organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[(2-Hy­dr­oxy-1-naphthalen-1-yl)methyl­­idene]-3-methyl­benzohydrazide

aCollege of Chemistry & Pharmacy, Taizhou University, Taizhou Zhejiang 317000, People's Republic of China, and bDepartment of Chemistry, Liaoning Normal University, Dalian 116029, People's Republic of China
*Correspondence e-mail: liushiyong2010@yahoo.cn

(Received 18 March 2011; accepted 19 March 2011; online 26 March 2011)

In the title compound, C19H16N2O2, the benzene ring and naphthyl ring system are inclined at a dihedral angle of 16.1 (3)°. An intra­molecular O—H⋯N hydrogen bond influences the mol­ecular conformation. In the crystal, mol­ecules are linked through N—H⋯O hydrogen bonds into chains running along the a axis.

Related literature

For the medicinal applications of hydrazone compounds, see: Hillmer et al. (2010[Hillmer, A. S., Putcha, P., Levin, J., Hogen, T., Hyman, B. T., Kretzschmar, H., McLean, P. J. & Giese, A. (2010). Biochem. Biophys. Res. Commun. 391, 461-466.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]). For hydrazones we have reported previously, see: Liu & You (2010[Liu, S.-Y. & You, Z. (2010). Acta Cryst. E66, o1652.]); Liu & Wang (2010[Liu, S.-Y. & Wang, X. (2010). Acta Cryst. E66, o1775.]). For the crystal structures of other similar hydrazone compounds, see: Vijayakumar et al. (2009[Vijayakumar, S., Adhikari, A., Kalluraya, B. & Chandrasekharan, K. (2009). Opt. Mater. 31, 1564-1569.]). For related structures, see: Xu et al. (2009[Xu, L., Huang, S.-S., Zhang, B.-J., Wang, S.-Y. & Zhang, H.-L. (2009). Acta Cryst. E65, o2412.]); Shafiq et al. (2009[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2898.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N2O2

  • Mr = 304.34

  • Monoclinic, P 21 /n

  • a = 7.1927 (11) Å

  • b = 31.042 (4) Å

  • c = 7.3557 (11) Å

  • β = 108.455 (2)°

  • V = 1557.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.983, Tmax = 0.985

  • 8247 measured reflections

  • 3295 independent reflections

  • 1736 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.166

  • S = 1.04

  • 3295 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (1) 2.00 (1) 2.869 (3) 163 (3)
O1—H1⋯N1 0.82 1.85 2.567 (3) 146
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Considerable attention has been focused on hydrazones and their medicinal applications (Hillmer et al., 2010; Raj et al., 2007). The crystal structures of such compounds are of particular interest (Vijayakumar et al., 2009). As a continuation of our work on similar compounds (Liu & You, 2010; Liu & Wang, 2010), we report herein the crystal structure of the title compound a new hydrazone.

The molecular structure of the title compound is shown in Fig. 1. The benzene ring and the naphthyl ring system are inclined at a dihedral angle of 16.1 (3) °. The dihedral angle between the C1—C10 benzene ring and the C13—C18 naphthyl ring is 16.1 (3)°. All the bond lengths are comparable to those observed in related structures (Xu et al., 2009; Shafiq et al., 2009) and those we reported previously.

In the crystal structure, molecules are linked through N–H···O hydrogen bonds, to form one-dimensional chains running along the a axis (Fig. 2 and Table 1).

Related literature top

For the medicinal applications of hydrazone compounds, see: Hillmer et al. (2010); Raj et al. (2007). For hydrazones we have reported previously, see: Liu & You (2010); Liu & Wang (2010). For the crystal structures of other similar hydrazone compounds, see: Vijayakumar et al. (2009). For related structures, see: Xu et al. (2009); Shafiq et al. (2009).

Experimental top

The title compound was prepared by the condensation reaction of 2-hydroxy-1-naphthaldehyde (0.05 mol, 8.6 g) and 3-methylbenzohydrazide (0.05 mol, 7.5 g) in anhydrous methanol (200 ml) at ambient temperature. Colourless block-shaped single crystals suitable for X-ray structural determination were obtained by slow evaporation of the solution for a period of a week.

Refinement top

H2 was located from a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically and constrained to ride on their parent atoms, with C–H distances of 0.93–0.96 Å, O–H distance of 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and C19).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius and the intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
(E)-N'-[(2-Hydroxy-1-naphthalen-1-yl)methylidene]- 3-methylbenzohydrazide top
Crystal data top
C19H16N2O2F(000) = 640
Mr = 304.34Dx = 1.298 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2077 reflections
a = 7.1927 (11) Åθ = 2.6–28.2°
b = 31.042 (4) ŵ = 0.09 mm1
c = 7.3557 (11) ÅT = 298 K
β = 108.455 (2)°Block, colourless
V = 1557.9 (4) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3295 independent reflections
Radiation source: fine-focus sealed tube1736 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 89
Tmin = 0.983, Tmax = 0.985k = 3339
8247 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0465P)2 + 1.2072P]
where P = (Fo2 + 2Fc2)/3
3295 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C19H16N2O2V = 1557.9 (4) Å3
Mr = 304.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1927 (11) ŵ = 0.09 mm1
b = 31.042 (4) ÅT = 298 K
c = 7.3557 (11) Å0.20 × 0.20 × 0.18 mm
β = 108.455 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3295 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1736 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.985Rint = 0.045
8247 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0661 restraint
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.17 e Å3
3295 reflectionsΔρmin = 0.20 e Å3
214 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9044 (4)0.21446 (7)0.1747 (4)0.0379 (6)
N20.8759 (4)0.24304 (8)0.0245 (4)0.0390 (7)
O10.9690 (4)0.19721 (7)0.5307 (3)0.0551 (7)
H10.96710.21220.43830.083*
O21.0611 (3)0.29377 (6)0.2203 (3)0.0471 (6)
C10.8618 (4)0.14411 (9)0.2810 (4)0.0337 (7)
C20.9202 (5)0.15626 (10)0.4718 (4)0.0400 (8)
C30.9317 (5)0.12581 (12)0.6167 (5)0.0525 (9)
H30.96740.13470.74390.063*
C40.8914 (5)0.08380 (12)0.5729 (5)0.0542 (10)
H40.90040.06420.67070.065*
C50.8357 (5)0.06922 (10)0.3811 (5)0.0422 (8)
C60.7989 (5)0.02510 (11)0.3339 (6)0.0587 (11)
H60.80900.00520.43120.070*
C70.7494 (6)0.01134 (11)0.1513 (7)0.0654 (12)
H70.72850.01780.12340.079*
C80.7298 (6)0.04084 (11)0.0046 (6)0.0622 (11)
H80.69370.03130.12160.075*
C90.7629 (5)0.08375 (10)0.0430 (5)0.0497 (9)
H90.74810.10290.05770.060*
C100.8191 (4)0.09950 (9)0.2322 (4)0.0358 (7)
C110.8430 (4)0.17606 (9)0.1302 (4)0.0360 (7)
H110.78640.16850.00230.043*
C120.9562 (5)0.28269 (9)0.0607 (4)0.0355 (7)
C130.9074 (4)0.31232 (9)0.1072 (4)0.0330 (7)
C140.8915 (4)0.35600 (9)0.0735 (5)0.0385 (8)
H140.91370.36540.05170.046*
C150.8436 (5)0.38593 (10)0.2206 (5)0.0456 (9)
C160.8164 (5)0.37093 (12)0.4034 (5)0.0551 (10)
H160.78400.39040.50480.066*
C170.8357 (5)0.32802 (12)0.4401 (5)0.0560 (10)
H170.81910.31900.56480.067*
C180.8798 (5)0.29812 (10)0.2929 (5)0.0421 (8)
H180.89060.26900.31800.051*
C190.8209 (6)0.43299 (10)0.1815 (6)0.0701 (12)
H19A0.91260.44960.22280.105*
H19B0.84560.43720.04660.105*
H19C0.68990.44210.25010.105*
H20.782 (3)0.2362 (10)0.085 (3)0.048 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0403 (16)0.0307 (14)0.0373 (15)0.0000 (12)0.0046 (12)0.0056 (12)
N20.0448 (17)0.0299 (14)0.0311 (16)0.0027 (12)0.0040 (13)0.0032 (12)
O10.0730 (18)0.0479 (14)0.0415 (14)0.0114 (13)0.0139 (14)0.0084 (11)
O20.0525 (15)0.0393 (13)0.0358 (13)0.0018 (11)0.0055 (11)0.0021 (10)
C10.0314 (17)0.0342 (17)0.0336 (17)0.0031 (13)0.0074 (14)0.0037 (13)
C20.039 (2)0.0409 (19)0.0386 (19)0.0010 (15)0.0110 (16)0.0014 (15)
C30.059 (2)0.065 (2)0.0294 (19)0.0026 (19)0.0086 (17)0.0098 (17)
C40.053 (2)0.057 (2)0.053 (2)0.0070 (18)0.0164 (19)0.0223 (19)
C50.0315 (18)0.0382 (19)0.056 (2)0.0047 (14)0.0121 (16)0.0126 (16)
C60.049 (2)0.041 (2)0.087 (3)0.0041 (17)0.021 (2)0.022 (2)
C70.067 (3)0.033 (2)0.094 (3)0.0100 (19)0.023 (3)0.005 (2)
C80.071 (3)0.042 (2)0.072 (3)0.0121 (19)0.021 (2)0.012 (2)
C90.056 (2)0.0386 (19)0.052 (2)0.0084 (16)0.0147 (19)0.0020 (16)
C100.0284 (18)0.0361 (17)0.042 (2)0.0035 (13)0.0104 (15)0.0034 (14)
C110.0352 (19)0.0351 (17)0.0339 (18)0.0015 (14)0.0056 (15)0.0023 (14)
C120.0378 (19)0.0307 (17)0.0336 (19)0.0043 (14)0.0051 (15)0.0026 (14)
C130.0312 (17)0.0301 (16)0.0345 (18)0.0003 (13)0.0056 (14)0.0007 (13)
C140.0356 (19)0.0314 (16)0.045 (2)0.0033 (14)0.0074 (15)0.0004 (14)
C150.0315 (19)0.0367 (19)0.066 (3)0.0003 (14)0.0114 (17)0.0126 (17)
C160.043 (2)0.058 (2)0.059 (3)0.0010 (18)0.0089 (19)0.0244 (19)
C170.055 (2)0.073 (3)0.039 (2)0.003 (2)0.0122 (18)0.0092 (19)
C180.042 (2)0.0399 (18)0.043 (2)0.0014 (15)0.0107 (16)0.0012 (15)
C190.059 (3)0.036 (2)0.114 (4)0.0054 (18)0.027 (3)0.019 (2)
Geometric parameters (Å, º) top
N1—C111.277 (4)C8—C91.367 (4)
N1—N21.380 (3)C8—H80.9300
N2—C121.350 (4)C9—C101.408 (4)
N2—H20.898 (10)C9—H90.9300
O1—C21.353 (4)C11—H110.9300
O1—H10.8200C12—C131.490 (4)
O2—C121.227 (3)C13—C181.388 (4)
C1—C21.384 (4)C13—C141.390 (4)
C1—C101.439 (4)C14—C151.384 (4)
C1—C111.462 (4)C14—H140.9300
C2—C31.407 (4)C15—C161.377 (5)
C3—C41.352 (5)C15—C191.508 (4)
C3—H30.9300C16—C171.375 (5)
C4—C51.413 (5)C16—H160.9300
C4—H40.9300C17—C181.385 (4)
C5—C61.417 (5)C17—H170.9300
C5—C101.419 (4)C18—H180.9300
C6—C71.346 (5)C19—H19A0.9600
C6—H60.9300C19—H19B0.9600
C7—C81.388 (5)C19—H19C0.9600
C7—H70.9300
C11—N1—N2116.3 (3)C9—C10—C1123.5 (3)
C12—N2—N1118.8 (2)C5—C10—C1119.1 (3)
C12—N2—H2123 (2)N1—C11—C1119.8 (3)
N1—N2—H2116 (2)N1—C11—H11120.1
C2—O1—H1109.5C1—C11—H11120.1
C2—C1—C10119.2 (3)O2—C12—N2122.7 (3)
C2—C1—C11120.7 (3)O2—C12—C13122.2 (3)
C10—C1—C11120.2 (3)N2—C12—C13115.2 (3)
O1—C2—C1123.0 (3)C18—C13—C14119.4 (3)
O1—C2—C3116.2 (3)C18—C13—C12122.8 (3)
C1—C2—C3120.8 (3)C14—C13—C12117.7 (3)
C4—C3—C2120.7 (3)C15—C14—C13122.0 (3)
C4—C3—H3119.7C15—C14—H14119.0
C2—C3—H3119.7C13—C14—H14119.0
C3—C4—C5121.2 (3)C16—C15—C14117.4 (3)
C3—C4—H4119.4C16—C15—C19121.6 (3)
C5—C4—H4119.4C14—C15—C19121.1 (3)
C4—C5—C6121.7 (3)C17—C16—C15121.8 (3)
C4—C5—C10119.1 (3)C17—C16—H16119.1
C6—C5—C10119.2 (3)C15—C16—H16119.1
C7—C6—C5121.4 (3)C16—C17—C18120.6 (3)
C7—C6—H6119.3C16—C17—H17119.7
C5—C6—H6119.3C18—C17—H17119.7
C6—C7—C8119.8 (3)C17—C18—C13118.8 (3)
C6—C7—H7120.1C17—C18—H18120.6
C8—C7—H7120.1C13—C18—H18120.6
C9—C8—C7120.9 (4)C15—C19—H19A109.5
C9—C8—H8119.5C15—C19—H19B109.5
C7—C8—H8119.5H19A—C19—H19B109.5
C8—C9—C10121.3 (3)C15—C19—H19C109.5
C8—C9—H9119.3H19A—C19—H19C109.5
C10—C9—H9119.3H19B—C19—H19C109.5
C9—C10—C5117.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)2.00 (1)2.869 (3)163 (3)
O1—H1···N10.821.852.567 (3)146
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H16N2O2
Mr304.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.1927 (11), 31.042 (4), 7.3557 (11)
β (°) 108.455 (2)
V3)1557.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.983, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
8247, 3295, 1736
Rint0.045
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.166, 1.04
No. of reflections3295
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.898 (10)2.000 (14)2.869 (3)163 (3)
O1—H1···N10.821.852.567 (3)146
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Undergraduate Innovation Group Project of Zhejiang Province (project no. 2010R428015).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHillmer, A. S., Putcha, P., Levin, J., Hogen, T., Hyman, B. T., Kretzschmar, H., McLean, P. J. & Giese, A. (2010). Biochem. Biophys. Res. Commun. 391, 461–466.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, S.-Y. & Wang, X. (2010). Acta Cryst. E66, o1775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & You, Z. (2010). Acta Cryst. E66, o1652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2898.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayakumar, S., Adhikari, A., Kalluraya, B. & Chandrasekharan, K. (2009). Opt. Mater. 31, 1564–1569.  Web of Science CrossRef CAS Google Scholar
First citationXu, L., Huang, S.-S., Zhang, B.-J., Wang, S.-Y. & Zhang, H.-L. (2009). Acta Cryst. E65, o2412.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds