organic compounds
3-Methyl-5-oxo-4-(2-phenylhydrazinylidene)-4,5-dihydro-1H-pyrazole-1-carbothioamide
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, C11H11N5OS, the pyrazole ring is approximately planar, with a maximum deviation of 0.010 (2) Å. The dihedral angles between the benzene ring and the pyrazole and carbothioamide groups are 5.42 (9) and 10.61 (18)°, respectively. An intramolecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, molecules are connected by intermolecular N—H⋯O and C—H⋯S hydrogen bonds, forming R22(12) ring motifs. In addition, there is a π–π stacking interaction [centroid–centroid distance = 3.5188 (11) Å] between the pyrazole and benzene rings. These interactions link the molecules into infinite chains along [001].
Related literature
For general background to and applications of pyrazole derivatives, see: Rai & Kalluraya (2006); Rai et al. (2008); Sridhar & Perumal (2003). For graph-set theory, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811009779/sj5118sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811009779/sj5118Isup2.hkl
To a solution of ethyl-3-oxo-2-(2-phenylhydrazinylidene) butanoate (0.01mol) dissolved in glacial acetic acid (20ml), a solution of thiosemicarbazide (0.02mol) in glacial acetic acid (25ml) was added and the mixture was refluxed for 4 h. It is cooled and allowed to stand overnight. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.
All the H atoms were placed in calculated positions with N—H = 0.86Å, C—H = 0.93Å, and for C—H3 = 0.96Å. The Uiso values were constrained to be 1.5Ueq of the
for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C11H11N5OS | F(000) = 544 |
Mr = 261.31 | Dx = 1.431 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5770 reflections |
a = 7.7388 (1) Å | θ = 2.5–31.9° |
b = 16.1103 (3) Å | µ = 0.26 mm−1 |
c = 11.3575 (2) Å | T = 296 K |
β = 121.058 (1)° | Plate, orange |
V = 1213.00 (3) Å3 | 0.53 × 0.39 × 0.13 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 4393 independent reflections |
Radiation source: sealed tube | 3037 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 32.6°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→11 |
Tmin = 0.874, Tmax = 0.967 | k = −24→23 |
16258 measured reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0587P)2 + 0.2537P] where P = (Fo2 + 2Fc2)/3 |
4393 reflections | (Δ/σ)max < 0.001 |
164 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C11H11N5OS | V = 1213.00 (3) Å3 |
Mr = 261.31 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.7388 (1) Å | µ = 0.26 mm−1 |
b = 16.1103 (3) Å | T = 296 K |
c = 11.3575 (2) Å | 0.53 × 0.39 × 0.13 mm |
β = 121.058 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 4393 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3037 reflections with I > 2σ(I) |
Tmin = 0.874, Tmax = 0.967 | Rint = 0.026 |
16258 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.33 e Å−3 |
4393 reflections | Δρmin = −0.39 e Å−3 |
164 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.35472 (10) | 0.29034 (2) | 0.30227 (5) | 0.07026 (19) | |
O1 | 0.36818 (17) | 0.14963 (6) | 0.49606 (10) | 0.0434 (2) | |
N1 | 0.26541 (17) | 0.00165 (7) | 0.57723 (11) | 0.0346 (2) | |
H1B | 0.3036 | 0.0523 | 0.5989 | 0.041* | |
N2 | 0.23279 (17) | −0.02868 (7) | 0.46071 (11) | 0.0340 (2) | |
N3 | 0.25183 (18) | 0.05536 (7) | 0.18342 (11) | 0.0340 (2) | |
N4 | 0.30783 (17) | 0.12552 (6) | 0.27173 (11) | 0.0324 (2) | |
N5 | 0.3303 (2) | 0.19488 (8) | 0.10601 (13) | 0.0478 (3) | |
H5B | 0.3161 | 0.1470 | 0.0685 | 0.057* | |
H5C | 0.3439 | 0.2384 | 0.0678 | 0.057* | |
C1 | 0.2876 (2) | −0.01706 (10) | 0.79423 (14) | 0.0413 (3) | |
H1A | 0.3376 | 0.0367 | 0.8182 | 0.050* | |
C2 | 0.2625 (3) | −0.06542 (11) | 0.88499 (15) | 0.0494 (4) | |
H2A | 0.2961 | −0.0441 | 0.9703 | 0.059* | |
C3 | 0.1883 (3) | −0.14496 (11) | 0.84978 (17) | 0.0509 (4) | |
H3A | 0.1732 | −0.1775 | 0.9115 | 0.061* | |
C4 | 0.1363 (3) | −0.17618 (10) | 0.72246 (19) | 0.0523 (4) | |
H4A | 0.0839 | −0.2296 | 0.6983 | 0.063* | |
C5 | 0.1611 (2) | −0.12903 (9) | 0.62989 (16) | 0.0433 (3) | |
H5A | 0.1272 | −0.1505 | 0.5446 | 0.052* | |
C6 | 0.23757 (19) | −0.04923 (8) | 0.66727 (13) | 0.0337 (3) | |
C7 | 0.25637 (19) | 0.01943 (7) | 0.37735 (12) | 0.0308 (2) | |
C8 | 0.31689 (19) | 0.10634 (8) | 0.39492 (12) | 0.0313 (3) | |
C9 | 0.2218 (2) | −0.00556 (8) | 0.24546 (13) | 0.0328 (3) | |
C10 | 0.1592 (3) | −0.08981 (9) | 0.18412 (16) | 0.0481 (4) | |
H10A | 0.0995 | −0.0862 | 0.0863 | 0.072* | |
H10B | 0.0625 | −0.1121 | 0.2046 | 0.072* | |
H10C | 0.2751 | −0.1255 | 0.2219 | 0.072* | |
C11 | 0.3313 (2) | 0.20147 (8) | 0.22208 (14) | 0.0356 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.1363 (5) | 0.0316 (2) | 0.0759 (3) | −0.0167 (2) | 0.0783 (4) | −0.01097 (18) |
O1 | 0.0638 (7) | 0.0371 (5) | 0.0345 (5) | −0.0008 (4) | 0.0291 (5) | −0.0053 (4) |
N1 | 0.0439 (6) | 0.0335 (5) | 0.0316 (5) | 0.0008 (4) | 0.0233 (5) | 0.0044 (4) |
N2 | 0.0390 (6) | 0.0347 (5) | 0.0320 (5) | 0.0033 (4) | 0.0210 (5) | 0.0043 (4) |
N3 | 0.0454 (6) | 0.0316 (5) | 0.0304 (5) | −0.0027 (4) | 0.0233 (5) | −0.0037 (4) |
N4 | 0.0459 (6) | 0.0276 (5) | 0.0302 (5) | −0.0019 (4) | 0.0242 (5) | −0.0015 (4) |
N5 | 0.0785 (10) | 0.0355 (6) | 0.0431 (6) | −0.0039 (6) | 0.0411 (7) | 0.0037 (5) |
C1 | 0.0478 (8) | 0.0442 (7) | 0.0362 (6) | −0.0027 (6) | 0.0247 (6) | 0.0024 (6) |
C2 | 0.0543 (9) | 0.0645 (10) | 0.0351 (7) | 0.0010 (7) | 0.0271 (7) | 0.0084 (7) |
C3 | 0.0547 (9) | 0.0569 (9) | 0.0507 (8) | 0.0075 (7) | 0.0339 (7) | 0.0219 (7) |
C4 | 0.0645 (10) | 0.0377 (7) | 0.0662 (10) | 0.0024 (7) | 0.0420 (9) | 0.0121 (7) |
C5 | 0.0561 (9) | 0.0370 (7) | 0.0448 (8) | 0.0019 (6) | 0.0318 (7) | 0.0042 (6) |
C6 | 0.0345 (6) | 0.0375 (6) | 0.0330 (6) | 0.0050 (5) | 0.0202 (5) | 0.0091 (5) |
C7 | 0.0368 (6) | 0.0298 (5) | 0.0298 (5) | 0.0014 (5) | 0.0201 (5) | 0.0018 (4) |
C8 | 0.0381 (6) | 0.0309 (5) | 0.0297 (5) | 0.0024 (5) | 0.0208 (5) | 0.0004 (4) |
C9 | 0.0397 (7) | 0.0310 (6) | 0.0314 (6) | −0.0003 (5) | 0.0210 (5) | −0.0015 (4) |
C10 | 0.0700 (10) | 0.0342 (7) | 0.0471 (8) | −0.0090 (6) | 0.0351 (8) | −0.0083 (6) |
C11 | 0.0441 (7) | 0.0307 (6) | 0.0377 (6) | −0.0003 (5) | 0.0252 (6) | 0.0024 (5) |
S1—C11 | 1.6560 (13) | C1—H1A | 0.9300 |
O1—C8 | 1.2218 (15) | C2—C3 | 1.377 (3) |
N1—N2 | 1.3073 (15) | C2—H2A | 0.9300 |
N1—C6 | 1.4111 (16) | C3—C4 | 1.380 (3) |
N1—H1B | 0.8600 | C3—H3A | 0.9300 |
N2—C7 | 1.3072 (16) | C4—C5 | 1.389 (2) |
N3—C9 | 1.2972 (17) | C4—H4A | 0.9300 |
N3—N4 | 1.4222 (14) | C5—C6 | 1.387 (2) |
N4—C11 | 1.3979 (16) | C5—H5A | 0.9300 |
N4—C8 | 1.3988 (16) | C7—C9 | 1.4366 (17) |
N5—C11 | 1.3185 (18) | C7—C8 | 1.4572 (17) |
N5—H5B | 0.8602 | C9—C10 | 1.4880 (19) |
N5—H5C | 0.8600 | C10—H10A | 0.9600 |
C1—C2 | 1.383 (2) | C10—H10B | 0.9600 |
C1—C6 | 1.3863 (19) | C10—H10C | 0.9600 |
N2—N1—C6 | 119.64 (11) | C6—C5—H5A | 120.7 |
N2—N1—H1B | 120.2 | C4—C5—H5A | 120.7 |
C6—N1—H1B | 120.2 | C1—C6—C5 | 120.73 (13) |
C7—N2—N1 | 119.04 (11) | C1—C6—N1 | 118.13 (12) |
C9—N3—N4 | 107.04 (10) | C5—C6—N1 | 121.13 (12) |
C11—N4—C8 | 130.31 (11) | N2—C7—C9 | 124.65 (12) |
C11—N4—N3 | 117.83 (10) | N2—C7—C8 | 128.73 (12) |
C8—N4—N3 | 111.70 (10) | C9—C7—C8 | 106.61 (10) |
C11—N5—H5B | 120.0 | O1—C8—N4 | 129.69 (12) |
C11—N5—H5C | 120.0 | O1—C8—C7 | 127.07 (12) |
H5B—N5—H5C | 120.0 | N4—C8—C7 | 103.20 (10) |
C2—C1—C6 | 119.56 (14) | N3—C9—C7 | 111.42 (11) |
C2—C1—H1A | 120.2 | N3—C9—C10 | 122.83 (12) |
C6—C1—H1A | 120.2 | C7—C9—C10 | 125.75 (12) |
C3—C2—C1 | 120.38 (15) | C9—C10—H10A | 109.5 |
C3—C2—H2A | 119.8 | C9—C10—H10B | 109.5 |
C1—C2—H2A | 119.8 | H10A—C10—H10B | 109.5 |
C2—C3—C4 | 119.73 (14) | C9—C10—H10C | 109.5 |
C2—C3—H3A | 120.1 | H10A—C10—H10C | 109.5 |
C4—C3—H3A | 120.1 | H10B—C10—H10C | 109.5 |
C3—C4—C5 | 120.96 (16) | N5—C11—N4 | 113.45 (11) |
C3—C4—H4A | 119.5 | N5—C11—S1 | 124.20 (10) |
C5—C4—H4A | 119.5 | N4—C11—S1 | 122.34 (10) |
C6—C5—C4 | 118.63 (15) | ||
C6—N1—N2—C7 | 179.04 (11) | C11—N4—C8—C7 | 173.49 (13) |
C9—N3—N4—C11 | −174.52 (12) | N3—N4—C8—C7 | −1.73 (14) |
C9—N3—N4—C8 | 1.36 (15) | N2—C7—C8—O1 | 4.4 (2) |
C6—C1—C2—C3 | −0.1 (2) | C9—C7—C8—O1 | −176.61 (13) |
C1—C2—C3—C4 | −0.8 (3) | N2—C7—C8—N4 | −177.54 (13) |
C2—C3—C4—C5 | 1.2 (3) | C9—C7—C8—N4 | 1.46 (13) |
C3—C4—C5—C6 | −0.7 (2) | N4—N3—C9—C7 | −0.33 (15) |
C2—C1—C6—C5 | 0.6 (2) | N4—N3—C9—C10 | 179.58 (13) |
C2—C1—C6—N1 | −179.84 (13) | N2—C7—C9—N3 | 178.31 (12) |
C4—C5—C6—C1 | −0.2 (2) | C8—C7—C9—N3 | −0.73 (15) |
C4—C5—C6—N1 | −179.78 (13) | N2—C7—C9—C10 | −1.6 (2) |
N2—N1—C6—C1 | 175.36 (12) | C8—C7—C9—C10 | 179.36 (14) |
N2—N1—C6—C5 | −5.05 (19) | C8—N4—C11—N5 | 174.38 (13) |
N1—N2—C7—C9 | −178.74 (12) | N3—N4—C11—N5 | −10.64 (18) |
N1—N2—C7—C8 | 0.1 (2) | C8—N4—C11—S1 | −6.4 (2) |
C11—N4—C8—O1 | −8.5 (2) | N3—N4—C11—S1 | 168.56 (10) |
N3—N4—C8—O1 | 176.27 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O1 | 0.86 | 2.16 | 2.8147 (16) | 132 |
N5—H5C···O1i | 0.86 | 2.03 | 2.8806 (15) | 172 |
C1—H1A···S1ii | 0.93 | 2.80 | 3.6838 (16) | 159 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H11N5OS |
Mr | 261.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 7.7388 (1), 16.1103 (3), 11.3575 (2) |
β (°) | 121.058 (1) |
V (Å3) | 1213.00 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.53 × 0.39 × 0.13 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.874, 0.967 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16258, 4393, 3037 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.758 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.135, 1.05 |
No. of reflections | 4393 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.39 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O1 | 0.86 | 2.16 | 2.8147 (16) | 132 |
N5—H5C···O1i | 0.86 | 2.03 | 2.8806 (15) | 172 |
C1—H1A···S1ii | 0.93 | 2.80 | 3.6838 (16) | 159 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
HKF, SIJA and IAR thank Universiti Sains Malaysia for the Research University Grants (Nos. 1001/PFIZIK/811160 and 1001/PFIZIK/811151).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Rai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375–378. Google Scholar
Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazole derivatives are in general well-known nitrogen-containing heterocyclic compounds and various procedures have been developed for their synthesis (Rai & Kalluraya, 2006). The chemistry of pyrazole derivatives has been the subject of much interest due to their importance for various applications and their widespread potential and proven biological and pharmacological activities (Rai et al., 2008). Steroids containing a pyrazole moiety are of interest as psychopharmacological agents. Some alkyl- and aryl-substituted pyrazoles have a sharply pronounced sedative action on the central nervous system. Furthermore, certain alkyl pyrazoles show significant bacteriostatic, bacteriocidal, fungicidal, analgesic and anti-pyretic activities (Sridhar & Perumal, 2003).
Fig.1 shows the molecular structure of (I). The pyrazole (C7–C9/N3/N4) ring is approximately planar with a maximum deviation of 0.010 (2) Å for atom C8. The dihedral angle between benzene and pyrazole rings is 5.42 (9)°. The carbothioamide group (S1/C11/N5) is twisted at a dihedral angle 10.61 (18)° from the pyrazole ring. The bond lengths (Allen et al., 1987) in (I) show normal values. An intramolecular N1—H1B···O1 hydrogen bond (Table 1) generates an S(6) ring motif (Bernstein et al., 1995).
In the crystal packing of (I) (Fig. 2), molecules are connected by N5—H5C···O1 and C1—H1A···S1 intermolecular hydrogen bonds to form R22(12) ring motifs. These interactions also link the molecules into infinite one-dimensional chains along [0 0 1]. In addition, there is a π–π stacking interaction between pyrazole (C7–C9/N3/N4; centroid Cg1) and benzene (C1–C6; centroid Cg2) rings with a Cg1···Cg2 separation of 3.5188 (11) Å.