organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o977-o978

4-{(Z)-2-[(E)-Benzyl­idenehydrazinyl­­idene]-3,6-di­hydro-2H-1,3,4-thia­diazin-5-yl}-3-phenyl-1,2,3-oxa­diazol-3-ium-5-olate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 19 March 2011; accepted 22 March 2011; online 26 March 2011)

The title compound, C18H14N6O2S, exists in trans and cis configurations with respect to the two acyclic C=N bonds [bond lengths = 1.2835 (9) and 1.3049 (9) Å]. The 3,6-dihydro-2H-1,3,4-thia­diazine ring adopts a half-boat conformation. The oxadiazol-3-ium ring makes dihedral angles of 53.70 (4) and 60.26 (4)° with the two phenyl rings. In the crystal, mol­ecules are linked via pairs of inter­molecular N—H⋯N hydrogen bonds, generating R22(8) ring motifs, and are further linked via inter­molecular C—H⋯O and C—H⋯S hydrogen bonds into a three-dimensional network. The short inter­molecular distance between the oxadiazol-3-ium rings [3.4154 (4) Å] indicates the existence of a ππ inter­action.

Related literature

For general background to and the biological activity of sydnone derivatives, see: Newton & Ramsden (1982[Newton, C. G. & Ramsden, C. A. (1982). Tetrahedron, 38, 2965-3011.]); Wagner & Hill (1974[Wagner, H. & Hill, J. B. (1974). J. Med. Chem. 17, 1337-1338.]); Kalluraya & Rahiman (1997[Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049-1052.]). For the preparation, see: Kalluraya et al. (2003[Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355-356.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N6O2S

  • Mr = 378.41

  • Triclinic, [P \overline 1]

  • a = 6.8752 (2) Å

  • b = 10.1335 (3) Å

  • c = 12.7374 (4) Å

  • α = 78.578 (1)°

  • β = 88.984 (1)°

  • γ = 85.874 (1)°

  • V = 867.58 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.58 × 0.27 × 0.08 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.885, Tmax = 0.982

  • 29236 measured reflections

  • 7567 independent reflections

  • 6818 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.101

  • S = 1.03

  • 7567 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N2i 0.852 (15) 2.015 (15) 2.8664 (9) 178.3 (11)
C14—H14A⋯O2ii 0.93 2.58 3.2303 (10) 127
C15—H15A⋯O2iii 0.93 2.51 3.2391 (9) 136
C18—H18A⋯S1iv 0.93 2.84 3.7061 (8) 155
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+2, -z; (iii) x, y-1, z; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones are a class of mesoionic compounds containing a 1,2,3-oxadiazole ring system. A number of sydnone derivatives have shown diverse biological activities such as anti-inflammatory, analgesic and anti-arthritic (Newton & Ramsden, 1982; Wagner & Hill, 1974) properties. Sydnones with heterocyclic substituents at the 4-position are also known to exhibit a wide range of biological properties (Kalluraya & Rahiman, 1997). Encouraged by these reports and in continuation of our research for biologically-active nitrogen-containing heterocycles, a thiadiazine moiety was introduced at the 4-position of the phenylsydnone. A series of thiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with N'-(phenylmethylidene)carbonohydrazide. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

The molecular structure is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The title compound exists in trans and cis configurations with respect to the acyclic C7N1 and C8N2 bonds [C7N1 = 1.2835 (9) Å and C8N2 = 1.3049 (9) Å]. The 3,6-dihydro-2H-1,3,4-thiadiazine ring (S1/N3/N4/C8-C10) adopts a half boat-conformation with atom C9 deviating by 0.359 (1) Å from the mean plane through the remaining atoms, puckering parameters (Cremer & Pople, 1975) Q = 0.5575 (7) Å, Θ = 108.09 (7)° and ϕ = 137.99 (7)°. The oxadiazol-3-ium ring (O1/N5/N6/C11/C12) makes dihedral angles of 53.70 (4) and 60.26 (4) ° with two phenyl rings (C1-C6 and C13-C18).

In the crystal packing (Fig. 2), the molecules are linked via pairs of intermolecular N3–H1N3···N2 hydrogen bonds (Table 1), generating R22(8) ring motifs (Bernstein et al., 1995) and are further linked via intermolecular C14–H14A···O2, C15–H15A···O2 and C18–H18A···S1 hydrogen bonds (Table 1) into a three-dimensional network. The crystal packing is further consolidated by π-π stacking interactions between the centroids of O1/N5/N6/C11/C12 (Cg1) rings, with Cg1···Cg1v distance of 3.4154 (4) Å [symmetry code: (v) 2-X, 2-Y, -Z].

Related literature top

For general background to and the biological activity of sydnone derivatives, see: Newton & Ramsden (1982); Wagner & Hill (1974); Kalluraya & Rahiman (1997). For the preparation, see: Kalluraya et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental top

To a solution of 4-bromoacetyl-3-(p-anisyl)sydnone (0.01 mol) and N'-(phenylmethylidene) carbonohydrazide (0.01 mol) in ethanol, catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2 to 3 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement top

H1N3 was located in a difference Fourier map and allowed to refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.97 Å and Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak is located at 0.68 Å from C13 and the deepest hole is located at 0.71 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
4-{(Z)-2-[(E)-Benzylidenehydrazinylidene]-3,6-dihydro- 2H-1,3,4-thiadiazin-5-yl}-3-phenyl-1,2,3-oxadiazol-3-ium-5-olate top
Crystal data top
C18H14N6O2SZ = 2
Mr = 378.41F(000) = 392
Triclinic, P1Dx = 1.449 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8752 (2) ÅCell parameters from 9935 reflections
b = 10.1335 (3) Åθ = 2.9–37.5°
c = 12.7374 (4) ŵ = 0.21 mm1
α = 78.578 (1)°T = 100 K
β = 88.984 (1)°Block, yellow
γ = 85.874 (1)°0.58 × 0.27 × 0.08 mm
V = 867.58 (5) Å3
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
7567 independent reflections
Radiation source: fine-focus sealed tube6818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 35.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.885, Tmax = 0.982k = 1616
29236 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.2223P]
where P = (Fo2 + 2Fc2)/3
7567 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C18H14N6O2Sγ = 85.874 (1)°
Mr = 378.41V = 867.58 (5) Å3
Triclinic, P1Z = 2
a = 6.8752 (2) ÅMo Kα radiation
b = 10.1335 (3) ŵ = 0.21 mm1
c = 12.7374 (4) ÅT = 100 K
α = 78.578 (1)°0.58 × 0.27 × 0.08 mm
β = 88.984 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
7567 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6818 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.982Rint = 0.022
29236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.65 e Å3
7567 reflectionsΔρmin = 0.37 e Å3
248 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30498 (3)0.783931 (19)0.313847 (14)0.01687 (5)
O10.78647 (9)1.04039 (5)0.06087 (4)0.01590 (10)
O20.64969 (9)1.17463 (5)0.04865 (5)0.01895 (11)
N10.14753 (10)0.81808 (6)0.50454 (5)0.01503 (11)
N20.31270 (10)0.89086 (6)0.48880 (5)0.01459 (11)
N30.57604 (10)0.93168 (6)0.37674 (5)0.01437 (10)
N40.65689 (9)0.96382 (6)0.27631 (5)0.01327 (10)
N50.83490 (10)0.90536 (6)0.05820 (5)0.01491 (11)
N60.78483 (9)0.84631 (6)0.03858 (5)0.01194 (10)
C10.17886 (12)0.66190 (8)0.55457 (6)0.01753 (12)
H1A0.09670.64230.50010.021*
C20.34245 (13)0.58975 (8)0.58220 (7)0.02162 (14)
H2A0.36820.52080.54700.026*
C30.46864 (12)0.62002 (9)0.66263 (7)0.02278 (15)
H3A0.57890.57210.68020.027*
C40.42941 (12)0.72184 (8)0.71643 (7)0.02058 (14)
H4A0.51350.74230.76980.025*
C50.26331 (11)0.79319 (7)0.68997 (6)0.01674 (12)
H5A0.23620.86040.72670.020*
C60.13718 (11)0.76450 (7)0.60870 (5)0.01428 (11)
C70.03747 (11)0.83958 (7)0.58273 (6)0.01507 (12)
H7A0.06840.90260.62270.018*
C80.40347 (10)0.87300 (7)0.40132 (5)0.01289 (11)
C90.52692 (13)0.75797 (7)0.23945 (6)0.01832 (13)
H9A0.61250.68860.28260.022*
H9B0.49530.72680.17490.022*
C100.63071 (10)0.88567 (7)0.20958 (5)0.01271 (11)
C110.70776 (10)0.92958 (6)0.10204 (5)0.01202 (10)
C120.70589 (10)1.06188 (7)0.03802 (5)0.01354 (11)
C130.82190 (10)0.70199 (7)0.06881 (5)0.01254 (11)
C140.73006 (11)0.61939 (7)0.01353 (6)0.01455 (11)
H14A0.65070.65580.04490.017*
C150.76016 (11)0.48012 (7)0.04823 (7)0.01743 (13)
H15A0.70000.42230.01280.021*
C160.87966 (12)0.42727 (7)0.13554 (7)0.01914 (13)
H16A0.89740.33430.15880.023*
C170.97311 (13)0.51258 (8)0.18857 (7)0.01997 (14)
H17A1.05470.47640.24610.024*
C180.94424 (11)0.65205 (7)0.15537 (6)0.01683 (12)
H18A1.00520.71010.19020.020*
H1N30.607 (2)0.9855 (15)0.4163 (12)0.029 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01861 (9)0.02017 (9)0.01455 (8)0.00900 (6)0.00407 (6)0.00768 (6)
O10.0196 (2)0.0137 (2)0.0136 (2)0.00159 (18)0.00192 (18)0.00089 (16)
O20.0219 (3)0.0114 (2)0.0231 (3)0.00014 (18)0.0021 (2)0.00294 (18)
N10.0161 (3)0.0161 (2)0.0132 (2)0.0050 (2)0.00206 (19)0.00282 (18)
N20.0162 (3)0.0164 (2)0.0120 (2)0.0053 (2)0.00244 (19)0.00370 (18)
N30.0157 (3)0.0175 (2)0.0113 (2)0.0056 (2)0.00213 (19)0.00495 (18)
N40.0143 (2)0.0144 (2)0.0118 (2)0.00285 (18)0.00189 (18)0.00367 (17)
N50.0180 (3)0.0141 (2)0.0126 (2)0.00152 (19)0.00223 (19)0.00250 (18)
N60.0129 (2)0.0116 (2)0.0117 (2)0.00116 (17)0.00069 (18)0.00305 (17)
C10.0191 (3)0.0174 (3)0.0166 (3)0.0043 (2)0.0004 (2)0.0035 (2)
C20.0211 (3)0.0196 (3)0.0245 (3)0.0070 (3)0.0030 (3)0.0028 (3)
C30.0163 (3)0.0216 (3)0.0282 (4)0.0053 (3)0.0003 (3)0.0020 (3)
C40.0157 (3)0.0206 (3)0.0228 (3)0.0006 (2)0.0038 (3)0.0016 (3)
C50.0169 (3)0.0153 (3)0.0170 (3)0.0006 (2)0.0025 (2)0.0010 (2)
C60.0153 (3)0.0135 (2)0.0135 (2)0.0024 (2)0.0004 (2)0.0008 (2)
C70.0171 (3)0.0151 (3)0.0134 (3)0.0038 (2)0.0023 (2)0.0029 (2)
C80.0150 (3)0.0125 (2)0.0114 (2)0.0027 (2)0.0007 (2)0.00234 (19)
C90.0240 (3)0.0139 (3)0.0188 (3)0.0064 (2)0.0084 (3)0.0063 (2)
C100.0145 (3)0.0114 (2)0.0126 (2)0.0022 (2)0.0021 (2)0.00294 (19)
C110.0133 (3)0.0109 (2)0.0122 (2)0.00156 (19)0.0016 (2)0.00314 (18)
C120.0138 (3)0.0126 (2)0.0142 (3)0.0017 (2)0.0007 (2)0.0023 (2)
C130.0131 (3)0.0111 (2)0.0136 (2)0.00038 (19)0.0008 (2)0.00321 (19)
C140.0138 (3)0.0141 (3)0.0168 (3)0.0015 (2)0.0006 (2)0.0055 (2)
C150.0155 (3)0.0136 (3)0.0242 (3)0.0027 (2)0.0037 (2)0.0061 (2)
C160.0182 (3)0.0134 (3)0.0244 (3)0.0003 (2)0.0049 (3)0.0012 (2)
C170.0205 (3)0.0171 (3)0.0203 (3)0.0034 (2)0.0016 (3)0.0006 (2)
C180.0173 (3)0.0162 (3)0.0170 (3)0.0009 (2)0.0030 (2)0.0037 (2)
Geometric parameters (Å, º) top
S1—C81.7400 (7)C4—C51.3961 (11)
S1—C91.8126 (8)C4—H4A0.9300
O1—N51.3787 (8)C5—C61.3996 (10)
O1—C121.4168 (9)C5—H5A0.9300
O2—C121.2120 (8)C6—C71.4655 (10)
N1—C71.2835 (9)C7—H7A0.9300
N1—N21.3884 (9)C9—C101.5022 (10)
N2—C81.3049 (9)C9—H9A0.9700
N3—C81.3689 (9)C9—H9B0.9700
N3—N41.3737 (8)C10—C111.4567 (9)
N3—H1N30.852 (15)C11—C121.4238 (9)
N4—C101.2940 (9)C13—C141.3857 (10)
N5—N61.3110 (8)C13—C181.3892 (10)
N6—C111.3553 (9)C14—C151.3944 (10)
N6—C131.4418 (9)C14—H14A0.9300
C1—C21.3878 (11)C15—C161.3898 (12)
C1—C61.4044 (10)C15—H15A0.9300
C1—H1A0.9300C16—C171.3940 (12)
C2—C31.3967 (13)C16—H16A0.9300
C2—H2A0.9300C17—C181.3935 (11)
C3—C41.3906 (13)C17—H17A0.9300
C3—H3A0.9300C18—H18A0.9300
C8—S1—C996.96 (4)N3—C8—S1120.03 (5)
N5—O1—C12111.40 (5)C10—C9—S1111.37 (5)
C7—N1—N2115.29 (6)C10—C9—H9A109.4
C8—N2—N1110.58 (6)S1—C9—H9A109.4
C8—N3—N4125.97 (6)C10—C9—H9B109.4
C8—N3—H1N3115.9 (11)S1—C9—H9B109.4
N4—N3—H1N3111.4 (10)H9A—C9—H9B108.0
C10—N4—N3118.01 (6)N4—C10—C11115.69 (6)
N6—N5—O1103.91 (5)N4—C10—C9122.87 (6)
N5—N6—C11115.66 (6)C11—C10—C9121.45 (6)
N5—N6—C13118.02 (6)N6—C11—C12105.42 (6)
C11—N6—C13126.28 (6)N6—C11—C10125.08 (6)
C2—C1—C6120.13 (7)C12—C11—C10129.33 (6)
C2—C1—H1A119.9O2—C12—O1120.16 (6)
C6—C1—H1A119.9O2—C12—C11136.18 (7)
C1—C2—C3120.37 (8)O1—C12—C11103.61 (5)
C1—C2—H2A119.8C14—C13—C18122.93 (6)
C3—C2—H2A119.8C14—C13—N6119.23 (6)
C4—C3—C2120.01 (8)C18—C13—N6117.80 (6)
C4—C3—H3A120.0C13—C14—C15118.00 (7)
C2—C3—H3A120.0C13—C14—H14A121.0
C3—C4—C5119.76 (8)C15—C14—H14A121.0
C3—C4—H4A120.1C16—C15—C14120.34 (7)
C5—C4—H4A120.1C16—C15—H15A119.8
C4—C5—C6120.62 (7)C14—C15—H15A119.8
C4—C5—H5A119.7C15—C16—C17120.51 (7)
C6—C5—H5A119.7C15—C16—H16A119.7
C5—C6—C1119.11 (7)C17—C16—H16A119.7
C5—C6—C7119.85 (7)C18—C17—C16119.99 (7)
C1—C6—C7121.04 (7)C18—C17—H17A120.0
N1—C7—C6119.76 (6)C16—C17—H17A120.0
N1—C7—H7A120.1C13—C18—C17118.21 (7)
C6—C7—H7A120.1C13—C18—H18A120.9
N2—C8—N3118.27 (6)C17—C18—H18A120.9
N2—C8—S1121.63 (5)
C7—N1—N2—C8173.31 (7)N5—N6—C11—C120.31 (8)
C8—N3—N4—C1033.94 (10)C13—N6—C11—C12178.09 (6)
C12—O1—N5—N60.31 (8)N5—N6—C11—C10175.83 (7)
O1—N5—N6—C110.39 (8)C13—N6—C11—C106.39 (11)
O1—N5—N6—C13178.36 (6)N4—C10—C11—N6145.60 (7)
C6—C1—C2—C31.12 (12)C9—C10—C11—N634.74 (11)
C1—C2—C3—C40.80 (13)N4—C10—C11—C1239.98 (11)
C2—C3—C4—C50.21 (12)C9—C10—C11—C12139.68 (8)
C3—C4—C5—C60.90 (12)N5—O1—C12—O2177.78 (7)
C4—C5—C6—C10.58 (11)N5—O1—C12—C110.14 (8)
C4—C5—C6—C7179.42 (7)N6—C11—C12—O2176.97 (9)
C2—C1—C6—C50.43 (11)C10—C11—C12—O21.70 (14)
C2—C1—C6—C7178.40 (7)N6—C11—C12—O10.09 (7)
N2—N1—C7—C6177.89 (6)C10—C11—C12—O1175.35 (7)
C5—C6—C7—N1176.39 (7)N5—N6—C13—C1462.37 (9)
C1—C6—C7—N14.79 (11)C11—N6—C13—C14119.90 (8)
N1—N2—C8—N3176.40 (6)N5—N6—C13—C18119.82 (7)
N1—N2—C8—S16.57 (9)C11—N6—C13—C1857.91 (10)
N4—N3—C8—N2156.39 (7)C18—C13—C14—C151.16 (11)
N4—N3—C8—S120.70 (10)N6—C13—C14—C15176.54 (6)
C9—S1—C8—N2164.38 (6)C13—C14—C15—C160.22 (11)
C9—S1—C8—N318.64 (6)C14—C15—C16—C170.92 (12)
C8—S1—C9—C1045.98 (6)C15—C16—C17—C181.17 (12)
N3—N4—C10—C11175.86 (6)C14—C13—C18—C170.91 (11)
N3—N4—C10—C93.80 (11)N6—C13—C18—C17176.81 (7)
S1—C9—C10—N445.22 (9)C16—C17—C18—C130.27 (12)
S1—C9—C10—C11134.42 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N2i0.852 (15)2.015 (15)2.8664 (9)178.3 (11)
C14—H14A···O2ii0.932.583.2303 (10)127
C15—H15A···O2iii0.932.513.2391 (9)136
C18—H18A···S1iv0.932.843.7061 (8)155
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z; (iii) x, y1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H14N6O2S
Mr378.41
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.8752 (2), 10.1335 (3), 12.7374 (4)
α, β, γ (°)78.578 (1), 88.984 (1), 85.874 (1)
V3)867.58 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.58 × 0.27 × 0.08
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.885, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
29236, 7567, 6818
Rint0.022
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.101, 1.03
No. of reflections7567
No. of parameters248
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N2i0.852 (15)2.015 (15)2.8664 (9)178.3 (11)
C14—H14A···O2ii0.932.583.2303 (10)127
C15—H15A···O2iii0.932.513.2391 (9)136
C18—H18A···S1iv0.932.843.7061 (8)155
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z; (iii) x, y1, z; (iv) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049–1052.  CAS Google Scholar
First citationKalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355–356.  CAS Google Scholar
First citationNewton, C. G. & Ramsden, C. A. (1982). Tetrahedron, 38, 2965–3011.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWagner, H. & Hill, J. B. (1974). J. Med. Chem. 17, 1337–1338.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o977-o978
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds