organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Meth­­oxy­benzyl­­idene)-4-nitro­benzohydrazide

aDepartment of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, People's Republic of China
*Correspondence e-mail: zhuzhuhaiyun@126.com

(Received 2 March 2011; accepted 3 March 2011; online 9 March 2011)

The mol­ecule of the title compound, C15H13N3O4, adopts an E configuration with respect to the C=N bond. The dihedral angle between the two benzene rings is 6.0 (3)°. In the crystal, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds to form chains along the c axis.

Related literature

For background on hydrazone compounds, see: Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Amal, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]); Fan et al. (2010[Fan, C. D., Su, H., Zhao, J., Zhao, B. X., Zhang, S. L. & Miao, J. Y. (2010). Eur. J. Med. Chem. 45, 1438-1446.]); Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); Avaji et al. (2009[Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552-3559.]). For the crystal structures of typical hydrazone compounds, see: Khaledi et al. (2010[Khaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105-o106.]); Han et al. (2010[Han, Y.-Y., Li, Y.-H. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1085-o1086.]); Hussain et al. (2010[Hussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010). Acta Cryst. E66, o1888.]); Ji & Lu (2010[Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.]). For the hydrazone compound reported recently by the author, see: Zhu (2010[Zhu, H.-Y. (2010). Acta Cryst. E66, o2562.]). For the reference bond values, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O4

  • Mr = 299.28

  • Monoclinic, P 21 /c

  • a = 10.737 (2) Å

  • b = 14.728 (2) Å

  • c = 9.132 (1) Å

  • β = 93.572 (2)°

  • V = 1441.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.980

  • 9434 measured reflections

  • 3129 independent reflections

  • 1426 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.154

  • S = 0.99

  • 3129 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (1) 2.04 (1) 2.913 (3) 165 (2)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, considerable attention has been focused on the preparation and biological properties of hydrazone compounds (Rasras et al., 2010; Fan et al., 2010; Ajani et al., 2010; Avaji et al., 2009). The crystal structures of a number of hydrazone compounds have been reported (Khaledi et al., 2010; Han et al., 2010; Hussain et al., 2010; Ji & Lu, 2010). As a continuation of the work on the structures of hydrazone compounds (Zhu, 2010), the author reports in this paper the title new hydrazone compound, Fig. 1.

The molecule of the compound adopts an E configuration with respect to the CN bond. The dihedral angle between the C1—C6 and C10—C15 benzene rings is 6.0 (3)°. All the bond lengths are within normal values (Allen et al., 1987), and are comparable with those in the similar hydrazone compounds as cited above. In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1) to form chains along the c axis (Fig. 2).

Related literature top

For background on hydrazone compounds, see: Rasras et al. (2010); Fan et al. (2010); Ajani et al. (2010); Avaji et al. (2009). For the crystal structures of typical hydrazone compounds, see: Khaledi et al. (2010); Han et al. (2010); Hussain et al. (2010); Ji & Lu (2010). For the hydrazone compound reported recently by the author, see: Zhu (2010). For the reference bond values, see: Allen et al. (1987).

Experimental top

2-Methoxybenzaldehyde (0.136 g, 1 mmol) and 4-nitrobenzohydrazide (0.181 g, 1 mmol) were dissolved in 30 ml absolute methanol. The mixture was stirred at reflux for 10 min, and cooled to room temperature. The clear yellow solution was left to slow evaporation in air for 3 d, yielding yellow needle crystals of the compound.

Refinement top

H2 attached to N2 was located from a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 or 0.96 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C7).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. The molecular packing of the title compound. Hydrogen bonds are drawn as dashed lines.
N'-(2-Methoxybenzylidene)-4-nitrobenzohydrazide top
Crystal data top
C15H13N3O4F(000) = 624
Mr = 299.28Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.737 (2) ÅCell parameters from 864 reflections
b = 14.728 (2) Åθ = 2.3–24.5°
c = 9.132 (1) ŵ = 0.10 mm1
β = 93.572 (2)°T = 298 K
V = 1441.3 (4) Å3Cut from needle, yellow
Z = 40.23 × 0.21 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3129 independent reflections
Radiation source: fine-focus sealed tube1426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.977, Tmax = 0.980k = 1518
9434 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0427P)2]
where P = (Fo2 + 2Fc2)/3
3129 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C15H13N3O4V = 1441.3 (4) Å3
Mr = 299.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.737 (2) ŵ = 0.10 mm1
b = 14.728 (2) ÅT = 298 K
c = 9.132 (1) Å0.23 × 0.21 × 0.20 mm
β = 93.572 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3129 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1426 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.980Rint = 0.077
9434 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.16 e Å3
3129 reflectionsΔρmin = 0.20 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.30611 (19)0.83021 (15)1.0924 (2)0.0485 (6)
N20.2592 (2)0.75864 (15)1.0066 (2)0.0494 (6)
N30.0510 (2)0.38411 (19)0.7154 (3)0.0661 (7)
O10.27693 (19)1.07382 (12)0.9099 (2)0.0761 (7)
O20.22796 (17)0.67342 (11)1.2070 (2)0.0597 (6)
O30.0703 (2)0.30882 (15)0.7635 (3)0.1087 (10)
O40.0029 (2)0.39878 (16)0.5963 (3)0.0971 (8)
C10.3456 (2)1.07183 (19)1.0414 (3)0.0539 (7)
C20.3634 (2)0.98652 (18)1.1036 (3)0.0469 (7)
C30.4307 (2)0.9800 (2)1.2379 (3)0.0612 (8)
H30.44280.92341.28170.073*
C40.4799 (3)1.0566 (2)1.3077 (4)0.0776 (10)
H40.52481.05161.39770.093*
C50.4618 (3)1.1399 (2)1.2431 (4)0.0752 (10)
H50.49581.19121.28960.090*
C60.3947 (3)1.1492 (2)1.1112 (4)0.0695 (9)
H60.38211.20621.06910.083*
C70.2470 (4)1.1582 (2)0.8462 (4)0.1186 (16)
H7A0.20781.19570.91600.178*
H7B0.19081.14960.76140.178*
H7C0.32181.18720.81760.178*
C80.3139 (2)0.90618 (17)1.0267 (3)0.0476 (7)
H80.28740.91050.92800.057*
C90.2221 (2)0.68303 (17)1.0733 (3)0.0439 (6)
C100.1746 (2)0.60759 (16)0.9749 (3)0.0408 (6)
C110.1895 (2)0.51927 (17)1.0271 (3)0.0498 (7)
H110.22680.50961.12040.060*
C120.1499 (2)0.44613 (18)0.9432 (3)0.0524 (7)
H120.16150.38710.97750.063*
C130.0927 (2)0.46272 (17)0.8069 (3)0.0467 (7)
C140.0734 (2)0.54826 (19)0.7530 (3)0.0507 (7)
H140.03320.55730.66100.061*
C150.1148 (2)0.62158 (18)0.8380 (3)0.0492 (7)
H150.10230.68040.80290.059*
H20.251 (2)0.7686 (17)0.9092 (12)0.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0614 (13)0.0449 (13)0.0394 (13)0.0007 (11)0.0049 (11)0.0043 (12)
N20.0729 (15)0.0427 (14)0.0324 (12)0.0021 (11)0.0011 (12)0.0001 (12)
N30.0642 (16)0.0621 (18)0.071 (2)0.0084 (13)0.0000 (14)0.0067 (16)
O10.1061 (16)0.0448 (13)0.0748 (15)0.0013 (11)0.0154 (13)0.0005 (11)
O20.0974 (15)0.0493 (11)0.0326 (11)0.0034 (10)0.0066 (10)0.0039 (9)
O30.120 (2)0.0480 (14)0.151 (3)0.0031 (13)0.0509 (18)0.0146 (16)
O40.140 (2)0.0878 (18)0.0610 (16)0.0348 (15)0.0160 (15)0.0079 (14)
C10.0560 (17)0.0469 (18)0.0589 (19)0.0005 (13)0.0028 (15)0.0070 (15)
C20.0471 (15)0.0471 (17)0.0473 (17)0.0030 (12)0.0094 (13)0.0101 (14)
C30.0607 (18)0.062 (2)0.061 (2)0.0022 (15)0.0040 (16)0.0078 (16)
C40.069 (2)0.088 (3)0.074 (2)0.0099 (19)0.0092 (18)0.015 (2)
C50.0661 (19)0.069 (2)0.089 (3)0.0102 (17)0.0021 (19)0.031 (2)
C60.0653 (19)0.0504 (19)0.093 (3)0.0031 (15)0.0068 (19)0.0135 (18)
C70.178 (4)0.057 (2)0.114 (3)0.000 (2)0.052 (3)0.016 (2)
C80.0585 (16)0.0463 (16)0.0385 (16)0.0028 (13)0.0077 (13)0.0005 (14)
C90.0539 (15)0.0426 (16)0.0358 (16)0.0080 (12)0.0070 (12)0.0043 (14)
C100.0444 (14)0.0433 (16)0.0357 (15)0.0039 (12)0.0101 (12)0.0044 (13)
C110.0588 (16)0.0453 (17)0.0449 (16)0.0023 (13)0.0001 (13)0.0058 (14)
C120.0585 (17)0.0434 (16)0.0551 (18)0.0034 (13)0.0015 (15)0.0081 (15)
C130.0481 (15)0.0426 (16)0.0502 (17)0.0058 (12)0.0089 (13)0.0046 (14)
C140.0591 (17)0.0574 (18)0.0356 (15)0.0037 (14)0.0029 (13)0.0050 (15)
C150.0632 (17)0.0441 (16)0.0402 (17)0.0008 (13)0.0017 (14)0.0065 (14)
Geometric parameters (Å, º) top
N1—C81.275 (3)C5—C61.371 (4)
N1—N21.389 (3)C5—H50.9300
N2—C91.342 (3)C6—H60.9300
N2—H20.900 (10)C7—H7A0.9600
N3—O31.206 (3)C7—H7B0.9600
N3—O41.219 (3)C7—H7C0.9600
N3—C131.480 (3)C8—H80.9300
O1—C11.370 (3)C9—C101.499 (3)
O1—C71.402 (3)C10—C151.385 (3)
O2—C91.227 (3)C10—C111.391 (3)
C1—C21.387 (4)C11—C121.374 (3)
C1—C61.393 (4)C11—H110.9300
C2—C31.387 (4)C12—C131.375 (4)
C2—C81.460 (3)C12—H120.9300
C3—C41.384 (4)C13—C141.364 (3)
C3—H30.9300C14—C151.387 (3)
C4—C51.369 (4)C14—H140.9300
C4—H40.9300C15—H150.9300
C8—N1—N2115.6 (2)H7A—C7—H7B109.5
C9—N2—N1118.7 (2)O1—C7—H7C109.5
C9—N2—H2124.7 (16)H7A—C7—H7C109.5
N1—N2—H2116.4 (17)H7B—C7—H7C109.5
O3—N3—O4123.3 (3)N1—C8—C2121.1 (2)
O3—N3—C13118.3 (3)N1—C8—H8119.4
O4—N3—C13118.3 (3)C2—C8—H8119.4
C1—O1—C7118.7 (2)O2—C9—N2123.3 (2)
O1—C1—C2115.5 (2)O2—C9—C10120.4 (2)
O1—C1—C6123.4 (3)N2—C9—C10116.3 (2)
C2—C1—C6121.0 (3)C15—C10—C11119.0 (2)
C1—C2—C3118.4 (3)C15—C10—C9123.5 (2)
C1—C2—C8120.0 (3)C11—C10—C9117.4 (2)
C3—C2—C8121.6 (3)C12—C11—C10121.2 (3)
C4—C3—C2120.9 (3)C12—C11—H11119.4
C4—C3—H3119.6C10—C11—H11119.4
C2—C3—H3119.6C11—C12—C13118.1 (3)
C5—C4—C3119.5 (3)C11—C12—H12121.0
C5—C4—H4120.3C13—C12—H12121.0
C3—C4—H4120.3C14—C13—C12122.7 (2)
C4—C5—C6121.4 (3)C14—C13—N3119.0 (3)
C4—C5—H5119.3C12—C13—N3118.3 (3)
C6—C5—H5119.3C13—C14—C15118.8 (2)
C5—C6—C1118.9 (3)C13—C14—H14120.6
C5—C6—H6120.6C15—C14—H14120.6
C1—C6—H6120.6C10—C15—C14120.3 (2)
O1—C7—H7A109.5C10—C15—H15119.9
O1—C7—H7B109.5C14—C15—H15119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)2.04 (1)2.913 (3)165 (2)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H13N3O4
Mr299.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.737 (2), 14.728 (2), 9.132 (1)
β (°) 93.572 (2)
V3)1441.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.977, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
9434, 3129, 1426
Rint0.077
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.154, 0.99
No. of reflections3129
No. of parameters203
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.900 (10)2.035 (12)2.913 (3)165 (2)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the Science Research Foundation of Baoji University of Arts and Sciences (grant No. ZK085).

References

First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAvaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552–3559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, C. D., Su, H., Zhao, J., Zhao, B. X., Zhang, S. L. & Miao, J. Y. (2010). Eur. J. Med. Chem. 45, 1438–1446.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHan, Y.-Y., Li, Y.-H. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1085–o1086.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010). Acta Cryst. E66, o1888.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJi, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105–o106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Amal, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-Y. (2010). Acta Cryst. E66, o2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds