organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o1009-o1010

(E)-6-Bromo-3-{2-[2-(2-chloro­benzyl­­idene)hydrazin­yl]thia­zol-5-yl}-2H-chromen-2-one di­methyl sulfoxide monosolvate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 19 March 2011; accepted 25 March 2011; online 31 March 2011)

In the title compound C19H11N3O2SClBr·C2H6OS, the mol­ecule adopts an E configuration about the central C=N double bond. The chromene ring system and the thia­zole ring are approximately planar, with maximum deviations of 0.027 (2) and 0.003 (1) Å, respectively. The central thia­zole ring makes dihedral angles of 21.82 (9) and 5.88 (7)° with the chloro-substituted phenyl ring and the chromene ring, respectively. In the crystal, mol­ecules are connected via N—H⋯O, N—H⋯S and C—H⋯O hydrogen bonds, forming supra­molecular chains along the c axis. An intra­molecular C—H⋯O hydrogen bond occurs. ππ inter­actions are observed between the thia­zole and phenyl rings [centroid–centroid distance = 3.6293 (10) Å]. A short Br⋯Cl contact of 3.37 (6) Å also occurs.

Related literature

For details and applications of coumarin derivatives, see Liebig et al. (1974[Liebig, H., Pfetzing, H. & Grafe, A. (1974). Arzneim-Forsch. 24, 887-892.]); Pathak et al. (1981[Pathak, R. B., Jahan, B. & Bahel, S. C. (1981). Bokin Bobai. 9, 477-480.]); Hwu et al. (2008[Hwu, J., Singha, R., Hong, S., Chang, Y., Das, A., Vliegen, I., De Clercq, E. & Neyts, J. (2008). Antivir. Res. 77, 157-162.]); Lee et al. (2003[Lee, Y., Lee, S., Jin, J. & Yun-Choi, H. (2003). Arch. Pharmacal Res. 26, 723-726.]); Siddiqui et al. (2009[Siddiqui, N., Arshad, M. & Khan, S. (2009). Acta. Pol.-Pharm. Drug Res. 66, 161-167.]). For the synthesis of the title compound, see: Tian et al. (1997[Tian, Y., Duan, C., Zhao, C., You, X., Mak, T. C. W. & Zhang, Z. (1997). Inorg. Chem. 36, 1247-1252.]); Yaragatti et al. (2010[Yaragatti, N. B., Kulkarni, M. V., Ghate, M. D., Hebbar, S. S. & Hegde, G. R. (2010). J. Sulfur Chem. 31, 123-133.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C19H11BrClN3O2S·C2H6OS

  • Mr = 538.86

  • Monoclinic, P 21 /c

  • a = 6.5806 (4) Å

  • b = 15.7789 (9) Å

  • c = 20.9378 (13) Å

  • β = 90.684 (2)°

  • V = 2173.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.24 mm−1

  • T = 100 K

  • 0.49 × 0.09 × 0.06 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.406, Tmax = 0.870

  • 37791 measured reflections

  • 6392 independent reflections

  • 5013 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.069

  • S = 1.00

  • 6392 reflections

  • 290 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N1⋯S2 0.85 (2) 2.81 (2) 3.5932 (17) 153 (2)
N2—H1N1⋯O3 0.85 (2) 1.97 (2) 2.808 (2) 169 (3)
C11—H11⋯O2 0.92 (2) 2.34 (3) 2.869 (2) 116.3 (19)
C13—H13A⋯O3 0.93 2.55 3.318 (2) 140
C17—H17A⋯O3i 0.93 2.60 3.285 (2) 131
C20—H20C⋯O2ii 0.96 2.47 3.431 (2) 176
Symmetry codes: (i) [-x-1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarin derivatives have remarkable medicinal value due to their potential chemotherapeutic (Liebig et al., 1974), fungicidal (Pathak et al., 1981), antiviral (Hwu et al., 2008) and anticoagulant (Lee et al., 2003) properties. Furthermore, coumarins with a variety of substituted thiazole rings exhibit promising biological activities. Recently, some coumarins incorporating thiazolyl semicarbazones which act as anticonvulsant agents were reported (Siddiqui et al., 2009). The title compound (I) is a new derivative of hydrazinyl thiazolyl coumarin. We present here its crystal structure.

The asymmetric unit of the title compound (Fig. 1) consists of one (E)-6-bromo-3-(2-(2-(2-chlorobenzylidene)hydrazinyl)thiazol-5-yl)- 2H-chromen-2-one molecule and one dimethylsulfoxide solvent molecule. The chromene (O1/C1–C9) ring system and thiazole (S1/N1/C10–C12) ring are approximately planar, with maximum deviations of 0.027 (2) Å for atom C9 and 0.003 (1)Å for atom N1, respectively. The molecule adopts an E configuration about the central C13N3 double bond. The central thiazole (S1/N1/C10–C12) ring makes dihedral angles of 21.82 (9)° and 5.88 (7)° with the chloro-substituted phenyl (C14–C19) ring and the chromene (O1/C1–C9) ring, respectively.

In the crystal structure, (Fig. 2), the molecules are connected via N2—H1N1···S2, N2—H1N1···O3, C13—H13A···O3, C17—H17A···O3 and C20—H20C···O2 (Table 1) hydrogen bonds to form one dimensional supramolecular chains along the c-axis. An intramolecular C11—H11···O2 hydrogen bond stabilizes the molecular structure. π···π interactions are observed between the thiazole (S1/N1/C10–C12) and phenyl (C2–C7) rings [centroid-centroid distance = 3.6293 (10)) Å; -1+x, y, z]. A short Br···Cl contact of 3.37 Å also occurs.

Related literature top

For details and applications of coumarin derivatives, see Liebig et al. (1974); Pathak et al. (1981); Hwu et al. (2008); Lee et al. (2003); Siddiqui et al. (2009). For the synthesis of the title compound, see: Tian et al. (1997); Yaragatti et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

2-chlorobenzylidene thiosemicarbazone (Tian et al., 1997) and 6-bromo-3-(2-bromoacetyl)-2H-chromen-2-one (Yaragatti et al., 2010) were synthesized as reported in the literature. Title compound (I) was prepared by reacting 2-chlorobenzylidene thiosemicarbazone (2.5 mmol) with 6-bromo-3-(2-bromoacetyl)-2H- chromen-2-one (2.5 mmol) in chloroform-ethanol (3:1) mixture. The reaction mixture was refluxed for 2–3 hours at 60°C to yield a dense yellow precipitate. The mixture was cooled in ice bath and basified with ammonia to pH 7–8. The title compound (I) was recrystallized from DMSO as yellow needle-like crystals.

Refinement top

Atoms H11 and H1N1 were located from a difference Fourier map and refined freely [N–H = 0.95 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The highest residual electron density peak is located at 0.78 Å from Br1 and the deepest hole is located at 0.68 Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound (I).
(E)-6-Bromo-3-{2-[2-(2-chlorobenzylidene)hydrazinyl]thiazol-5-yl}- 2H-chromen-2-one dimethyl sulfoxide monosolvate top
Crystal data top
C19H11BrClN3O2S·C2H6OSF(000) = 1088
Mr = 538.86Dx = 1.646 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9665 reflections
a = 6.5806 (4) Åθ = 2.8–29.9°
b = 15.7789 (9) ŵ = 2.24 mm1
c = 20.9378 (13) ÅT = 100 K
β = 90.684 (2)°Needle, yellow
V = 2173.9 (2) Å30.49 × 0.09 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6392 independent reflections
Radiation source: fine-focus sealed tube5013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 30.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.406, Tmax = 0.870k = 2222
37791 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0237P)2 + 1.8103P]
where P = (Fo2 + 2Fc2)/3
6392 reflections(Δ/σ)max = 0.002
290 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
C19H11BrClN3O2S·C2H6OSV = 2173.9 (2) Å3
Mr = 538.86Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5806 (4) ŵ = 2.24 mm1
b = 15.7789 (9) ÅT = 100 K
c = 20.9378 (13) Å0.49 × 0.09 × 0.06 mm
β = 90.684 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6392 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5013 reflections with I > 2σ(I)
Tmin = 0.406, Tmax = 0.870Rint = 0.059
37791 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.59 e Å3
6392 reflectionsΔρmin = 0.86 e Å3
290 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.24046 (3)0.503519 (12)0.413433 (9)0.02077 (6)
S10.06464 (7)0.92776 (3)0.44296 (2)0.01447 (9)
Cl10.43250 (7)0.82410 (3)0.14834 (2)0.01568 (9)
S20.19587 (8)0.69303 (3)0.22076 (2)0.01861 (10)
O10.85351 (19)0.78959 (8)0.55746 (6)0.0141 (3)
O20.6219 (2)0.88767 (8)0.57238 (6)0.0178 (3)
O30.0131 (2)0.67996 (9)0.26280 (7)0.0221 (3)
N10.2804 (2)0.79823 (9)0.40883 (7)0.0124 (3)
N20.0151 (2)0.81708 (10)0.34770 (8)0.0151 (3)
N30.1775 (2)0.86848 (9)0.33469 (7)0.0140 (3)
C10.6516 (3)0.73061 (11)0.44975 (8)0.0134 (3)
H1A0.58250.70930.41420.016*
C20.8397 (3)0.69208 (11)0.46917 (8)0.0131 (3)
C30.9315 (3)0.62551 (11)0.43607 (9)0.0151 (4)
H3A0.86930.60270.39980.018*
C41.1151 (3)0.59407 (11)0.45784 (9)0.0154 (4)
C51.2114 (3)0.62663 (12)0.51219 (9)0.0160 (4)
H5A1.33530.60450.52600.019*
C61.1216 (3)0.69197 (11)0.54534 (9)0.0155 (4)
H6A1.18360.71410.58180.019*
C70.9373 (3)0.72427 (11)0.52342 (8)0.0130 (3)
C80.6760 (3)0.82992 (11)0.53893 (8)0.0126 (3)
C90.5713 (3)0.79729 (11)0.48163 (8)0.0127 (3)
C100.3801 (3)0.83652 (11)0.46033 (8)0.0123 (3)
C110.2874 (3)0.90653 (11)0.48441 (9)0.0146 (3)
C120.1142 (3)0.83956 (11)0.39565 (8)0.0129 (3)
C130.2802 (3)0.84836 (11)0.28434 (8)0.0135 (3)
H13A0.23950.80280.25940.016*
C140.4611 (3)0.89708 (10)0.26614 (8)0.0119 (3)
C150.5571 (3)0.95147 (11)0.30911 (8)0.0140 (3)
H15A0.50630.95610.35060.017*
C160.7256 (3)0.99838 (11)0.29128 (9)0.0165 (4)
H16A0.78521.03510.32040.020*
C170.8065 (3)0.99079 (11)0.22969 (9)0.0174 (4)
H17A0.92031.02220.21770.021*
C180.7171 (3)0.93639 (11)0.18634 (9)0.0159 (4)
H18A0.77130.93050.14540.019*
C190.5458 (3)0.89069 (10)0.20465 (8)0.0124 (3)
C200.1935 (3)0.60863 (12)0.16416 (9)0.0197 (4)
H20A0.07940.61530.13560.030*
H20B0.18280.55550.18620.030*
H20C0.31700.60970.14020.030*
C210.4090 (3)0.66012 (13)0.26810 (10)0.0248 (4)
H21A0.42600.69800.30360.037*
H21B0.52910.66100.24260.037*
H21C0.38640.60370.28360.037*
H110.337 (4)0.9398 (15)0.5171 (11)0.028 (6)*
H1N10.009 (4)0.7740 (15)0.3243 (11)0.025 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01991 (10)0.02102 (9)0.02135 (10)0.00864 (8)0.00087 (7)0.00287 (8)
S10.0134 (2)0.01564 (19)0.0143 (2)0.00403 (17)0.00280 (17)0.00214 (16)
Cl10.0156 (2)0.01753 (19)0.01388 (19)0.00135 (17)0.00127 (16)0.00306 (15)
S20.0189 (2)0.01360 (19)0.0234 (2)0.00134 (18)0.00188 (19)0.00019 (17)
O10.0126 (6)0.0165 (6)0.0132 (6)0.0020 (5)0.0029 (5)0.0014 (5)
O20.0173 (7)0.0198 (6)0.0162 (6)0.0021 (5)0.0036 (5)0.0055 (5)
O30.0189 (7)0.0204 (7)0.0271 (8)0.0024 (6)0.0065 (6)0.0067 (6)
N10.0112 (7)0.0138 (7)0.0121 (7)0.0003 (6)0.0023 (6)0.0013 (5)
N20.0135 (7)0.0161 (7)0.0157 (7)0.0036 (6)0.0049 (6)0.0032 (6)
N30.0109 (7)0.0161 (7)0.0149 (7)0.0021 (6)0.0014 (6)0.0019 (6)
C10.0133 (8)0.0157 (8)0.0111 (8)0.0001 (7)0.0035 (7)0.0002 (6)
C20.0110 (8)0.0149 (8)0.0134 (8)0.0003 (7)0.0014 (7)0.0007 (6)
C30.0139 (9)0.0170 (8)0.0145 (8)0.0017 (7)0.0028 (7)0.0008 (7)
C40.0153 (9)0.0145 (8)0.0164 (9)0.0031 (7)0.0011 (7)0.0002 (7)
C50.0125 (8)0.0189 (8)0.0166 (9)0.0025 (7)0.0028 (7)0.0038 (7)
C60.0146 (9)0.0183 (8)0.0136 (8)0.0008 (7)0.0031 (7)0.0017 (7)
C70.0126 (8)0.0135 (8)0.0128 (8)0.0000 (7)0.0004 (7)0.0004 (6)
C80.0104 (8)0.0151 (8)0.0123 (8)0.0010 (7)0.0004 (6)0.0014 (6)
C90.0110 (8)0.0150 (8)0.0120 (8)0.0016 (7)0.0019 (7)0.0016 (6)
C100.0103 (8)0.0147 (8)0.0117 (8)0.0000 (7)0.0017 (6)0.0010 (6)
C110.0128 (8)0.0162 (8)0.0147 (8)0.0009 (7)0.0038 (7)0.0002 (7)
C120.0136 (8)0.0125 (7)0.0125 (8)0.0001 (7)0.0002 (7)0.0005 (6)
C130.0123 (8)0.0135 (8)0.0146 (8)0.0010 (7)0.0017 (7)0.0004 (6)
C140.0103 (8)0.0125 (7)0.0129 (8)0.0014 (6)0.0013 (6)0.0010 (6)
C150.0123 (8)0.0168 (8)0.0128 (8)0.0018 (7)0.0015 (7)0.0013 (7)
C160.0159 (9)0.0165 (8)0.0172 (8)0.0010 (7)0.0001 (7)0.0018 (7)
C170.0151 (9)0.0181 (8)0.0189 (9)0.0032 (7)0.0022 (7)0.0015 (7)
C180.0154 (9)0.0178 (8)0.0144 (8)0.0004 (7)0.0043 (7)0.0006 (7)
C190.0123 (8)0.0115 (7)0.0134 (8)0.0011 (6)0.0002 (7)0.0009 (6)
C200.0185 (9)0.0228 (9)0.0179 (9)0.0006 (8)0.0018 (8)0.0019 (7)
C210.0217 (10)0.0269 (10)0.0257 (10)0.0002 (9)0.0036 (8)0.0055 (8)
Geometric parameters (Å, º) top
Br1—C41.8986 (18)C5—H5A0.9300
S1—C111.7273 (18)C6—C71.389 (2)
S1—C121.7413 (18)C6—H6A0.9300
Cl1—C191.7524 (18)C8—C91.469 (2)
S2—O31.5130 (15)C9—C101.467 (2)
S2—C201.7826 (19)C10—C111.362 (2)
S2—C211.785 (2)C11—H110.92 (2)
O1—C71.372 (2)C13—C141.464 (2)
O1—C81.382 (2)C13—H13A0.9300
O2—C81.206 (2)C14—C151.399 (2)
N1—C121.300 (2)C14—C191.400 (2)
N1—C101.393 (2)C15—C161.381 (2)
N2—C121.356 (2)C15—H15A0.9300
N2—N31.366 (2)C16—C171.394 (3)
N2—H1N10.85 (2)C16—H16A0.9300
N3—C131.286 (2)C17—C181.385 (3)
C1—C91.356 (2)C17—H17A0.9300
C1—C21.434 (2)C18—C191.388 (2)
C1—H1A0.9300C18—H18A0.9300
C2—C71.394 (2)C20—H20A0.9600
C2—C31.399 (2)C20—H20B0.9600
C3—C41.379 (2)C20—H20C0.9600
C3—H3A0.9300C21—H21A0.9600
C4—C51.394 (2)C21—H21B0.9600
C5—C61.380 (3)C21—H21C0.9600
C11—S1—C1288.12 (9)C10—C11—S1110.64 (13)
O3—S2—C20106.51 (9)C10—C11—H11125.6 (15)
O3—S2—C21105.18 (10)S1—C11—H11123.7 (15)
C20—S2—C2198.77 (9)N1—C12—N2123.02 (16)
C7—O1—C8122.92 (13)N1—C12—S1116.29 (13)
C12—N1—C10109.50 (15)N2—C12—S1120.68 (13)
C12—N2—N3118.35 (15)N3—C13—C14120.14 (16)
C12—N2—H1N1120.9 (16)N3—C13—H13A119.9
N3—N2—H1N1120.6 (16)C14—C13—H13A119.9
C13—N3—N2114.80 (15)C15—C14—C19117.24 (16)
C9—C1—C2121.96 (16)C15—C14—C13121.77 (15)
C9—C1—H1A119.0C19—C14—C13120.99 (16)
C2—C1—H1A119.0C16—C15—C14121.46 (16)
C7—C2—C3118.67 (16)C16—C15—H15A119.3
C7—C2—C1117.67 (16)C14—C15—H15A119.3
C3—C2—C1123.65 (16)C15—C16—C17120.03 (17)
C4—C3—C2119.21 (16)C15—C16—H16A120.0
C4—C3—H3A120.4C17—C16—H16A120.0
C2—C3—H3A120.4C18—C17—C16119.91 (17)
C3—C4—C5121.69 (17)C18—C17—H17A120.0
C3—C4—Br1119.54 (14)C16—C17—H17A120.0
C5—C4—Br1118.76 (14)C17—C18—C19119.39 (16)
C6—C5—C4119.52 (17)C17—C18—H18A120.3
C6—C5—H5A120.2C19—C18—H18A120.3
C4—C5—H5A120.2C18—C19—C14121.95 (16)
C5—C6—C7119.07 (16)C18—C19—Cl1118.43 (13)
C5—C6—H6A120.5C14—C19—Cl1119.61 (13)
C7—C6—H6A120.5S2—C20—H20A109.5
O1—C7—C6117.31 (15)S2—C20—H20B109.5
O1—C7—C2120.85 (15)H20A—C20—H20B109.5
C6—C7—C2121.84 (17)S2—C20—H20C109.5
O2—C8—O1116.07 (15)H20A—C20—H20C109.5
O2—C8—C9126.89 (16)H20B—C20—H20C109.5
O1—C8—C9117.03 (15)S2—C21—H21A109.5
C1—C9—C10121.02 (15)S2—C21—H21B109.5
C1—C9—C8119.48 (16)H21A—C21—H21B109.5
C10—C9—C8119.50 (16)S2—C21—H21C109.5
C11—C10—N1115.44 (15)H21A—C21—H21C109.5
C11—C10—C9128.05 (16)H21B—C21—H21C109.5
N1—C10—C9116.52 (15)
C12—N2—N3—C13172.62 (17)C1—C9—C10—C11175.39 (19)
C9—C1—C2—C71.4 (3)C8—C9—C10—C115.5 (3)
C9—C1—C2—C3177.32 (18)C1—C9—C10—N14.1 (3)
C7—C2—C3—C40.2 (3)C8—C9—C10—N1174.95 (16)
C1—C2—C3—C4178.50 (17)N1—C10—C11—S10.4 (2)
C2—C3—C4—C50.3 (3)C9—C10—C11—S1179.94 (15)
C2—C3—C4—Br1179.80 (14)C12—S1—C11—C100.06 (15)
C3—C4—C5—C60.0 (3)C10—N1—C12—N2179.95 (17)
Br1—C4—C5—C6179.46 (14)C10—N1—C12—S10.6 (2)
C4—C5—C6—C70.4 (3)N3—N2—C12—N1175.07 (16)
C8—O1—C7—C6176.78 (16)N3—N2—C12—S14.4 (2)
C8—O1—C7—C23.3 (3)C11—S1—C12—N10.32 (15)
C5—C6—C7—O1179.58 (16)C11—S1—C12—N2179.80 (16)
C5—C6—C7—C20.5 (3)N2—N3—C13—C14178.34 (15)
C3—C2—C7—O1179.92 (16)N3—C13—C14—C1516.2 (3)
C1—C2—C7—O11.1 (3)N3—C13—C14—C19164.06 (17)
C3—C2—C7—C60.2 (3)C19—C14—C15—C161.4 (3)
C1—C2—C7—C6178.99 (17)C13—C14—C15—C16178.83 (17)
C7—O1—C8—O2178.27 (16)C14—C15—C16—C171.4 (3)
C7—O1—C8—C92.8 (2)C15—C16—C17—C180.3 (3)
C2—C1—C9—C10179.09 (16)C16—C17—C18—C190.8 (3)
C2—C1—C9—C81.8 (3)C17—C18—C19—C140.8 (3)
O2—C8—C9—C1179.01 (18)C17—C18—C19—Cl1178.63 (14)
O1—C8—C9—C10.3 (2)C15—C14—C19—C180.3 (3)
O2—C8—C9—C100.1 (3)C13—C14—C19—C18179.91 (17)
O1—C8—C9—C10178.85 (15)C15—C14—C19—Cl1179.71 (13)
C12—N1—C10—C110.6 (2)C13—C14—C19—Cl10.5 (2)
C12—N1—C10—C9179.78 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N1···S20.85 (2)2.81 (2)3.5932 (17)153 (2)
N2—H1N1···O30.85 (2)1.97 (2)2.808 (2)169 (3)
C11—H11···O20.92 (2)2.34 (3)2.869 (2)116.3 (19)
C13—H13A···O30.932.553.318 (2)140
C17—H17A···O3i0.932.603.285 (2)131
C20—H20C···O2ii0.962.473.431 (2)176
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H11BrClN3O2S·C2H6OS
Mr538.86
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.5806 (4), 15.7789 (9), 20.9378 (13)
β (°) 90.684 (2)
V3)2173.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.24
Crystal size (mm)0.49 × 0.09 × 0.06
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.406, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
37791, 6392, 5013
Rint0.059
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.069, 1.00
No. of reflections6392
No. of parameters290
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.86

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N1···S20.85 (2)2.81 (2)3.5932 (17)153 (2)
N2—H1N1···O30.85 (2)1.97 (2)2.808 (2)169 (3)
C11—H11···O20.92 (2)2.34 (3)2.869 (2)116.3 (19)
C13—H13A···O30.932.553.318 (2)140
C17—H17A···O3i0.932.603.285 (2)131
C20—H20C···O2ii0.962.473.431 (2)176
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AA, HO, CKL thank the Malaysian Government and Universiti Sains Malaysia (USM) for a grant [1001/PKimia/811133] to conduct this work. AA also thanks Universiti Sains Malaysia for a fellowship. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHwu, J., Singha, R., Hong, S., Chang, Y., Das, A., Vliegen, I., De Clercq, E. & Neyts, J. (2008). Antivir. Res. 77, 157–162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, Y., Lee, S., Jin, J. & Yun-Choi, H. (2003). Arch. Pharmacal Res. 26, 723–726.  CrossRef Google Scholar
First citationLiebig, H., Pfetzing, H. & Grafe, A. (1974). Arzneim-Forsch. 24, 887–892.  CAS Google Scholar
First citationPathak, R. B., Jahan, B. & Bahel, S. C. (1981). Bokin Bobai. 9, 477–480.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Arshad, M. & Khan, S. (2009). Acta. Pol.-Pharm. Drug Res. 66, 161–167.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y., Duan, C., Zhao, C., You, X., Mak, T. C. W. & Zhang, Z. (1997). Inorg. Chem. 36, 1247–1252.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationYaragatti, N. B., Kulkarni, M. V., Ghate, M. D., Hebbar, S. S. & Hegde, G. R. (2010). J. Sulfur Chem. 31, 123–133.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o1009-o1010
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds