organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Bis(4-fluoro­phen­yl)-2-methyl­sulfanyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 27 February 2011; accepted 28 February 2011; online 5 March 2011)

The crystal studied of the title compound, C21H14F2OS, was an inversion twin with a 0.67 (8):0.33 (8) domain ratio. The 4-fluoro­phenyl ring in the 2-position makes a dihedral angle of 25.14 (6)° with the mean plane of the benzofuran fragment, and the dihedral angle between 4-fluoro­phenyl ring in the 5-position and the mean plane of the benzofuran fragment is 28.50 (7)°. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯F and C—H⋯π inter­actions.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For structural studies of related 3-alkyl­sulfanyl-2-(4-fluoro­phen­yl)-5-phenyl-1-benzofuran derivatives, see: Choi et al. (2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o336.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14F2OS

  • Mr = 352.38

  • Monoclinic, P 21

  • a = 10.7673 (7) Å

  • b = 7.2986 (5) Å

  • c = 11.5145 (8) Å

  • β = 116.124 (1)°

  • V = 812.44 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.32 × 0.29 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.972

  • 7891 measured reflections

  • 3710 independent reflections

  • 3501 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.06

  • 3710 reflections

  • 228 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1700 Friedel pairs

  • Flack parameter: 0.33 (8)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C15–C20 4-fluoro­phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯F1i 0.95 2.45 3.322 (2) 153
C10—H10⋯Cgii 0.95 2.67 3.441 (2) 139
C17—H17⋯Cgiii 0.95 2.86 3.557 (2) 131
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [-x, y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds having a benzofuran ring system exhibit interesting pharmacological properties such as antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2006, Galal et al., 2009, Khan et al., 2005). These compounds occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of substituent effects on the solid state structures of 3-alkylsulfanyl-2-(4-fluorophenyl)-5-phenyl-1-benzofuran analogues (Choi et al., 2009, 2010), we report herein on the crystal structure of the title compound.

The title compound crystallizes as the non-centrosymmetric space group P21 in spite of having no asymmetric C atoms. The crystal studied was an inversion twin with a 0.33 (8) : 0.67 (8) domain ratio.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the nine constituent atoms. In the crystal structure, the dihedral angle formed by the 4-fluorophenyl ring (C15–C20) and the mean plane of the benzofuran fragment is 25.14 (6)°, and the (C9–C14) 4-fluorophenyl ring makes a dihedral angle of 28.50 (7)° with the mean plane of the benzofuran fragment. The molecular packing (Fig. 2) is stabilized by weak intermolecular C—H···F hydrogen bonds between a benzene H atom and the F atom of the (C9–C14) 4-fluorophenyl ring (Table 1; C6—H6···F1i). The molecular packing (Fig. 3) also exhibits intermolecular C—H···π interactions; the first one between a 4-fluorophenyl H atom in the 5-position and the (C15–C20) 4-fluorophenyl ring (Table 1; C10–H10···Cgii), and the second one between the 4-fluorophenyl H atom in the 2-position and the (C15–C20) 4-fluorophenyl ring (Table 1; C17—H17···Cgiii) (Cg is the centroid of the C15–C20 4-fluorophenyl ring).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 3-alkylsulfanyl-2-(4-fluorophenyl)-5-phenyl-1-benzofuran derivatives, see: Choi et al. (2009, 2010).

Experimental top

Zinc chloride (245 mg, 1.8 mmol) was added to a stirred solution of 4-fluoro-4'-hydroxybiphenyl (339 mg, 1,8 mmol) and 2-chloro-4'-fluoro-2-methylsulfanylacetophenone (395 mg, 1.8 mmol) in dichloromethane (30 mL) at room temperature, and stirring was continued at the same temperature for 40 min. The reaction was quenched by the addition of water and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (carbon tetrachloride) to afford the title compound as a colorless solid [yield 65%, m.p. 438–439 K; Rf = 0.69 (carbon tetrachloride)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008). All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) =1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···F interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x - 1, y, z; (iv) x+ 1, y, z.]
[Figure 3] Fig. 3. A view of the C—H···π interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (ii) - x + 1, y + 1/2, - z + 1; (iii) - x, y- 1/2, - z; (v)1 - x, y - 1/2, - z + 1; (vi) - x, y + 1/2, - z.]
2,5-Bis(4-fluorophenyl)-2-methylsulfanyl-1-benzofuran top
Crystal data top
C21H14F2OSF(000) = 364
Mr = 352.38Dx = 1.440 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3532 reflections
a = 10.7673 (7) Åθ = 2.2–27.1°
b = 7.2986 (5) ŵ = 0.23 mm1
c = 11.5145 (8) ÅT = 173 K
β = 116.124 (1)°Block, colourless
V = 812.44 (10) Å30.32 × 0.29 × 0.13 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
3710 independent reflections
Radiation source: rotating anode3501 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.0°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 99
Tmin = 0.930, Tmax = 0.972l = 1414
7891 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.056P)2 + 0.1486P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3710 reflectionsΔρmax = 0.33 e Å3
228 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1700 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.33 (8)
Crystal data top
C21H14F2OSV = 812.44 (10) Å3
Mr = 352.38Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.7673 (7) ŵ = 0.23 mm1
b = 7.2986 (5) ÅT = 173 K
c = 11.5145 (8) Å0.32 × 0.29 × 0.13 mm
β = 116.124 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3710 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3501 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.972Rint = 0.023
7891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.33 e Å3
S = 1.06Δρmin = 0.21 e Å3
3710 reflectionsAbsolute structure: Flack (1983), 1700 Friedel pairs
228 parametersAbsolute structure parameter: 0.33 (8)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43705 (5)0.35582 (9)0.12177 (4)0.03705 (15)
F11.36155 (13)0.4416 (2)0.73988 (15)0.0491 (4)
F20.24680 (12)0.4131 (2)0.00514 (13)0.0463 (3)
O10.36309 (13)0.4157 (2)0.42787 (12)0.0294 (3)
C10.43510 (19)0.3862 (3)0.27194 (17)0.0269 (4)
C20.55585 (18)0.3959 (3)0.39519 (16)0.0253 (4)
C30.69845 (18)0.3930 (3)0.43512 (17)0.0260 (4)
H30.73460.37900.37380.031*
C40.78673 (18)0.4111 (3)0.56623 (17)0.0243 (4)
C50.7295 (2)0.4268 (3)0.65587 (18)0.0280 (4)
H50.79050.43630.74540.034*
C60.5895 (2)0.4287 (3)0.61797 (18)0.0303 (4)
H60.55230.43950.67880.036*
C70.5052 (2)0.4142 (3)0.48647 (18)0.0277 (4)
C80.32360 (19)0.3989 (3)0.29668 (17)0.0273 (4)
C90.93978 (18)0.4152 (3)0.61213 (16)0.0243 (4)
C101.0238 (2)0.5099 (3)0.72483 (19)0.0290 (4)
H100.98260.56930.77260.035*
C111.1652 (2)0.5193 (3)0.7686 (2)0.0344 (5)
H111.22140.58460.84530.041*
C121.2229 (2)0.4318 (3)0.6983 (2)0.0320 (4)
C131.1449 (2)0.3356 (3)0.58707 (19)0.0334 (4)
H131.18730.27640.54020.040*
C141.0033 (2)0.3270 (3)0.54499 (19)0.0297 (4)
H140.94820.25980.46890.036*
C150.17419 (19)0.4016 (3)0.21639 (17)0.0261 (4)
C160.1142 (2)0.3192 (3)0.09396 (18)0.0298 (4)
H160.17140.26100.06150.036*
C170.0278 (2)0.3218 (3)0.01996 (18)0.0315 (4)
H170.06880.26430.06240.038*
C180.1079 (2)0.4093 (3)0.06815 (19)0.0313 (4)
C190.0530 (2)0.4919 (3)0.1888 (2)0.0328 (4)
H190.11120.55060.22000.039*
C200.0880 (2)0.4865 (3)0.26212 (19)0.0293 (4)
H200.12750.54150.34540.035*
C210.5127 (3)0.5682 (4)0.1057 (3)0.0520 (7)
H21A0.45390.67050.10610.078*
H21B0.52060.56830.02410.078*
H21C0.60480.58170.17810.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0418 (3)0.0475 (3)0.0259 (2)0.0051 (2)0.0186 (2)0.0059 (2)
F10.0243 (6)0.0571 (9)0.0646 (9)0.0009 (6)0.0185 (6)0.0050 (7)
F20.0245 (6)0.0532 (9)0.0509 (7)0.0006 (6)0.0073 (5)0.0010 (6)
O10.0258 (6)0.0405 (8)0.0231 (6)0.0011 (6)0.0119 (5)0.0019 (6)
C10.0279 (9)0.0307 (10)0.0228 (8)0.0028 (8)0.0118 (7)0.0028 (7)
C20.0295 (9)0.0258 (10)0.0219 (8)0.0014 (7)0.0125 (7)0.0011 (7)
C30.0281 (9)0.0286 (10)0.0256 (8)0.0024 (8)0.0157 (7)0.0011 (8)
C40.0269 (9)0.0207 (8)0.0265 (8)0.0014 (7)0.0128 (7)0.0010 (7)
C50.0266 (9)0.0317 (10)0.0228 (8)0.0013 (8)0.0083 (7)0.0001 (8)
C60.0327 (10)0.0372 (11)0.0253 (9)0.0010 (8)0.0165 (8)0.0004 (8)
C70.0249 (8)0.0317 (10)0.0275 (9)0.0012 (8)0.0124 (7)0.0004 (8)
C80.0303 (9)0.0282 (10)0.0233 (8)0.0024 (8)0.0116 (7)0.0004 (7)
C90.0250 (9)0.0217 (8)0.0259 (8)0.0020 (7)0.0109 (7)0.0054 (7)
C100.0286 (10)0.0316 (10)0.0290 (9)0.0029 (8)0.0146 (8)0.0024 (8)
C110.0298 (10)0.0362 (11)0.0321 (10)0.0004 (9)0.0091 (8)0.0049 (9)
C120.0240 (9)0.0319 (10)0.0417 (11)0.0032 (8)0.0159 (8)0.0035 (9)
C130.0366 (10)0.0317 (10)0.0397 (10)0.0057 (9)0.0240 (9)0.0010 (9)
C140.0326 (10)0.0265 (10)0.0309 (9)0.0016 (8)0.0147 (8)0.0019 (8)
C150.0268 (9)0.0246 (9)0.0263 (8)0.0022 (8)0.0112 (7)0.0016 (7)
C160.0318 (10)0.0287 (10)0.0285 (9)0.0017 (8)0.0128 (8)0.0009 (8)
C170.0346 (11)0.0302 (11)0.0238 (9)0.0029 (8)0.0075 (8)0.0007 (8)
C180.0249 (9)0.0289 (10)0.0337 (9)0.0012 (8)0.0071 (8)0.0059 (8)
C190.0316 (11)0.0305 (10)0.0397 (11)0.0022 (8)0.0188 (9)0.0003 (9)
C200.0341 (11)0.0259 (9)0.0262 (9)0.0020 (8)0.0117 (8)0.0017 (7)
C210.0554 (16)0.0591 (17)0.0478 (14)0.0053 (12)0.0286 (13)0.0144 (12)
Geometric parameters (Å, º) top
S1—C11.7527 (18)C10—C111.379 (3)
S1—C211.798 (3)C10—H100.9500
F1—C121.354 (2)C11—C121.375 (3)
F2—C181.355 (2)C11—H110.9500
O1—C71.374 (2)C12—C131.375 (3)
O1—C81.383 (2)C13—C141.384 (3)
C1—C81.354 (3)C13—H130.9500
C1—C21.444 (2)C14—H140.9500
C2—C71.387 (2)C15—C201.398 (3)
C2—C31.396 (2)C15—C161.402 (3)
C3—C41.392 (2)C16—C171.384 (3)
C3—H30.9500C16—H160.9500
C4—C51.420 (3)C17—C181.372 (3)
C4—C91.493 (2)C17—H170.9500
C5—C61.373 (3)C18—C191.385 (3)
C5—H50.9500C19—C201.375 (3)
C6—C71.385 (3)C19—H190.9500
C6—H60.9500C20—H200.9500
C8—C151.461 (3)C21—H21A0.9800
C9—C141.395 (3)C21—H21B0.9800
C9—C101.395 (3)C21—H21C0.9800
C1—S1—C21101.24 (12)C10—C11—H11120.9
C7—O1—C8106.02 (14)F1—C12—C13118.83 (18)
C8—C1—C2106.74 (15)F1—C12—C11118.70 (19)
C8—C1—S1127.83 (14)C13—C12—C11122.47 (18)
C2—C1—S1125.39 (14)C12—C13—C14118.42 (18)
C7—C2—C3119.62 (16)C12—C13—H13120.8
C7—C2—C1105.38 (15)C14—C13—H13120.8
C3—C2—C1134.99 (16)C13—C14—C9121.27 (18)
C4—C3—C2118.87 (16)C13—C14—H14119.4
C4—C3—H3120.6C9—C14—H14119.4
C2—C3—H3120.6C20—C15—C16118.72 (17)
C3—C4—C5119.24 (17)C20—C15—C8119.79 (17)
C3—C4—C9120.40 (16)C16—C15—C8121.49 (17)
C5—C4—C9120.36 (16)C17—C16—C15120.55 (18)
C6—C5—C4122.47 (17)C17—C16—H16119.7
C6—C5—H5118.8C15—C16—H16119.7
C4—C5—H5118.8C18—C17—C16118.58 (18)
C5—C6—C7116.47 (17)C18—C17—H17120.7
C5—C6—H6121.8C16—C17—H17120.7
C7—C6—H6121.8F2—C18—C17118.40 (18)
O1—C7—C6126.02 (17)F2—C18—C19118.85 (19)
O1—C7—C2110.67 (15)C17—C18—C19122.75 (18)
C6—C7—C2123.31 (17)C20—C19—C18118.17 (19)
C1—C8—O1111.18 (15)C20—C19—H19120.9
C1—C8—C15134.39 (17)C18—C19—H19120.9
O1—C8—C15114.42 (15)C19—C20—C15121.21 (18)
C14—C9—C10117.96 (17)C19—C20—H20119.4
C14—C9—C4121.93 (16)C15—C20—H20119.4
C10—C9—C4120.11 (16)S1—C21—H21A109.5
C11—C10—C9121.60 (18)S1—C21—H21B109.5
C11—C10—H10119.2H21A—C21—H21B109.5
C9—C10—H10119.2S1—C21—H21C109.5
C12—C11—C10118.28 (19)H21A—C21—H21C109.5
C12—C11—H11120.9H21B—C21—H21C109.5
C21—S1—C1—C8115.0 (2)C5—C4—C9—C14152.2 (2)
C21—S1—C1—C267.4 (2)C3—C4—C9—C10151.49 (19)
C8—C1—C2—C70.0 (2)C5—C4—C9—C1028.1 (3)
S1—C1—C2—C7178.03 (16)C14—C9—C10—C110.9 (3)
C8—C1—C2—C3179.1 (2)C4—C9—C10—C11178.74 (19)
S1—C1—C2—C32.9 (3)C9—C10—C11—C120.2 (3)
C7—C2—C3—C40.8 (3)C10—C11—C12—F1179.42 (19)
C1—C2—C3—C4178.1 (2)C10—C11—C12—C130.2 (3)
C2—C3—C4—C51.7 (3)F1—C12—C13—C14179.68 (18)
C2—C3—C4—C9177.88 (18)C11—C12—C13—C140.1 (3)
C3—C4—C5—C61.4 (3)C12—C13—C14—C90.8 (3)
C9—C4—C5—C6178.20 (19)C10—C9—C14—C131.2 (3)
C4—C5—C6—C70.1 (3)C4—C9—C14—C13178.46 (18)
C8—O1—C7—C6179.7 (2)C1—C8—C15—C20154.5 (2)
C8—O1—C7—C20.3 (2)O1—C8—C15—C2024.2 (3)
C5—C6—C7—O1179.09 (19)C1—C8—C15—C1626.1 (3)
C5—C6—C7—C20.9 (3)O1—C8—C15—C16155.20 (18)
C3—C2—C7—O1179.44 (16)C20—C15—C16—C170.1 (3)
C1—C2—C7—O10.2 (2)C8—C15—C16—C17179.37 (17)
C3—C2—C7—C60.5 (3)C15—C16—C17—C181.1 (3)
C1—C2—C7—C6179.78 (19)C16—C17—C18—F2179.39 (17)
C2—C1—C8—O10.1 (2)C16—C17—C18—C191.3 (3)
S1—C1—C8—O1177.79 (15)F2—C18—C19—C20179.82 (18)
C2—C1—C8—C15178.6 (2)C17—C18—C19—C200.6 (3)
S1—C1—C8—C153.5 (4)C18—C19—C20—C150.5 (3)
C7—O1—C8—C10.3 (2)C16—C15—C20—C190.8 (3)
C7—O1—C8—C15178.75 (16)C8—C15—C20—C19179.82 (18)
C3—C4—C9—C1428.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 4-fluorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···F1i0.952.453.322 (2)153
C10—H10···Cgii0.952.673.441 (2)139
C17—H17···Cgiii0.952.863.557 (2)131
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1; (iii) x, y1/2, z.

Experimental details

Crystal data
Chemical formulaC21H14F2OS
Mr352.38
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)10.7673 (7), 7.2986 (5), 11.5145 (8)
β (°) 116.124 (1)
V3)812.44 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.32 × 0.29 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.930, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
7891, 3710, 3501
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.06
No. of reflections3710
No. of parameters228
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.21
Absolute structureFlack (1983), 1700 Friedel pairs
Absolute structure parameter0.33 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 4-fluorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···F1i0.952.453.322 (2)153.1
C10—H10···Cgii0.952.673.441 (2)138.6
C17—H17···Cgiii0.952.863.557 (2)130.9
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1; (iii) x, y1/2, z.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds