organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-2′,4′,6′-tri­ethyl­benzo­phenone: a redetermination

aGraduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
*Correspondence e-mail: takahashi.hiroki.2x@kyoto-u.ac.jp

(Received 5 March 2011; accepted 14 March 2011; online 19 March 2011)

The structure of the title compound [systematic name: (4-chloro­phen­yl)(2,4,6-trimethyl­phen­yl)methanone], C19H21ClO, has been redetermined at 100 K. The redetermination is of significantly higher precision than the previous structure determination at 133 K and reveals disorder of the one of the o-ethyl groups [occupancy factors = 0.77 (1) and 0.23 (1)] that was not identified in the previous report [Takahashi & Ito (2010[Takahashi, H. & Ito, Y. (2010). CrystEngComm, 12, 1628-1634.]). CrystEngComm, 12, 1628–1634]. The C—C—C—C torsion angles of the major and minor disorder components of the ethyl group with respect to the attached benzene ring are −103.7 (2) and −172.0 (6)°, respectively. It is of inter­est that the title compound does not display a single-crystal-to-single-crystal polymorphic phase transition on cooling, as was observed for a closely related compound, a fact that can be attributed to the disorder in the ethyl group.

Related literature

For the structure of the title compound at 133 K and the phase transition observed in a related compound, see: Takahashi & Ito (2010[Takahashi, H. & Ito, Y. (2010). CrystEngComm, 12, 1628-1634.]). For its solid-state photochemical properties, see: Ito et al. (2009[Ito, Y., Takahashi, H., Hasegawa, J. & Turro, N. J. (2009). Tetrahedron, 65, 677-689.]). For the synthesis, see: Ito et al. (1985[Ito, Y., Kawatsuki, N., Giri, B. P., Yoshida, M. & Matsuura, T. (1985). J. Org. Chem. 50, 2893-2904.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21ClO

  • Mr = 300.81

  • Monoclinic, P 21 /c

  • a = 10.3329 (6) Å

  • b = 15.8383 (8) Å

  • c = 10.6876 (6) Å

  • β = 111.0116 (16)°

  • V = 1632.78 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.35 × 0.27 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.745, Tmax = 1.000

  • 15675 measured reflections

  • 3738 independent reflections

  • 3287 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.08

  • 3738 reflections

  • 264 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: Yadokari-XG 2009 (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009) J. Cryst. Soc. Jpn, 51, 218-224.]); program(s) used to solve structure: SIR97 (Altomare et al. (1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Yadokari-XG 2009 and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: Yadokari-XG 2009 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, 4-chloro-2',4',6'-triethylbenzophenone, is analogous to 3,4-dichloro-2',4',6'-triethylbenzophenone that undergoes a single-crystal-to-single-crystal polymorphic phase transition on cooling the crystal to 166 K (Takahashi & Ito 2010). In this phase transition one of the o-ethyl groups rotates by 180 °.

Crystal structures of the title compound at 133 K and 173 K were already reported (Takahashi & Ito, 2010: Ito et al. 2009). The crystal structure of the title compound has been redetermined at 100 K. This crystal does not show the same phase transition in this temperature range. However in this structure, one of o-ethyl groups was disordered over two positions with a site-occupancy ratio of 0.77 (1) and 0.23 (1). The molecular structure of the title compound is shown in Fig. 1. The dihedral angles of the C1—C6—C18—C19 (major disorder component) and C1—C6—C18B—C19B (minor component) are -103.7 (2) and -172.0 (6) °, respectively. This disordered ethyl group operates as a buffer in the crystal on shrinking the crystal lattice, hence this compound does not show the phase transition at low temperature.

Related literature top

For the structure of the title compound at 133 K and the phase transition observed in a related compound, see: Takahashi & Ito (2010). For its solid-state photochemical properties, see: Ito et al. (2009). For the synthesis, see: Ito et al. (1985).

Experimental top

The title compound was prepared from 1,3,5-triethylbenzene and 4-chlorobenzoyl chloride by a Friedel-Crafts reaction as described in the literature (Ito et al. 1985). Colourless prism-like crystals were obtained by slow evaporation of an MeOH solution of the title compound.

Refinement top

The H atoms of the disordered ethyl groups and the methyl group in the p-ethyl substituent in the molecule were positioned with idealized geometry using a riding model with C—H = 0.98 Å. All other H atoms were refined with isotropic displacement parameters (set to 1.2 or 1.5 times the Ueq of the parent atom).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: Yadokari-XG 2009 (Kabuto et al., 2001); program(s) used to solve structure: SIR97 (Altomare et al. (1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 (Kabuto et al., 2001) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: Yadokari-XG 2009 (Kabuto et al., 2001) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with ellipsoids drawn at the 50% probability level and the atom numbering scheme.
[Figure 2] Fig. 2. The structure of the title compound with ellipsoids at the 50% probability level showing the major occupancy molecule (top) and the minor one (bottom).
(4-chlorophenyl)(2,4,6-trimethylphenyl)methanone top
Crystal data top
C19H21ClOF(000) = 640
Mr = 300.81Dx = 1.224 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 12293 reflections
a = 10.3329 (6) Åθ = 3.3–27.5°
b = 15.8383 (8) ŵ = 0.23 mm1
c = 10.6876 (6) ÅT = 100 K
β = 111.0116 (16)°Prism, colourless
V = 1632.78 (16) Å30.35 × 0.27 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3738 independent reflections
Radiation source: sealed X-ray tube3287 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.032
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.745, Tmax = 1.000k = 2020
15675 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.3777P]
where P = (Fo2 + 2Fc2)/3
3738 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C19H21ClOV = 1632.78 (16) Å3
Mr = 300.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3329 (6) ŵ = 0.23 mm1
b = 15.8383 (8) ÅT = 100 K
c = 10.6876 (6) Å0.35 × 0.27 × 0.20 mm
β = 111.0116 (16)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3738 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3287 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 1.000Rint = 0.032
15675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.43 e Å3
3738 reflectionsΔρmin = 0.19 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.76918 (13)0.22501 (7)0.03078 (12)0.0238 (2)
C20.85966 (12)0.16627 (7)0.00844 (11)0.0225 (2)
C30.80584 (13)0.08879 (8)0.04900 (12)0.0252 (3)
H10.8691 (16)0.0474 (9)0.0616 (15)0.029 (4)*
C40.66661 (14)0.06943 (8)0.08394 (12)0.0284 (3)
C50.57933 (14)0.12902 (8)0.06129 (15)0.0327 (3)
H20.483 (2)0.1172 (11)0.0864 (18)0.044 (5)*
C60.62763 (14)0.20723 (8)0.00505 (15)0.0313 (3)
C70.82387 (13)0.30863 (8)0.09536 (12)0.0254 (3)
C80.82047 (12)0.38213 (7)0.00704 (12)0.0223 (2)
C90.79614 (13)0.37152 (8)0.12921 (12)0.0242 (2)
H30.7853 (15)0.3187 (10)0.1672 (15)0.028 (4)*
C100.79308 (13)0.44082 (8)0.20960 (12)0.0255 (3)
H40.7778 (15)0.4335 (10)0.3016 (16)0.028 (4)*
C110.81309 (12)0.52059 (7)0.15245 (12)0.0246 (2)
C120.83723 (13)0.53293 (7)0.01726 (13)0.0254 (2)
H50.8489 (16)0.5894 (10)0.0190 (16)0.032 (4)*
C130.84213 (12)0.46330 (7)0.06203 (12)0.0243 (2)
H60.8607 (15)0.4687 (9)0.1571 (15)0.025 (3)*
C141.01239 (13)0.18466 (8)0.04787 (13)0.0277 (3)
H71.0262 (17)0.2453 (11)0.0360 (16)0.035 (4)*
H81.0473 (16)0.1530 (10)0.0154 (16)0.035 (4)*
C151.09458 (16)0.16062 (10)0.19341 (15)0.0377 (3)
H91.0600 (19)0.1925 (12)0.2570 (19)0.050 (5)*
H101.0850 (18)0.1004 (11)0.2077 (18)0.042 (5)*
H111.193 (2)0.1717 (12)0.2182 (19)0.049 (5)*
C160.60860 (17)0.01351 (9)0.15049 (15)0.0385 (3)
H120.5354 (19)0.0318 (11)0.1218 (17)0.043 (5)*
H130.681 (2)0.0566 (12)0.1199 (19)0.049 (5)*
C170.55351 (17)0.00718 (11)0.30280 (15)0.0431 (4)
H140.48200.03670.33160.065*
H150.51350.06150.34160.065*
H160.62960.00730.33320.065*
C180.5219 (3)0.26959 (15)0.0045 (3)0.0323 (5)0.77 (1)
H170.56060.32730.01180.039*0.77 (1)
H180.43870.26690.07840.039*0.77 (1)
C190.4804 (4)0.25264 (16)0.1230 (3)0.0594 (12)0.77 (1)
H190.44620.19460.11850.071*0.77 (1)
H200.40690.29200.12220.071*0.77 (1)
H210.56080.26020.20580.071*0.77 (1)
C18B0.5542 (8)0.2758 (5)0.0648 (8)0.0266 (14)0.23 (1)
H18B0.60880.27910.16210.032*0.23 (1)
H17B0.55490.33230.02560.032*0.23 (1)
C19B0.4075 (8)0.2516 (5)0.0447 (12)0.051 (2)0.23 (1)
H20B0.35180.25180.05130.062*0.23 (1)
H21B0.36890.29220.09100.062*0.23 (1)
H19B0.40620.19500.08120.062*0.23 (1)
Cl10.81084 (3)0.607708 (19)0.25218 (3)0.03382 (12)
O10.86688 (12)0.31612 (6)0.21685 (9)0.0368 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0290 (6)0.0219 (5)0.0220 (5)0.0018 (4)0.0109 (5)0.0022 (4)
C20.0254 (6)0.0248 (5)0.0172 (5)0.0015 (4)0.0077 (4)0.0017 (4)
C30.0321 (6)0.0241 (5)0.0211 (6)0.0001 (5)0.0115 (5)0.0006 (5)
C40.0350 (7)0.0250 (6)0.0222 (6)0.0062 (5)0.0068 (5)0.0025 (5)
C50.0245 (6)0.0298 (6)0.0406 (7)0.0038 (5)0.0078 (6)0.0082 (6)
C60.0290 (7)0.0241 (6)0.0435 (7)0.0019 (5)0.0163 (6)0.0078 (5)
C70.0313 (6)0.0241 (6)0.0249 (6)0.0012 (4)0.0149 (5)0.0013 (5)
C80.0228 (6)0.0220 (5)0.0232 (6)0.0011 (4)0.0097 (5)0.0010 (4)
C90.0274 (6)0.0227 (5)0.0227 (6)0.0024 (4)0.0092 (5)0.0032 (5)
C100.0262 (6)0.0284 (6)0.0215 (6)0.0013 (5)0.0080 (5)0.0000 (5)
C110.0199 (5)0.0241 (5)0.0281 (6)0.0000 (4)0.0067 (5)0.0050 (5)
C120.0231 (6)0.0214 (5)0.0304 (6)0.0009 (4)0.0079 (5)0.0032 (5)
C130.0242 (6)0.0254 (6)0.0236 (6)0.0012 (4)0.0091 (5)0.0034 (5)
C140.0251 (6)0.0299 (6)0.0282 (6)0.0014 (5)0.0097 (5)0.0004 (5)
C150.0306 (7)0.0426 (8)0.0326 (7)0.0021 (6)0.0027 (6)0.0042 (6)
C160.0452 (9)0.0302 (7)0.0377 (8)0.0135 (6)0.0121 (7)0.0051 (6)
C170.0397 (8)0.0535 (9)0.0380 (8)0.0185 (7)0.0164 (7)0.0165 (7)
C180.0272 (12)0.0278 (9)0.0408 (13)0.0017 (8)0.0109 (11)0.0014 (11)
C190.086 (3)0.0415 (14)0.074 (2)0.0227 (14)0.057 (2)0.0097 (13)
C18B0.024 (4)0.024 (3)0.029 (3)0.003 (2)0.005 (3)0.000 (3)
C19B0.019 (3)0.041 (4)0.093 (7)0.010 (3)0.020 (4)0.032 (4)
Cl10.03264 (19)0.02795 (18)0.03544 (19)0.00214 (11)0.00560 (14)0.01037 (12)
O10.0595 (7)0.0309 (5)0.0235 (5)0.0063 (4)0.0192 (5)0.0014 (4)
Geometric parameters (Å, º) top
C1—C21.3988 (16)C13—H60.968 (15)
C1—C61.4012 (18)C14—C151.5292 (19)
C1—C71.5067 (16)C14—H70.986 (17)
C2—C31.3956 (16)C14—H81.007 (16)
C2—C141.5087 (17)C15—H91.010 (19)
C3—C41.3849 (18)C15—H100.976 (17)
C3—H10.969 (15)C15—H110.975 (19)
C4—C51.3854 (19)C16—C171.523 (2)
C4—C161.5115 (17)C16—H120.957 (18)
C5—C61.3891 (19)C16—H130.977 (19)
C5—H20.950 (19)C17—H140.9800
C6—C181.503 (3)C17—H150.9800
C6—C18B1.649 (8)C17—H160.9800
C7—O11.2181 (15)C18—C191.500 (3)
C7—C81.4912 (16)C18—H170.9900
C8—C91.3962 (16)C18—H180.9900
C8—C131.3977 (16)C19—H190.9800
C9—C101.3872 (17)C19—H200.9800
C9—H30.919 (15)C19—H210.9800
C10—C111.3862 (17)C18B—C19B1.502 (10)
C10—H40.946 (16)C18B—H18B0.9900
C11—C121.3891 (18)C18B—H17B0.9900
C11—Cl11.7387 (12)C19B—H20B0.9800
C12—C131.3807 (17)C19B—H21B0.9800
C12—H50.965 (16)C19B—H19B0.9800
C2—C1—C6121.05 (11)C2—C14—H7109.7 (9)
C2—C1—C7119.93 (11)C15—C14—H7108.7 (9)
C6—C1—C7119.02 (11)C2—C14—H8107.9 (9)
C3—C2—C1118.34 (11)C15—C14—H8110.9 (9)
C3—C2—C14120.30 (11)H7—C14—H8107.2 (13)
C1—C2—C14121.34 (11)C14—C15—H9111.0 (11)
C4—C3—C2121.66 (11)C14—C15—H10110.6 (11)
C4—C3—H1120.0 (9)H9—C15—H10107.7 (14)
C2—C3—H1118.3 (9)C14—C15—H11112.2 (11)
C3—C4—C5118.71 (11)H9—C15—H11108.4 (15)
C3—C4—C16121.17 (13)H10—C15—H11106.8 (15)
C5—C4—C16120.08 (12)C4—C16—C17112.27 (12)
C4—C5—C6121.85 (12)C4—C16—H12109.7 (10)
C4—C5—H2119.7 (10)C17—C16—H12109.1 (11)
C6—C5—H2118.4 (10)C4—C16—H13108.9 (11)
C5—C6—C1118.38 (12)C17—C16—H13110.6 (11)
C5—C6—C18117.26 (14)H12—C16—H13106.1 (15)
C1—C6—C18124.22 (14)C16—C17—H14109.5
C5—C6—C18B129.1 (3)C16—C17—H15109.5
C1—C6—C18B110.4 (3)H14—C17—H15109.5
O1—C7—C8121.03 (11)C16—C17—H16109.5
O1—C7—C1120.50 (11)H14—C17—H16109.5
C8—C7—C1118.45 (10)H15—C17—H16109.5
C9—C8—C13119.41 (11)C19—C18—C6112.02 (19)
C9—C8—C7121.38 (10)C19—C18—H17109.2
C13—C8—C7119.21 (10)C6—C18—H17109.2
C10—C9—C8120.42 (11)C19—C18—H18109.2
C10—C9—H3118.4 (9)C6—C18—H18109.2
C8—C9—H3121.2 (9)H17—C18—H18107.9
C11—C10—C9118.79 (11)C19B—C18B—C6111.8 (5)
C11—C10—H4120.8 (9)C19B—C18B—H18B109.3
C9—C10—H4120.4 (9)C6—C18B—H18B109.3
C10—C11—C12121.96 (11)C19B—C18B—H17B109.3
C10—C11—Cl1119.08 (9)C6—C18B—H17B109.3
C12—C11—Cl1118.94 (9)H18B—C18B—H17B107.9
C13—C12—C11118.65 (11)C18B—C19B—H20B109.5
C13—C12—H5121.5 (9)C18B—C19B—H21B109.5
C11—C12—H5119.9 (9)H20B—C19B—H21B109.5
C12—C13—C8120.76 (11)C18B—C19B—H19B109.5
C12—C13—H6121.6 (8)H20B—C19B—H19B109.5
C8—C13—H6117.7 (8)H21B—C19B—H19B109.5
C2—C14—C15112.32 (11)
C6—C1—C2—C30.82 (17)C1—C7—C8—C913.65 (17)
C7—C1—C2—C3178.67 (10)O1—C7—C8—C1312.02 (18)
C6—C1—C2—C14179.45 (11)C1—C7—C8—C13166.36 (11)
C7—C1—C2—C140.04 (16)C13—C8—C9—C100.16 (18)
C1—C2—C3—C40.12 (17)C7—C8—C9—C10179.84 (11)
C14—C2—C3—C4178.77 (11)C8—C9—C10—C110.69 (18)
C2—C3—C4—C50.22 (18)C9—C10—C11—C120.58 (18)
C2—C3—C4—C16177.85 (11)C9—C10—C11—Cl1179.47 (9)
C3—C4—C5—C60.13 (19)C10—C11—C12—C130.41 (18)
C16—C4—C5—C6177.53 (13)Cl1—C11—C12—C13178.49 (9)
C4—C5—C6—C10.8 (2)C11—C12—C13—C81.29 (18)
C4—C5—C6—C18175.11 (16)C9—C8—C13—C121.18 (18)
C4—C5—C6—C18B162.6 (4)C7—C8—C13—C12178.83 (11)
C2—C1—C6—C51.15 (19)C3—C2—C14—C1591.80 (14)
C7—C1—C6—C5178.34 (11)C1—C2—C14—C1586.80 (14)
C2—C1—C6—C18174.45 (16)C3—C4—C16—C1792.27 (16)
C7—C1—C6—C186.1 (2)C5—C4—C16—C1785.33 (16)
C2—C1—C6—C18B166.2 (3)C5—C6—C18—C1980.7 (3)
C7—C1—C6—C18B13.3 (3)C1—C6—C18—C19103.7 (2)
C2—C1—C7—O188.68 (15)C18B—C6—C18—C1947.5 (8)
C6—C1—C7—O190.82 (16)C5—C6—C18B—C19B9.0 (8)
C2—C1—C7—C892.93 (14)C1—C6—C18B—C19B172.0 (6)
C6—C1—C7—C887.57 (14)C18—C6—C18B—C19B55.1 (9)
O1—C7—C8—C9167.97 (12)

Experimental details

Crystal data
Chemical formulaC19H21ClO
Mr300.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.3329 (6), 15.8383 (8), 10.6876 (6)
β (°) 111.0116 (16)
V3)1632.78 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.35 × 0.27 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.745, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15675, 3738, 3287
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.08
No. of reflections3738
No. of parameters264
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.19

Computer programs: RAPID-AUTO (Rigaku, 1998), SIR97 (Altomare et al. (1999), SHELXL97 (Sheldrick, 2008), Yadokari-XG 2009 (Kabuto et al., 2001) and ORTEP-3 (Farrugia, 1997), Yadokari-XG 2009 (Kabuto et al., 2001) and publCIF (Westrip, 2010).

 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIto, Y., Kawatsuki, N., Giri, B. P., Yoshida, M. & Matsuura, T. (1985). J. Org. Chem. 50, 2893–2904.  CrossRef CAS Google Scholar
First citationIto, Y., Takahashi, H., Hasegawa, J. & Turro, N. J. (2009). Tetrahedron, 65, 677–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009) J. Cryst. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, H. & Ito, Y. (2010). CrystEngComm, 12, 1628–1634.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds