organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-5-oxo-4-(2-phenyl­hydrazinyl­­idene)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 March 2011; accepted 15 March 2011; online 19 March 2011)

In the title compound, C11H11N5OS, the pyrazole ring is approximately planar, with a maximum deviation of 0.010 (2) Å. The dihedral angles between the benzene ring and the pyrazole and carbothio­amide groups are 5.42 (9) and 10.61 (18)°, respectively. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are connected by inter­molecular N—H⋯O and C—H⋯S hydrogen bonds, forming R22(12) ring motifs. In addition, there is a ππ stacking inter­action [centroid–centroid distance = 3.5188 (11) Å] between the pyrazole and benzene rings. These inter­actions link the mol­ecules into infinite chains along [001].

Related literature

For general background to and applications of pyrazole derivatives, see: Rai & Kalluraya (2006[Rai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375-378.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Sridhar & Perumal (2003[Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483-1488.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11N5OS

  • Mr = 261.31

  • Monoclinic, P 21 /c

  • a = 7.7388 (1) Å

  • b = 16.1103 (3) Å

  • c = 11.3575 (2) Å

  • β = 121.058 (1)°

  • V = 1213.00 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.53 × 0.39 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.874, Tmax = 0.967

  • 16258 measured reflections

  • 4393 independent reflections

  • 3037 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.05

  • 4393 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1 0.86 2.16 2.8147 (16) 132
N5—H5C⋯O1i 0.86 2.03 2.8806 (15) 172
C1—H1A⋯S1ii 0.93 2.80 3.6838 (16) 159
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazole derivatives are in general well-known nitrogen-containing heterocyclic compounds and various procedures have been developed for their synthesis (Rai & Kalluraya, 2006). The chemistry of pyrazole derivatives has been the subject of much interest due to their importance for various applications and their widespread potential and proven biological and pharmacological activities (Rai et al., 2008). Steroids containing a pyrazole moiety are of interest as psychopharmacological agents. Some alkyl- and aryl-substituted pyrazoles have a sharply pronounced sedative action on the central nervous system. Furthermore, certain alkyl pyrazoles show significant bacteriostatic, bacteriocidal, fungicidal, analgesic and anti-pyretic activities (Sridhar & Perumal, 2003).

Fig.1 shows the molecular structure of (I). The pyrazole (C7–C9/N3/N4) ring is approximately planar with a maximum deviation of 0.010 (2) Å for atom C8. The dihedral angle between benzene and pyrazole rings is 5.42 (9)°. The carbothioamide group (S1/C11/N5) is twisted at a dihedral angle 10.61 (18)° from the pyrazole ring. The bond lengths (Allen et al., 1987) in (I) show normal values. An intramolecular N1—H1B···O1 hydrogen bond (Table 1) generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal packing of (I) (Fig. 2), molecules are connected by N5—H5C···O1 and C1—H1A···S1 intermolecular hydrogen bonds to form R22(12) ring motifs. These interactions also link the molecules into infinite one-dimensional chains along [0 0 1]. In addition, there is a ππ stacking interaction between pyrazole (C7–C9/N3/N4; centroid Cg1) and benzene (C1–C6; centroid Cg2) rings with a Cg1···Cg2 separation of 3.5188 (11) Å.

Related literature top

For general background to and applications of pyrazole derivatives, see: Rai & Kalluraya (2006); Rai et al. (2008); Sridhar & Perumal (2003). For graph-set theory, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of ethyl-3-oxo-2-(2-phenylhydrazinylidene) butanoate (0.01mol) dissolved in glacial acetic acid (20ml), a solution of thiosemicarbazide (0.02mol) in glacial acetic acid (25ml) was added and the mixture was refluxed for 4 h. It is cooled and allowed to stand overnight. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement top

All the H atoms were placed in calculated positions with N—H = 0.86Å, C—H = 0.93Å, and for C—H3 = 0.96Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis, showing infinite one-dimensional chains along [0 0 1]. Hydrogen bonds are shown as dashed lines.
3-Methyl-5-oxo-4-(2-phenylhydrazinylidene)-4,5-dihydro-1H-pyrazole-1- carbothioamide top
Crystal data top
C11H11N5OSF(000) = 544
Mr = 261.31Dx = 1.431 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5770 reflections
a = 7.7388 (1) Åθ = 2.5–31.9°
b = 16.1103 (3) ŵ = 0.26 mm1
c = 11.3575 (2) ÅT = 296 K
β = 121.058 (1)°Plate, orange
V = 1213.00 (3) Å30.53 × 0.39 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4393 independent reflections
Radiation source: sealed tube3037 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 32.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.874, Tmax = 0.967k = 2423
16258 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.2537P]
where P = (Fo2 + 2Fc2)/3
4393 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C11H11N5OSV = 1213.00 (3) Å3
Mr = 261.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7388 (1) ŵ = 0.26 mm1
b = 16.1103 (3) ÅT = 296 K
c = 11.3575 (2) Å0.53 × 0.39 × 0.13 mm
β = 121.058 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4393 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3037 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.967Rint = 0.026
16258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
4393 reflectionsΔρmin = 0.39 e Å3
164 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35472 (10)0.29034 (2)0.30227 (5)0.07026 (19)
O10.36818 (17)0.14963 (6)0.49606 (10)0.0434 (2)
N10.26541 (17)0.00165 (7)0.57723 (11)0.0346 (2)
H1B0.30360.05230.59890.041*
N20.23279 (17)0.02868 (7)0.46071 (11)0.0340 (2)
N30.25183 (18)0.05536 (7)0.18342 (11)0.0340 (2)
N40.30783 (17)0.12552 (6)0.27173 (11)0.0324 (2)
N50.3303 (2)0.19488 (8)0.10601 (13)0.0478 (3)
H5B0.31610.14700.06850.057*
H5C0.34390.23840.06780.057*
C10.2876 (2)0.01706 (10)0.79423 (14)0.0413 (3)
H1A0.33760.03670.81820.050*
C20.2625 (3)0.06542 (11)0.88499 (15)0.0494 (4)
H2A0.29610.04410.97030.059*
C30.1883 (3)0.14496 (11)0.84978 (17)0.0509 (4)
H3A0.17320.17750.91150.061*
C40.1363 (3)0.17618 (10)0.72246 (19)0.0523 (4)
H4A0.08390.22960.69830.063*
C50.1611 (2)0.12903 (9)0.62989 (16)0.0433 (3)
H5A0.12720.15050.54460.052*
C60.23757 (19)0.04923 (8)0.66727 (13)0.0337 (3)
C70.25637 (19)0.01943 (7)0.37735 (12)0.0308 (2)
C80.31689 (19)0.10634 (8)0.39492 (12)0.0313 (3)
C90.2218 (2)0.00556 (8)0.24546 (13)0.0328 (3)
C100.1592 (3)0.08981 (9)0.18412 (16)0.0481 (4)
H10A0.09950.08620.08630.072*
H10B0.06250.11210.20460.072*
H10C0.27510.12550.22190.072*
C110.3313 (2)0.20147 (8)0.22208 (14)0.0356 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1363 (5)0.0316 (2)0.0759 (3)0.0167 (2)0.0783 (4)0.01097 (18)
O10.0638 (7)0.0371 (5)0.0345 (5)0.0008 (4)0.0291 (5)0.0053 (4)
N10.0439 (6)0.0335 (5)0.0316 (5)0.0008 (4)0.0233 (5)0.0044 (4)
N20.0390 (6)0.0347 (5)0.0320 (5)0.0033 (4)0.0210 (5)0.0043 (4)
N30.0454 (6)0.0316 (5)0.0304 (5)0.0027 (4)0.0233 (5)0.0037 (4)
N40.0459 (6)0.0276 (5)0.0302 (5)0.0019 (4)0.0242 (5)0.0015 (4)
N50.0785 (10)0.0355 (6)0.0431 (6)0.0039 (6)0.0411 (7)0.0037 (5)
C10.0478 (8)0.0442 (7)0.0362 (6)0.0027 (6)0.0247 (6)0.0024 (6)
C20.0543 (9)0.0645 (10)0.0351 (7)0.0010 (7)0.0271 (7)0.0084 (7)
C30.0547 (9)0.0569 (9)0.0507 (8)0.0075 (7)0.0339 (7)0.0219 (7)
C40.0645 (10)0.0377 (7)0.0662 (10)0.0024 (7)0.0420 (9)0.0121 (7)
C50.0561 (9)0.0370 (7)0.0448 (8)0.0019 (6)0.0318 (7)0.0042 (6)
C60.0345 (6)0.0375 (6)0.0330 (6)0.0050 (5)0.0202 (5)0.0091 (5)
C70.0368 (6)0.0298 (5)0.0298 (5)0.0014 (5)0.0201 (5)0.0018 (4)
C80.0381 (6)0.0309 (5)0.0297 (5)0.0024 (5)0.0208 (5)0.0004 (4)
C90.0397 (7)0.0310 (6)0.0314 (6)0.0003 (5)0.0210 (5)0.0015 (4)
C100.0700 (10)0.0342 (7)0.0471 (8)0.0090 (6)0.0351 (8)0.0083 (6)
C110.0441 (7)0.0307 (6)0.0377 (6)0.0003 (5)0.0252 (6)0.0024 (5)
Geometric parameters (Å, º) top
S1—C111.6560 (13)C1—H1A0.9300
O1—C81.2218 (15)C2—C31.377 (3)
N1—N21.3073 (15)C2—H2A0.9300
N1—C61.4111 (16)C3—C41.380 (3)
N1—H1B0.8600C3—H3A0.9300
N2—C71.3072 (16)C4—C51.389 (2)
N3—C91.2972 (17)C4—H4A0.9300
N3—N41.4222 (14)C5—C61.387 (2)
N4—C111.3979 (16)C5—H5A0.9300
N4—C81.3988 (16)C7—C91.4366 (17)
N5—C111.3185 (18)C7—C81.4572 (17)
N5—H5B0.8602C9—C101.4880 (19)
N5—H5C0.8600C10—H10A0.9600
C1—C21.383 (2)C10—H10B0.9600
C1—C61.3863 (19)C10—H10C0.9600
N2—N1—C6119.64 (11)C6—C5—H5A120.7
N2—N1—H1B120.2C4—C5—H5A120.7
C6—N1—H1B120.2C1—C6—C5120.73 (13)
C7—N2—N1119.04 (11)C1—C6—N1118.13 (12)
C9—N3—N4107.04 (10)C5—C6—N1121.13 (12)
C11—N4—C8130.31 (11)N2—C7—C9124.65 (12)
C11—N4—N3117.83 (10)N2—C7—C8128.73 (12)
C8—N4—N3111.70 (10)C9—C7—C8106.61 (10)
C11—N5—H5B120.0O1—C8—N4129.69 (12)
C11—N5—H5C120.0O1—C8—C7127.07 (12)
H5B—N5—H5C120.0N4—C8—C7103.20 (10)
C2—C1—C6119.56 (14)N3—C9—C7111.42 (11)
C2—C1—H1A120.2N3—C9—C10122.83 (12)
C6—C1—H1A120.2C7—C9—C10125.75 (12)
C3—C2—C1120.38 (15)C9—C10—H10A109.5
C3—C2—H2A119.8C9—C10—H10B109.5
C1—C2—H2A119.8H10A—C10—H10B109.5
C2—C3—C4119.73 (14)C9—C10—H10C109.5
C2—C3—H3A120.1H10A—C10—H10C109.5
C4—C3—H3A120.1H10B—C10—H10C109.5
C3—C4—C5120.96 (16)N5—C11—N4113.45 (11)
C3—C4—H4A119.5N5—C11—S1124.20 (10)
C5—C4—H4A119.5N4—C11—S1122.34 (10)
C6—C5—C4118.63 (15)
C6—N1—N2—C7179.04 (11)C11—N4—C8—C7173.49 (13)
C9—N3—N4—C11174.52 (12)N3—N4—C8—C71.73 (14)
C9—N3—N4—C81.36 (15)N2—C7—C8—O14.4 (2)
C6—C1—C2—C30.1 (2)C9—C7—C8—O1176.61 (13)
C1—C2—C3—C40.8 (3)N2—C7—C8—N4177.54 (13)
C2—C3—C4—C51.2 (3)C9—C7—C8—N41.46 (13)
C3—C4—C5—C60.7 (2)N4—N3—C9—C70.33 (15)
C2—C1—C6—C50.6 (2)N4—N3—C9—C10179.58 (13)
C2—C1—C6—N1179.84 (13)N2—C7—C9—N3178.31 (12)
C4—C5—C6—C10.2 (2)C8—C7—C9—N30.73 (15)
C4—C5—C6—N1179.78 (13)N2—C7—C9—C101.6 (2)
N2—N1—C6—C1175.36 (12)C8—C7—C9—C10179.36 (14)
N2—N1—C6—C55.05 (19)C8—N4—C11—N5174.38 (13)
N1—N2—C7—C9178.74 (12)N3—N4—C11—N510.64 (18)
N1—N2—C7—C80.1 (2)C8—N4—C11—S16.4 (2)
C11—N4—C8—O18.5 (2)N3—N4—C11—S1168.56 (10)
N3—N4—C8—O1176.27 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.862.162.8147 (16)132
N5—H5C···O1i0.862.032.8806 (15)172
C1—H1A···S1ii0.932.803.6838 (16)159
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H11N5OS
Mr261.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.7388 (1), 16.1103 (3), 11.3575 (2)
β (°) 121.058 (1)
V3)1213.00 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.53 × 0.39 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.874, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
16258, 4393, 3037
Rint0.026
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 1.05
No. of reflections4393
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.862.162.8147 (16)132
N5—H5C···O1i0.862.032.8806 (15)172
C1—H1A···S1ii0.932.803.6838 (16)159
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF, SIJA and IAR thank Universiti Sains Malaysia for the Research University Grants (Nos. 1001/PFIZIK/811160 and 1001/PFIZIK/811151).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375–378.  Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds