organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o1007-o1008

(E)-6-Bromo-3-{2-[2-(4-chloro­benzyl­­idene)hydrazin­yl]thia­zol-5-yl}-2H-chromen-2-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 19 March 2011; accepted 25 March 2011; online 31 March 2011)

In the title compound, C19H11N3O2SClBr, the chromene ring system and the thia­zole ring are each approximately planar, with maximum deviations of 0.033 (3) Å and 0.006 (3) Å, respectively. The mol­ecule adopts an E configuration about the central C=N double bond. The central thia­zole ring makes dihedral angles of 9.06 (14)° and 12.07 (11)° with the chloro-substituted phenyl ring and the chromene ring, respectively. The mol­ecular structure features a short C—H⋯O contact, which generates an S(6) ring motif. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds, which link the mol­ecules into chains along the b axis. ππ stacking inter­actions [centroid-centroid distance = 3.4813 (15) Å] are also present.

Related literature

For the biological activity and applications of thia­zolyl coumarin derivatives, see: Samsonova et al. (2007[Samsonova, L., Gadirov, R., Ishchenko, V. & Khilya, O. (2007). Optics Spectroscopy, 102, 878-884.]); Bullock et al. (2009[Bullock, S. J., Felton, C. E., Fennessy, R. V., Harding, L. P., Andrews, M., Pope, S. J. A., Rice, C. R. & Riis-Johannessen, T. (2009). Dalton Trans. pp. 10570-10573.]); Siddiqui et al. (2009[Siddiqui, N., Arshad, M. & Khan, S. (2009). Acta. Pol. Pharm.-Drug Res. 66, 161-167.]); Kalkhambkar et al. (2007[Kalkhambkar, R., Kulkarni, G., Shivkumar, H. & Rao, R. (2007). Eur. J. Med. Chem. 42, 1272-1276.]); Kamal et al. (2009[Kamal, A., Adil, S., Tamboli, J., Siddardha, B. & Murthy, U. (2009). Lett. Drug Des. Discov. 6, 201-209.]); Desai et al. (2008[Desai, J., Desai, C. & Desai, K. (2008). J. Iran. Chem. Soc. 5, 67-73.]). For the synthesis of the title compound, see: Bakkar et al. (2003[Bakkar, M., Siddiqi, M. Y. & Monshi, M. (2003). Synth. React. Inorg., Met.-Org. Nano-Met. Chem. 33, 1157-1169.]); Vijesh et al. (2010[Vijesh, A., Isloor, A. M., Prabhu, V., Ahmad, S. & Malladi, S. (2010). Eur. J. Med. Chem. 45, 5460-5464.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H11BrClN3O2S

  • Mr = 460.73

  • Monoclinic, C 2/c

  • a = 30.5837 (7) Å

  • b = 13.6682 (3) Å

  • c = 9.0454 (1) Å

  • β = 90.161 (2)°

  • V = 3781.18 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.45 mm−1

  • T = 296 K

  • 0.21 × 0.16 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.628, Tmax = 0.842

  • 29664 measured reflections

  • 5499 independent reflections

  • 2216 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 0.97

  • 5499 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2i 0.81 (4) 2.16 (4) 2.957 (4) 169 (4)
C11—H11A⋯O2 0.93 2.35 2.878 (4) 115
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiazolyl coumarin derivatives are reported to be associated with diverse applications. They have industrial applications as fluorescent probes, laser dyes (Samsonova et al., 2007) and luminescents (Bullock et al., 2009). They also exhibit a variety of biological activities as anticonvulsants (Siddiqui et al., 2009), analgesics, anti-inflammatory (Kalkhambkar et al., 2007) and antimicrobial agents (Kamal et al., 2009; Desai et al., 2008). The title compound is a new derivative of thiazolylcoumarin. We present here its crystal structure.

The molecular structure of the compound, (I), displays a trans configuration with respect to the C13N3 double bond. The chromene (O1/C1–C9) ring system and thiazole (S1/N1/C10–C12) ring are approximately planar, with the maximum deviation of 0.033 (3) Å for atom C2 and 0.006 (3)Å for atom C12, respectively. The central thiazole (S1/N1/C10–C12) ring makes dihedral angles of 9.06 (14)° and 12.07 (11)° with the chloro-substituted phenyl (C14–C19) ring and the chromene (O1/C1–C9) ring, respectively.

In the crystal packing (Fig. 2), the molecular structure is stabilized by an intramolecular C—H···O (Table 1) hydrogen bond which generates an S(6) (Bernstein et al., 1995) ring motif. Furthermore, the crystal structure is stabilized by intermolecular N—H···O hydrogen bonds which link the molecules into chains parallel to the b-axis. π···π [centroid-centroid distance = 3.4813 (15) Å; 1/2-X, 1/2-Y, 2-Z] stacking interactions between the thiazole (S1/N1/C10–C12) and pyran (O1/C3–C7) rings are also observed.

Related literature top

For the biological activity and applications of thiazolyl coumarin derivatives, see: Samsonova et al. (2007); Bullock et al. (2009); Siddiqui et al. (2009); Kalkhambkar et al. (2007); Kamal et al. (2009); Desai et al. (2008). For the synthesis of the title compound, see: Bakkar et al. (2003); Vijesh et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

4-chlorobenzylidene thiosemicarbazone (Bakkar et al., 2003) and 6-bromo-3-(2-bromoacetyl)-2H-chromen-2-one (Vijesh et al., 2010) were synthesized as reported in the literature. The title compound (I) was obtained by the cyclocondensation of 4-chlorobenzylidene thiosemicarbazone with 6-bromo-3-(2-bromoacetyl)- 2H-chromen-2-one. A solution of 6-bromo-3-(2-bromoacetyl)-2H- chromen-2-one (2.5 mmol) and 4-chlorobenzylidene thiosemicarbazone (2.5 mmol) in chloroform-ethanol (2:1) was refluxed for 2 hours at 60°C to yield a dense yellow precipitate. The reaction mixture was cooled in ice bath and basified with ammonia to pH 7–8. The title compound (I) was recrystallized from ethanol-chloroform (1:2) to give yellow block like crystals.

Refinement top

Atom H1N2 was located from a difference Fourier map and refined freely [N–H = 0.81 (4) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak is located at 1.20 Å from Br1 and the deepest hole 0.91 located at from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound (I).
(E)-6-Bromo-3-{2-[2-(4-chlorobenzylidene)hydrazinyl]thiazol-5-yl}- 2H-chromen-2-one top
Crystal data top
C19H11BrClN3O2SF(000) = 1840
Mr = 460.73Dx = 1.619 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3684 reflections
a = 30.5837 (7) Åθ = 2.5–23.1°
b = 13.6682 (3) ŵ = 2.45 mm1
c = 9.0454 (1) ÅT = 296 K
β = 90.161 (2)°Block, yellow
V = 3781.18 (13) Å30.21 × 0.16 × 0.07 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5499 independent reflections
Radiation source: fine-focus sealed tube2216 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4042
Tmin = 0.628, Tmax = 0.842k = 1919
29664 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.960P]
where P = (Fo2 + 2Fc2)/3
5499 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C19H11BrClN3O2SV = 3781.18 (13) Å3
Mr = 460.73Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.5837 (7) ŵ = 2.45 mm1
b = 13.6682 (3) ÅT = 296 K
c = 9.0454 (1) Å0.21 × 0.16 × 0.07 mm
β = 90.161 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5499 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2216 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.842Rint = 0.058
29664 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.31 e Å3
5499 reflectionsΔρmin = 0.34 e Å3
248 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.437955 (16)0.51731 (4)1.13651 (6)0.1287 (3)
Cl10.00680 (3)0.31602 (10)0.05275 (11)0.1132 (4)
S10.19723 (3)0.13873 (7)0.60268 (9)0.0712 (3)
O10.33937 (7)0.13971 (15)1.0762 (2)0.0679 (6)
O20.29214 (8)0.04381 (19)0.9684 (3)0.0902 (7)
N10.23951 (7)0.28268 (18)0.7199 (2)0.0575 (6)
N20.18701 (9)0.3330 (2)0.5513 (3)0.0698 (8)
N30.15428 (8)0.3072 (2)0.4558 (2)0.0629 (7)
C10.41549 (11)0.3221 (3)1.2104 (4)0.0778 (10)
H1A0.43810.32731.27900.093*
C20.39334 (10)0.2362 (3)1.1954 (3)0.0738 (9)
H2A0.40090.18251.25330.089*
C30.35967 (9)0.2291 (2)1.0938 (3)0.0609 (8)
C40.30642 (10)0.1259 (3)0.9763 (3)0.0652 (8)
C50.29156 (9)0.2090 (2)0.8891 (3)0.0556 (7)
C60.31145 (9)0.2961 (2)0.9077 (3)0.0591 (8)
H6A0.30180.34930.85240.071*
C70.34686 (9)0.3096 (2)1.0094 (3)0.0601 (8)
C80.36987 (9)0.3966 (3)1.0262 (4)0.0715 (9)
H8A0.36200.45150.97160.086*
C90.40440 (10)0.4013 (3)1.1240 (4)0.0766 (10)
C100.25573 (9)0.1967 (2)0.7827 (3)0.0569 (7)
C110.23679 (10)0.1131 (2)0.7328 (3)0.0662 (8)
H11A0.24420.05050.76450.079*
C120.20879 (9)0.2616 (2)0.6261 (3)0.0583 (8)
C130.13768 (10)0.3778 (3)0.3809 (3)0.0666 (8)
H13A0.14860.44080.39350.080*
C140.10205 (10)0.3614 (2)0.2765 (3)0.0609 (8)
C150.08312 (10)0.2710 (3)0.2569 (3)0.0713 (9)
H15A0.09310.21830.31280.086*
C160.04983 (10)0.2566 (3)0.1567 (3)0.0763 (10)
H16A0.03770.19480.14400.092*
C170.03487 (10)0.3341 (3)0.0762 (3)0.0767 (10)
C180.05284 (12)0.4249 (3)0.0907 (4)0.0925 (12)
H18A0.04260.47710.03440.111*
C190.08655 (11)0.4378 (3)0.1909 (4)0.0846 (10)
H19A0.09910.49940.20100.102*
H1N20.1963 (12)0.388 (3)0.547 (4)0.092 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1122 (4)0.0915 (4)0.1821 (5)0.0164 (3)0.0729 (4)0.0212 (3)
Cl10.0812 (6)0.1664 (12)0.0917 (6)0.0210 (7)0.0463 (5)0.0255 (7)
S10.0712 (5)0.0676 (6)0.0748 (5)0.0092 (4)0.0221 (4)0.0101 (4)
O10.0663 (13)0.0633 (15)0.0739 (13)0.0083 (11)0.0199 (11)0.0053 (11)
O20.0935 (17)0.0603 (16)0.1165 (19)0.0022 (14)0.0368 (14)0.0108 (15)
N10.0574 (14)0.0579 (16)0.0572 (13)0.0024 (12)0.0134 (12)0.0054 (12)
N20.0731 (18)0.065 (2)0.0715 (17)0.0067 (16)0.0335 (14)0.0020 (16)
N30.0618 (15)0.0675 (18)0.0593 (14)0.0034 (13)0.0222 (12)0.0035 (13)
C10.062 (2)0.092 (3)0.079 (2)0.012 (2)0.0280 (17)0.015 (2)
C20.071 (2)0.078 (2)0.073 (2)0.0179 (19)0.0248 (17)0.0020 (19)
C30.0561 (17)0.064 (2)0.0623 (18)0.0080 (16)0.0080 (15)0.0052 (16)
C40.0615 (19)0.059 (2)0.075 (2)0.0033 (17)0.0123 (16)0.0000 (18)
C50.0544 (16)0.057 (2)0.0556 (16)0.0079 (15)0.0070 (13)0.0087 (15)
C60.0574 (17)0.0558 (19)0.0639 (17)0.0043 (15)0.0139 (14)0.0037 (15)
C70.0523 (16)0.064 (2)0.0638 (18)0.0106 (15)0.0140 (14)0.0096 (16)
C80.0622 (19)0.063 (2)0.089 (2)0.0099 (17)0.0253 (17)0.0119 (19)
C90.066 (2)0.073 (2)0.091 (2)0.0052 (18)0.0242 (18)0.022 (2)
C100.0553 (17)0.058 (2)0.0577 (17)0.0031 (15)0.0051 (14)0.0033 (15)
C110.0664 (19)0.058 (2)0.074 (2)0.0010 (16)0.0174 (16)0.0036 (17)
C120.0579 (17)0.064 (2)0.0535 (16)0.0003 (15)0.0114 (14)0.0064 (15)
C130.0686 (19)0.068 (2)0.0634 (18)0.0012 (17)0.0199 (16)0.0117 (17)
C140.0605 (18)0.063 (2)0.0592 (17)0.0073 (16)0.0150 (15)0.0078 (16)
C150.0673 (19)0.078 (2)0.0688 (19)0.0023 (18)0.0228 (16)0.0028 (18)
C160.066 (2)0.085 (3)0.078 (2)0.0002 (19)0.0202 (17)0.011 (2)
C170.061 (2)0.106 (3)0.0624 (19)0.017 (2)0.0232 (16)0.015 (2)
C180.095 (3)0.095 (3)0.088 (3)0.025 (2)0.037 (2)0.005 (2)
C190.089 (2)0.074 (2)0.090 (2)0.009 (2)0.032 (2)0.004 (2)
Geometric parameters (Å, º) top
Br1—C91.892 (3)C5—C101.466 (4)
Cl1—C171.743 (3)C6—C71.431 (4)
S1—C111.721 (3)C6—H6A0.9300
S1—C121.728 (3)C7—C81.390 (4)
O1—C41.365 (4)C8—C91.377 (4)
O1—C31.379 (4)C8—H8A0.9300
O2—C41.206 (4)C10—C111.359 (4)
N1—C121.297 (3)C11—H11A0.9300
N1—C101.395 (4)C13—C141.458 (4)
N2—C121.361 (4)C13—H13A0.9300
N2—N31.366 (3)C14—C151.376 (4)
N2—H1N20.81 (4)C14—C191.383 (4)
N3—C131.283 (4)C15—C161.376 (4)
C1—C21.363 (5)C15—H15A0.9300
C1—C91.377 (5)C16—C171.364 (5)
C1—H1A0.9300C16—H16A0.9300
C2—C31.382 (4)C17—C181.363 (5)
C2—H2A0.9300C18—C191.382 (5)
C3—C71.395 (4)C18—H18A0.9300
C4—C51.455 (4)C19—H19A0.9300
C5—C61.347 (4)
C11—S1—C1288.34 (15)C1—C9—Br1119.5 (2)
C4—O1—C3122.0 (2)C8—C9—Br1119.5 (3)
C12—N1—C10109.6 (2)C11—C10—N1115.0 (2)
C12—N2—N3119.1 (3)C11—C10—C5129.2 (3)
C12—N2—H1N2122 (3)N1—C10—C5115.8 (3)
N3—N2—H1N2118 (3)C10—C11—S1110.7 (2)
C13—N3—N2115.4 (3)C10—C11—H11A124.6
C2—C1—C9120.0 (3)S1—C11—H11A124.6
C2—C1—H1A120.0N1—C12—N2121.2 (3)
C9—C1—H1A120.0N1—C12—S1116.4 (2)
C1—C2—C3119.7 (3)N2—C12—S1122.4 (2)
C1—C2—H2A120.1N3—C13—C14121.3 (3)
C3—C2—H2A120.1N3—C13—H13A119.3
O1—C3—C2118.3 (3)C14—C13—H13A119.3
O1—C3—C7120.6 (2)C15—C14—C19117.6 (3)
C2—C3—C7121.1 (3)C15—C14—C13122.4 (3)
O2—C4—O1115.7 (3)C19—C14—C13120.0 (3)
O2—C4—C5125.6 (3)C16—C15—C14121.6 (3)
O1—C4—C5118.7 (3)C16—C15—H15A119.2
C6—C5—C4118.8 (3)C14—C15—H15A119.2
C6—C5—C10121.3 (3)C17—C16—C15119.2 (3)
C4—C5—C10119.9 (3)C17—C16—H16A120.4
C5—C6—C7122.3 (3)C15—C16—H16A120.4
C5—C6—H6A118.8C18—C17—C16121.4 (3)
C7—C6—H6A118.8C18—C17—Cl1119.2 (3)
C8—C7—C3118.3 (3)C16—C17—Cl1119.4 (3)
C8—C7—C6124.2 (3)C17—C18—C19118.6 (4)
C3—C7—C6117.5 (3)C17—C18—H18A120.7
C9—C8—C7119.8 (3)C19—C18—H18A120.7
C9—C8—H8A120.1C18—C19—C14121.6 (4)
C7—C8—H8A120.1C18—C19—H19A119.2
C1—C9—C8121.0 (3)C14—C19—H19A119.2
C12—N2—N3—C13174.7 (3)C12—N1—C10—C5178.7 (2)
C9—C1—C2—C30.3 (5)C6—C5—C10—C11168.5 (3)
C4—O1—C3—C2178.7 (3)C4—C5—C10—C1111.1 (5)
C4—O1—C3—C70.3 (4)C6—C5—C10—N19.3 (4)
C1—C2—C3—O1176.8 (3)C4—C5—C10—N1171.1 (3)
C1—C2—C3—C72.2 (5)N1—C10—C11—S10.1 (3)
C3—O1—C4—O2178.1 (3)C5—C10—C11—S1177.7 (2)
C3—O1—C4—C51.8 (4)C12—S1—C11—C100.5 (2)
O2—C4—C5—C6178.4 (3)C10—N1—C12—N2178.9 (3)
O1—C4—C5—C61.4 (4)C10—N1—C12—S11.0 (3)
O2—C4—C5—C101.2 (5)N3—N2—C12—N1178.7 (3)
O1—C4—C5—C10179.0 (3)N3—N2—C12—S11.2 (4)
C4—C5—C6—C70.4 (4)C11—S1—C12—N10.9 (2)
C10—C5—C6—C7179.2 (3)C11—S1—C12—N2179.0 (3)
O1—C3—C7—C8176.8 (3)N2—N3—C13—C14179.1 (3)
C2—C3—C7—C82.2 (4)N3—C13—C14—C152.8 (5)
O1—C3—C7—C61.5 (4)N3—C13—C14—C19176.2 (3)
C2—C3—C7—C6179.5 (3)C19—C14—C15—C160.3 (5)
C5—C6—C7—C8176.3 (3)C13—C14—C15—C16179.3 (3)
C5—C6—C7—C31.9 (4)C14—C15—C16—C170.8 (5)
C3—C7—C8—C90.3 (5)C15—C16—C17—C181.4 (5)
C6—C7—C8—C9177.9 (3)C15—C16—C17—Cl1179.1 (2)
C2—C1—C9—C82.8 (5)C16—C17—C18—C190.8 (6)
C2—C1—C9—Br1175.8 (3)Cl1—C17—C18—C19178.5 (3)
C7—C8—C9—C12.8 (5)C17—C18—C19—C140.4 (6)
C7—C8—C9—Br1175.8 (2)C15—C14—C19—C181.0 (5)
C12—N1—C10—C110.6 (4)C13—C14—C19—C18180.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.81 (4)2.16 (4)2.957 (4)169 (4)
C11—H11A···O20.932.352.878 (4)115
Symmetry code: (i) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H11BrClN3O2S
Mr460.73
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)30.5837 (7), 13.6682 (3), 9.0454 (1)
β (°) 90.161 (2)
V3)3781.18 (13)
Z8
Radiation typeMo Kα
µ (mm1)2.45
Crystal size (mm)0.21 × 0.16 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.628, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
29664, 5499, 2216
Rint0.058
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 0.97
No. of reflections5499
No. of parameters248
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.81 (4)2.16 (4)2.957 (4)169 (4)
C11—H11A···O20.932.352.878 (4)115
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AA, HO, CKL thank the Malaysian Government and Universiti Sains Malaysia (USM) for a grant [1001/PKimia/811133] to conduct this work. AA also thanks Universiti Sains Malaysia for a fellowship. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBakkar, M., Siddiqi, M. Y. & Monshi, M. (2003). Synth. React. Inorg., Met.-Org. Nano-Met. Chem. 33, 1157–1169.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBullock, S. J., Felton, C. E., Fennessy, R. V., Harding, L. P., Andrews, M., Pope, S. J. A., Rice, C. R. & Riis-Johannessen, T. (2009). Dalton Trans. pp. 10570–10573.  CrossRef Google Scholar
First citationDesai, J., Desai, C. & Desai, K. (2008). J. Iran. Chem. Soc. 5, 67–73.  CrossRef CAS Google Scholar
First citationKalkhambkar, R., Kulkarni, G., Shivkumar, H. & Rao, R. (2007). Eur. J. Med. Chem. 42, 1272–1276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKamal, A., Adil, S., Tamboli, J., Siddardha, B. & Murthy, U. (2009). Lett. Drug Des. Discov. 6, 201–209.  CrossRef CAS Google Scholar
First citationSamsonova, L., Gadirov, R., Ishchenko, V. & Khilya, O. (2007). Optics Spectroscopy, 102, 878–884.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Arshad, M. & Khan, S. (2009). Acta. Pol. Pharm.-Drug Res. 66, 161–167.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijesh, A., Isloor, A. M., Prabhu, V., Ahmad, S. & Malladi, S. (2010). Eur. J. Med. Chem. 45, 5460–5464.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o1007-o1008
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds