organic compounds
(2E)-3-(4-Chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one
aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Chemistry, P. A. College of Engineering, Mangalore, 574 153, India
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C15H11ClO2, the dihedral angle between the mean planes of the chlorobenzene and hydroxybenzene rings is 6.5 (6)°. The mean plane of the prop-2-en-1-one group makes an angle of 18.0 (1)° with the hydroxyphenyl ring and 11.5 (1)° with the chlorophenyl ring. The crystal packing is stabilized by intermolecular O—H⋯O hydrogen bonds, weak C—H⋯O, C—H⋯π and π–π stacking interactions [centroid–centroid distances = 3.7771 (7) and 3.6917 (7) Å].
Related literature
For the biological properties of ) and for their role in tubulin polymerization inhibition, see: Edwards et al. (1989). For related structures, see: Jasinski et al. (2010, 2011a,b); Butcher et al. (2007a,b); Narayana et al. (2007); Sarojini et al. (2007a,b). For standard bond lengths, see: Allen et al., (1987).
see: Nowakowska (2007Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681100701X/sj5108sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681100701X/sj5108Isup2.hkl
4-Hydroxyacetophenone (1.36 g, 0.01 mol) was mixed with 4-chlorobenzaldeyde (1.40 g, 0.01 mol) and dissolved in ethanol (20 ml) (Fig. 1). To this solution 4 ml of KOH (50%) (10 mL) was added at 0°C. The reaction mixture was stirred for 4 h and poured on to crushed ice. The pH of this mixture was adjusted to 3–4 with 2 M HCl aqueous solution. The resulting crude yellow solid was filtered, washed successively with dilute HCl solution and distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Crystals suitable for x-ray diffraction studies were grown by the slow evaporation of the solution of the compound in acetone. M.P:419 K. Composition: Found (Calculated) for C15H11ClO2, C: 69.53 (69.64); H: 4.26 (4.29).
The hydroxyl hydrogem (H1O) was located by a Fourier map, fixed at 0.84 Å and refined using the riding model. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH). Isotropic displacement parameters for these atoms were set to 1.18–1.21 (CH) or 1.18 (OH) times Ueq of the parent atom.
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C15H11ClO2 | F(000) = 536 |
Mr = 258.69 | Dx = 1.422 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4738 reflections |
a = 7.3570 (2) Å | θ = 4.7–32.4° |
b = 15.6450 (5) Å | µ = 0.31 mm−1 |
c = 10.4954 (3) Å | T = 200 K |
β = 90.518 (3)° | Irregular chunk, colorless |
V = 1207.97 (6) Å3 | 0.51 × 0.45 × 0.36 mm |
Z = 4 |
Oxford Diffraction Gemini diffractometer | 4020 independent reflections |
Radiation source: fine-focus sealed tube | 2924 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 32.6°, θmin = 4.7° |
ϕ and ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −23→17 |
Tmin = 0.984, Tmax = 1.000 | l = −11→15 |
10126 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0648P)2] where P = (Fo2 + 2Fc2)/3 |
4020 reflections | (Δ/σ)max < 0.001 |
164 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C15H11ClO2 | V = 1207.97 (6) Å3 |
Mr = 258.69 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.3570 (2) Å | µ = 0.31 mm−1 |
b = 15.6450 (5) Å | T = 200 K |
c = 10.4954 (3) Å | 0.51 × 0.45 × 0.36 mm |
β = 90.518 (3)° |
Oxford Diffraction Gemini diffractometer | 4020 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 2924 reflections with I > 2σ(I) |
Tmin = 0.984, Tmax = 1.000 | Rint = 0.022 |
10126 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.38 e Å−3 |
4020 reflections | Δρmin = −0.19 e Å−3 |
164 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | 0.13335 (5) | 0.12309 (2) | 0.03417 (3) | 0.03910 (12) | |
O1 | 0.83226 (11) | −0.31714 (6) | −0.88736 (8) | 0.0269 (2) | |
H1O | 0.7288 | −0.3393 | −0.8952 | 0.032* | |
O2 | 1.03166 (11) | −0.08981 (6) | −0.40899 (9) | 0.0300 (2) | |
C1 | 0.86149 (15) | −0.16357 (7) | −0.56445 (10) | 0.0217 (2) | |
C2 | 1.01626 (15) | −0.18219 (7) | −0.63990 (11) | 0.0233 (2) | |
H2A | 1.1307 | −0.1587 | −0.6162 | 0.028* | |
C3 | 1.00442 (15) | −0.23337 (7) | −0.74638 (11) | 0.0240 (2) | |
H3A | 1.1090 | −0.2440 | −0.7964 | 0.029* | |
C4 | 0.83821 (15) | −0.26923 (7) | −0.77995 (11) | 0.0218 (2) | |
C5 | 0.68456 (15) | −0.25387 (8) | −0.70399 (11) | 0.0249 (2) | |
H5A | 0.5718 | −0.2800 | −0.7253 | 0.030* | |
C6 | 0.69667 (15) | −0.20111 (8) | −0.59876 (11) | 0.0250 (2) | |
H6A | 0.5916 | −0.1903 | −0.5494 | 0.030* | |
C7 | 0.88030 (15) | −0.10548 (7) | −0.45464 (11) | 0.0228 (2) | |
C8 | 0.71613 (16) | −0.06563 (8) | −0.39876 (11) | 0.0257 (2) | |
H8A | 0.5998 | −0.0789 | −0.4335 | 0.031* | |
C9 | 0.72854 (16) | −0.01152 (7) | −0.30074 (11) | 0.0244 (2) | |
H9A | 0.8482 | 0.0042 | −0.2753 | 0.029* | |
C10 | 0.57985 (15) | 0.02682 (7) | −0.22700 (11) | 0.0232 (2) | |
C11 | 0.39739 (16) | 0.00729 (8) | −0.25006 (12) | 0.0269 (3) | |
H11A | 0.3655 | −0.0270 | −0.3215 | 0.032* | |
C12 | 0.26083 (16) | 0.03728 (8) | −0.16994 (12) | 0.0286 (3) | |
H12A | 0.1376 | 0.0221 | −0.1856 | 0.034* | |
C13 | 0.30593 (17) | 0.08902 (8) | −0.06791 (11) | 0.0267 (3) | |
C14 | 0.48422 (18) | 0.11178 (8) | −0.04434 (12) | 0.0296 (3) | |
H14A | 0.5144 | 0.1483 | 0.0250 | 0.036* | |
C15 | 0.61975 (17) | 0.08026 (8) | −0.12423 (12) | 0.0277 (3) | |
H15A | 0.7427 | 0.0957 | −0.1080 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.0429 (2) | 0.0418 (2) | 0.03272 (18) | 0.01436 (15) | 0.01185 (14) | 0.00176 (13) |
O1 | 0.0232 (4) | 0.0314 (5) | 0.0261 (4) | −0.0042 (3) | 0.0043 (3) | −0.0055 (3) |
O2 | 0.0223 (4) | 0.0345 (5) | 0.0330 (5) | 0.0028 (4) | −0.0034 (3) | −0.0045 (4) |
C1 | 0.0207 (5) | 0.0229 (5) | 0.0216 (5) | 0.0009 (4) | 0.0022 (4) | 0.0022 (4) |
C2 | 0.0175 (5) | 0.0265 (6) | 0.0259 (6) | −0.0006 (4) | 0.0006 (4) | 0.0022 (5) |
C3 | 0.0190 (5) | 0.0280 (6) | 0.0250 (6) | 0.0004 (4) | 0.0053 (4) | 0.0015 (4) |
C4 | 0.0236 (5) | 0.0218 (5) | 0.0203 (5) | 0.0008 (4) | 0.0022 (4) | 0.0034 (4) |
C5 | 0.0185 (5) | 0.0296 (6) | 0.0265 (6) | −0.0049 (4) | 0.0031 (4) | 0.0009 (5) |
C6 | 0.0204 (5) | 0.0296 (6) | 0.0250 (6) | −0.0003 (4) | 0.0057 (4) | 0.0003 (5) |
C7 | 0.0219 (5) | 0.0241 (6) | 0.0226 (5) | 0.0012 (4) | 0.0013 (4) | 0.0033 (4) |
C8 | 0.0203 (5) | 0.0312 (6) | 0.0257 (6) | 0.0018 (5) | −0.0001 (4) | −0.0020 (5) |
C9 | 0.0221 (5) | 0.0250 (6) | 0.0262 (6) | −0.0004 (4) | −0.0004 (4) | 0.0004 (5) |
C10 | 0.0243 (5) | 0.0210 (5) | 0.0241 (5) | 0.0009 (4) | 0.0001 (4) | −0.0003 (4) |
C11 | 0.0265 (6) | 0.0274 (6) | 0.0267 (6) | 0.0013 (5) | −0.0025 (5) | −0.0048 (5) |
C12 | 0.0226 (6) | 0.0319 (6) | 0.0312 (6) | 0.0027 (5) | −0.0010 (5) | −0.0002 (5) |
C13 | 0.0311 (6) | 0.0239 (6) | 0.0251 (6) | 0.0074 (5) | 0.0041 (5) | 0.0028 (5) |
C14 | 0.0381 (7) | 0.0244 (6) | 0.0263 (6) | 0.0012 (5) | −0.0021 (5) | −0.0048 (5) |
C15 | 0.0273 (6) | 0.0268 (6) | 0.0290 (6) | −0.0029 (5) | −0.0031 (5) | −0.0029 (5) |
Cl—C13 | 1.7517 (12) | C7—C8 | 1.4846 (15) |
O1—C4 | 1.3541 (14) | C8—C9 | 1.3348 (16) |
O1—H1O | 0.8400 | C8—H8A | 0.9500 |
O2—C7 | 1.2328 (14) | C9—C10 | 1.4734 (15) |
C1—C6 | 1.3917 (16) | C9—H9A | 0.9500 |
C1—C2 | 1.4230 (14) | C10—C15 | 1.3939 (16) |
C1—C7 | 1.4733 (16) | C10—C11 | 1.3957 (17) |
C2—C3 | 1.3770 (16) | C11—C12 | 1.3971 (16) |
C2—H2A | 0.9500 | C11—H11A | 0.9500 |
C3—C4 | 1.3879 (16) | C12—C13 | 1.3804 (18) |
C3—H3A | 0.9500 | C12—H12A | 0.9500 |
C4—C5 | 1.4098 (15) | C13—C14 | 1.3793 (18) |
C5—C6 | 1.3811 (17) | C14—C15 | 1.3984 (17) |
C5—H5A | 0.9500 | C14—H14A | 0.9500 |
C6—H6A | 0.9500 | C15—H15A | 0.9500 |
C4—O1—H1O | 109.5 | C9—C8—H8A | 119.3 |
C6—C1—C2 | 117.99 (10) | C7—C8—H8A | 119.3 |
C6—C1—C7 | 122.56 (10) | C8—C9—C10 | 128.11 (11) |
C2—C1—C7 | 119.45 (10) | C8—C9—H9A | 115.9 |
C3—C2—C1 | 121.71 (10) | C10—C9—H9A | 115.9 |
C3—C2—H2A | 119.1 | C15—C10—C11 | 117.45 (10) |
C1—C2—H2A | 119.1 | C15—C10—C9 | 119.90 (11) |
C2—C3—C4 | 119.35 (10) | C11—C10—C9 | 122.49 (11) |
C2—C3—H3A | 120.3 | C10—C11—C12 | 121.18 (11) |
C4—C3—H3A | 120.3 | C10—C11—H11A | 119.4 |
O1—C4—C3 | 117.18 (10) | C12—C11—H11A | 119.4 |
O1—C4—C5 | 123.03 (10) | C13—C12—C11 | 119.66 (11) |
C3—C4—C5 | 119.78 (10) | C13—C12—H12A | 120.2 |
C6—C5—C4 | 120.52 (11) | C11—C12—H12A | 120.2 |
C6—C5—H5A | 119.7 | C14—C13—C12 | 120.79 (11) |
C4—C5—H5A | 119.7 | C14—C13—Cl | 120.34 (10) |
C5—C6—C1 | 120.59 (10) | C12—C13—Cl | 118.84 (10) |
C5—C6—H6A | 119.7 | C13—C14—C15 | 118.92 (12) |
C1—C6—H6A | 119.7 | C13—C14—H14A | 120.5 |
O2—C7—C1 | 120.32 (10) | C15—C14—H14A | 120.5 |
O2—C7—C8 | 119.88 (11) | C10—C15—C14 | 121.95 (11) |
C1—C7—C8 | 119.80 (10) | C10—C15—H15A | 119.0 |
C9—C8—C7 | 121.37 (11) | C14—C15—H15A | 119.0 |
C6—C1—C2—C3 | 2.13 (17) | C1—C7—C8—C9 | −178.78 (11) |
C7—C1—C2—C3 | −177.42 (11) | C7—C8—C9—C10 | −173.67 (11) |
C1—C2—C3—C4 | −1.28 (17) | C8—C9—C10—C15 | 177.89 (12) |
C2—C3—C4—O1 | 178.21 (10) | C8—C9—C10—C11 | 2.43 (19) |
C2—C3—C4—C5 | −0.86 (17) | C15—C10—C11—C12 | −2.62 (18) |
O1—C4—C5—C6 | −176.85 (11) | C9—C10—C11—C12 | 172.94 (12) |
C3—C4—C5—C6 | 2.17 (18) | C10—C11—C12—C13 | 1.71 (19) |
C4—C5—C6—C1 | −1.29 (18) | C11—C12—C13—C14 | 0.26 (19) |
C2—C1—C6—C5 | −0.81 (17) | C11—C12—C13—Cl | −178.00 (10) |
C7—C1—C6—C5 | 178.72 (11) | C12—C13—C14—C15 | −1.18 (19) |
C6—C1—C7—O2 | 162.67 (11) | Cl—C13—C14—C15 | 177.05 (10) |
C2—C1—C7—O2 | −17.81 (17) | C11—C10—C15—C14 | 1.68 (18) |
C6—C1—C7—C8 | −17.34 (17) | C9—C10—C15—C14 | −174.00 (11) |
C2—C1—C7—C8 | 162.18 (11) | C13—C14—C15—C10 | 0.19 (19) |
O2—C7—C8—C9 | 1.20 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2i | 0.84 | 1.83 | 2.6556 (12) | 167 |
C6—H6A···O1ii | 0.95 | 2.57 | 3.5070 (13) | 169 |
C11—H11A···O1ii | 0.95 | 2.55 | 3.3382 (15) | 141 |
C14—H14A···Cg1iii | 0.95 | 2.79 | 3.7090 (14) | 163 |
Symmetry codes: (i) x−1/2, −y−1/2, z−1/2; (ii) x−1/2, −y−1/2, z+1/2; (iii) −x+3/2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C15H11ClO2 |
Mr | 258.69 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 200 |
a, b, c (Å) | 7.3570 (2), 15.6450 (5), 10.4954 (3) |
β (°) | 90.518 (3) |
V (Å3) | 1207.97 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.51 × 0.45 × 0.36 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.984, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10126, 4020, 2924 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.759 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.115, 1.07 |
No. of reflections | 4020 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.19 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2i | 0.84 | 1.83 | 2.6556 (12) | 167 |
C6—H6A···O1ii | 0.95 | 2.57 | 3.5070 (13) | 169 |
C11—H11A···O1ii | 0.95 | 2.55 | 3.3382 (15) | 141 |
C14—H14A···Cg1iii | 0.95 | 2.79 | 3.7090 (14) | 163 |
Symmetry codes: (i) x−1/2, −y−1/2, z−1/2; (ii) x−1/2, −y−1/2, z+1/2; (iii) −x+3/2, y+1/2, −z+3/2. |
CgI···CgJ | Cg···Cg (Å) | CgI Perp (Å) | Cgj Perp (Å) | Slippage (Å) |
Cg1···Cg2i | 3.7771 (7) | 3.3144 (5) | 3.4958 (5) | |
Cg2···Cg2ii | 3.6917 (7) | -3.3684 (5) | -3.3683 (5) | 1.51 (1) |
Acknowledgements
BKS thanks the P. A. College of Engineering for the research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Butcher, R. J., Jasinski, J. P., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2007a). Acta Cryst. E63, o3586. Web of Science CSD CrossRef IUCr Journals Google Scholar
Butcher, R. J., Jasinski, J. P., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2007b). Acta Cryst. E63, o3660. Web of Science CSD CrossRef IUCr Journals Google Scholar
Edwards, M. L., Sunkara, S. P. & Stemerick, D. M. (1989). US Patent No. 4 863 968, Sept. 5. Google Scholar
Jasinski, J. P., Butcher, R. J., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o2936–o2937. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jasinski, J. P., Butcher, R. J., Siddaraju, B. P., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o313–o314. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jasinski, J. P., Butcher, R. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o352–o353. Web of Science CSD CrossRef IUCr Journals Google Scholar
Narayana, B., Lakshmana, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4552. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sarojini, B. K., Yathirajan, H. S., Mustafa, K., Sarfraz, H. & Bolte, M. (2007a). Acta Cryst. E63, o4448. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sarojini, B. K., Yathirajan, H. S., Mustafa, K., Sarfraz, H. & Bolte, M. (2007b). Acta Cryst. E63, o4477. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chalcones, or 1,3-diaryl-2-propen-1-ones, belong to the flavonoid family. Chemically they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system. The radical quenching properties of the phenolic groups present in many chalcones have raised interest in using the compounds or chalcone rich plant extracts as drugs or food preservatives. Chalcones have been reported to possess many useful properties, including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Nowakowska, 2007). Certain chalcone derivatives are reported to inhibit the polymerization of tubulin to form microtubules and are therefore antimitotic agents which can be used as antigout agents. The chalcone derivatives are also reported to inhibit the destruction of the myelin sheath in the central nervous system of multiple sclerosis patients and are thus useful in controlling the progressive nature of the disease (Edwards et al., 1989).
In a continuation of our studies on the crystal structures of chalcones (Jasinski et al., 2010, 2011a, 2011b), we report here the synthesis and crystal structure of the title compound, C15H11ClO2, (I), Fig. 2. The dihedral angle between the mean planes of the chlorobenzene and hydroxybenzene rings is 6.5 (6)°. The mean plane of the prop-2-en-1-one group, the active site in this molecule, makes angles of 18.0 (1)° with the hydroxy benzene and 11.5 (1)° with the chlorobenzene rings, respectively. Bond lengths are normal (Allen et al., 1987) and correspond to those observed in related compounds (Butcher et al., 2007a, 2007b; Narayana et al., 2007; Sarojini et al., 2007a, 2007b). Crystal packing is stabilized by O—H···O hydrogen bonds, weak C—H···O, C—H···Cg π—ring (Table 1) and π—π intermolecular stacking interactions (Table 2 & Fig. 3).