
Sr1—O8ii2.7834 (17)Sr2—O52.7228 (16)
Sr2—O6iii2.5452 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y, z+1; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21A···O250.809 (18)1.982 (18)2.781 (3)169 (3)
O21—H21B···O24iii0.845 (17)1.931 (18)2.765 (3)169 (3)
O22—H22A···O2i0.808 (18)2.16 (3)2.761 (2)131 (3)
O22—H22B···O26iv0.819 (17)1.940 (18)2.755 (3)173 (3)
O23—H23A···O21iii0.807 (18)1.962 (18)2.766 (3)174 (4)
O23—H23B···O26i0.798 (18)2.11 (2)2.867 (3)159 (3)
O24—H24A···O1v0.823 (18)2.03 (2)2.760 (3)148 (3)
O24—H24B···O40.837 (18)1.925 (18)2.756 (3)172 (3)
O25—H25A···N1ii0.819 (18)2.15 (2)2.898 (3)152 (3)
O25—H25B···O27ii0.796 (18)1.93 (2)2.648 (3)150 (4)
O26—H26A···O28vi0.850 (19)1.90 (2)2.731 (3)164 (5)
O26—H26C···N10.85 (2)2.37 (4)3.108 (3)146 (5)
O27—H27A···O4i0.827 (19)1.79 (2)2.615 (3)172 (4)
O27—H27B···O29vii0.823 (19)1.94 (2)2.727 (4)160 (4)
O28—H28A···O24v0.799 (18)1.97 (2)2.756 (3)167 (4)
O28—H28B···O28viii0.82 (2)2.02 (2)2.835 (4)174 (8)
O28—H28C···O290.82 (2)2.04 (3)2.836 (4)164 (7)
O29—H29A···O70.83 (2)1.78 (2)2.595 (3)168 (7)
O29—H29B···O280.83 (2)2.03 (3)2.836 (4)164 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y, z+1; (iv) x, y1, z; (v) x, y+1, z+1; (vi) x+1, y+2, z+2; (vii) x+1, y, z; (viii) x, y+2, z+2.
 

Acknowledgements

Ms L. Berring and Ms A. Schøneberg are gratefully acknowledged for the data collection and Dr Stephan Christgau for supplying the strontium ranelate.

References

First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2000). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHorvath, S., Demuynck, I. & Damien, G. (2008). US Patent No. 7459568.  Google Scholar
First citationSchrooten, I., Behets, G. J. S., Cabrera, W. E., Vercauteren, S. R., Lamberts, L. W., Verberckmoes, S. C., Bervoets, A. J., Dams, G., Goodman, W. G., De Broe, M. E. & D Haese, P. C. (2003). Kidney Intl, 63, 927–935.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStahl, K., Andersen, J. E. T. & Christgau, S. (2006). Acta Cryst. C62, m144–m149.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m471-m472
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds