organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ammonium piperidine-1-carbodi­thio­ate

aInstituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense 400, Caixa Postal 780, 13560-970 São Carlos, SP, Brazil
*Correspondence e-mail: mafud@iqsc.usp.br

(Received 15 February 2011; accepted 3 March 2011; online 15 March 2011)

The title compound, NH4+·C6H10NS2, is composed of an ammonium cation and a piperidine-1-carbodithio­ate anion which exhibits positional disorder. The atoms of the ring have a structural disorder and they are divided into two sites, with occupancy factors of 0.584 and 0.426.. In the crystal, the cation and anion are linked by N—H⋯S hydrogen bonds to form an infinite two-dimensional network.

Related literature

For the crystal structures of similar compounds, see: Wahlberg (1979[Wahlberg, A. (1979). Acta Cryst. B35, 485-487.], 1980[Wahlberg, A. (1980). Acta Cryst. B36, 2099-2103.], 1981[Wahlberg, A. (1981). Acta Cryst. B37, 1240-1244.]).

[Scheme 1]

Experimental

Crystal data
  • NH4+·C6H10NS2

  • Mr = 178.31

  • Monoclinic, P 21 /a

  • a = 8.8812 (9) Å

  • b = 9.0025 (9) Å

  • c = 11.8995 (5) Å

  • β = 104.318 (5)°

  • V = 921.85 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 290 K

  • 0.40 × 0.35 × 0.13 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.582, Tmax = 0.936

  • 2847 measured reflections

  • 2684 independent reflections

  • 2093 reflections with I > 2σ(I)

  • Rint = 0.015

  • 3 standard reflections every 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.123

  • S = 1.06

  • 2684 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2i 0.78 (3) 2.64 (3) 3.4029 (19) 167 (2)
N1—H2⋯S1 0.89 (3) 2.49 (3) 3.3565 (19) 164 (2)
N1—H3⋯S1ii 0.93 (3) 2.51 (3) 3.3967 (19) 159 (2)
N1—H4⋯S2iii 0.89 (3) 2.48 (3) 3.3632 (19) 170 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) -x+1, -y, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is compossed of an ammonium cation and a piperidinedithiocarbamate anion. The crystal structures of similar compounds, for example pyrrolidinium 1-pyrrolidinecarbodithioate (Wahlberg, 1979), and β and α piperidinium 1-piperidinecarbodithionate (Wahlberg, 1980, 1981), have been reported.

The molecular structure of the title compound (Fig. 1) is built up of an ammonium cation and a disordered piperidinedithiocarbamate anion. The carbon atoms (C2-C6) are disordered, occupying two positions (A/B) with occupancies of 0.584 (8)/0.416 (8)

In the crystal the cation is linked to four piperidinedithiocarbamate anions via N-H···S hydrogen bonds (Table 1 and Fig. 2). These interactions lead to the formaion of an infinite two-dimensional network (Fig. 3), propagating in (001).

Related literature top

For the crystal structures of similar compounds, see: Wahlberg (1979, 1980, 1981).

Experimental top

The title compound was prepared by slow addition of 0.1 mol of CS2 to a cold solution containing 0.2 mol of ammonia and 0.2 mol of piperidine dissolved in 30 ml of ethanol-water 1:1 (v/v) medium. The mixture was kept in an ice bath during the reaction. The solid obtained was recrystallized from ethanol-water 1:1 (v/v) and dried in a vacuum oven at 323 K for 8 h. Colourless single crystals, suitable for X-ray diffraction analysis, were obtained. On heating they sublimed and decomposed.

Refinement top

The H-atom positions of the ammonium cation were located in a difference Fouier map and were freely refined: N-H = 0.78 (3) - 0.93 (3) Å. The C-bound H-atoms of the anion were included in calculated positions and treated as riding atoms: C-H = 0.97 Å, with Uiso(H) = 1.2Ueq(parent C-atom).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the ammonium cation surrounded by four piperidinedithiocarbamate anions that are linked via N—H···S hydrogen bonds (see Table 1 for details). The N—H···S hydrogen bonds are shown as dotted lines.
[Figure 3] Fig. 3. A view along the a-axis of the crystal packing of the title compound. The N—H···S hydrogen bonds are shown as dotted lines [The minor disordered fraction of the piperidine ring and the C-bound H-atoms have been omitted for clarity; colour code: S yellow; N black; C grey; H off-white].
Ammonium piperidine-1-carbodithioate top
Crystal data top
NH4+·C6H10NS2F(000) = 384
Mr = 178.31Dx = 1.285 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 14 reflections
a = 8.8812 (9) Åθ = 12.0–18.1°
b = 9.0025 (9) ŵ = 0.51 mm1
c = 11.8995 (5) ÅT = 290 K
β = 104.318 (5)°Prism, colourless
V = 921.85 (14) Å30.40 × 0.35 × 0.13 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2093 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 30.0°, θmin = 2.9°
non–profiled ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 120
Tmin = 0.582, Tmax = 0.936l = 1616
2847 measured reflections3 standard reflections every 120 min
2684 independent reflections intensity decay: 5%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.075P)2 + 0.1152P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max = 0.022
S = 1.06Δρmax = 0.57 e Å3
2684 reflectionsΔρmin = 0.29 e Å3
153 parameters
Crystal data top
NH4+·C6H10NS2V = 921.85 (14) Å3
Mr = 178.31Z = 4
Monoclinic, P21/aMo Kα radiation
a = 8.8812 (9) ŵ = 0.51 mm1
b = 9.0025 (9) ÅT = 290 K
c = 11.8995 (5) Å0.40 × 0.35 × 0.13 mm
β = 104.318 (5)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2093 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.015
Tmin = 0.582, Tmax = 0.9363 standard reflections every 120 min
2847 measured reflections intensity decay: 5%
2684 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.57 e Å3
2684 reflectionsΔρmin = 0.29 e Å3
153 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.77666 (5)0.04141 (4)0.55813 (3)0.0404 (1)
S20.83657 (6)0.11212 (5)0.78409 (4)0.0531 (1)
N20.8144 (3)0.17995 (18)0.76181 (14)0.0669 (6)
C10.80997 (19)0.05002 (17)0.70767 (14)0.0391 (4)
C2A0.7452 (6)0.3162 (4)0.6942 (3)0.0549 (13)0.584 (8)
C3A0.8316 (9)0.4502 (5)0.7551 (5)0.0625 (15)0.584 (8)
C4A0.7868 (18)0.4519 (18)0.8807 (15)0.077 (4)0.584 (8)
C5A0.8614 (7)0.3215 (5)0.9445 (4)0.0629 (15)0.584 (8)
C6A0.7972 (9)0.1813 (7)0.8853 (5)0.0666 (18)0.584 (8)
C6B0.8811 (14)0.1978 (9)0.8936 (6)0.073 (3)0.416 (8)
C3B0.7530 (10)0.4409 (9)0.7391 (7)0.062 (2)0.416 (8)
C4B0.816 (3)0.472 (3)0.866 (2)0.079 (5)0.416 (8)
C2B0.8552 (8)0.3244 (5)0.7066 (4)0.0507 (16)0.416 (8)
C5B0.7715 (14)0.3116 (13)0.9232 (7)0.096 (4)0.416 (8)
N10.47677 (19)0.24531 (19)0.40932 (17)0.0468 (5)
H2A20.756400.310400.615200.0660*0.584 (8)
H3A10.797200.540600.712100.0750*0.584 (8)
H2A10.635500.323700.691700.0660*0.584 (8)
H6A10.688300.172600.885000.0800*0.584 (8)
H6A20.852000.097000.927300.0800*0.584 (8)
H3A20.942800.439500.765100.0750*0.584 (8)
H4A10.824500.542100.922900.0920*0.584 (8)
H4A20.675000.446800.869800.0920*0.584 (8)
H5A10.845600.322701.022300.0750*0.584 (8)
H5A20.972400.325600.950900.0750*0.584 (8)
H2B10.963900.349300.736900.0610*0.416 (8)
H2B20.834200.314500.623000.0610*0.416 (8)
H3B10.754300.530500.694100.0740*0.416 (8)
H3B20.646800.405400.724600.0740*0.416 (8)
H4B10.765500.556300.891200.0950*0.416 (8)
H4B20.927800.488600.884700.0950*0.416 (8)
H5B10.787200.320501.006500.1150*0.416 (8)
H5B20.664100.284400.889300.1150*0.416 (8)
H6B10.877600.105000.934200.0870*0.416 (8)
H6B20.987100.234200.911500.0870*0.416 (8)
H10.522 (3)0.290 (3)0.372 (2)0.068 (8)*
H20.542 (3)0.184 (3)0.4556 (19)0.055 (6)*
H30.448 (3)0.308 (3)0.463 (2)0.081 (8)*
H40.393 (4)0.201 (3)0.365 (3)0.090 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0487 (2)0.0370 (2)0.0367 (2)0.0034 (2)0.0126 (2)0.0006 (1)
S20.0722 (3)0.0415 (2)0.0449 (2)0.0032 (2)0.0132 (2)0.0091 (2)
N20.1274 (16)0.0387 (8)0.0397 (7)0.0076 (9)0.0302 (9)0.0007 (6)
C10.0447 (8)0.0371 (7)0.0379 (7)0.0001 (6)0.0150 (6)0.0017 (6)
C2A0.071 (3)0.0412 (16)0.0505 (17)0.0079 (16)0.0113 (16)0.0034 (12)
C3A0.077 (3)0.0394 (17)0.068 (3)0.001 (2)0.012 (3)0.0056 (16)
C4A0.105 (6)0.067 (8)0.063 (5)0.019 (6)0.030 (4)0.021 (4)
C5A0.071 (3)0.072 (3)0.0455 (18)0.000 (2)0.014 (2)0.0168 (17)
C6A0.101 (4)0.066 (3)0.0404 (19)0.004 (3)0.032 (3)0.0098 (17)
C6B0.122 (7)0.059 (3)0.039 (3)0.011 (5)0.024 (4)0.000 (2)
C3B0.058 (4)0.059 (3)0.067 (4)0.016 (3)0.014 (3)0.011 (3)
C4B0.130 (11)0.050 (4)0.067 (7)0.008 (6)0.043 (6)0.017 (4)
C2B0.070 (4)0.0338 (19)0.052 (2)0.007 (2)0.022 (2)0.0016 (16)
C5B0.097 (6)0.144 (9)0.058 (4)0.023 (6)0.040 (4)0.038 (5)
N10.0396 (8)0.0394 (7)0.0623 (9)0.0031 (6)0.0141 (7)0.0027 (7)
Geometric parameters (Å, º) top
S1—C11.7319 (17)C2A—H2A20.9700
S2—C11.7050 (16)C2B—H2B10.9700
N2—C11.331 (2)C2B—H2B20.9700
N2—C2A1.512 (4)C3A—H3A10.9700
N2—C6A1.515 (6)C3A—H3A20.9700
N2—C2B1.540 (5)C3B—H3B10.9700
N2—C6B1.542 (7)C3B—H3B20.9700
N1—H40.89 (3)C4A—H4A10.9700
N1—H30.93 (3)C4A—H4A20.9700
N1—H10.78 (3)C4B—H4B20.9700
N1—H20.89 (3)C4B—H4B10.9700
C2A—C3A1.515 (7)C5A—H5A10.9700
C2B—C3B1.499 (10)C5A—H5A20.9700
C3A—C4A1.639 (18)C5B—H5B10.9700
C3B—C4B1.50 (2)C5B—H5B20.9700
C4A—C5A1.465 (17)C6A—H6A20.9700
C4B—C5B1.69 (3)C6A—H6A10.9700
C5A—C6A1.489 (8)C6B—H6B10.9700
C5B—C6B1.514 (16)C6B—H6B20.9700
C2A—H2A10.9700
C1—N2—C2A119.73 (19)C4A—C3A—H3A2111.00
C1—N2—C6A118.6 (3)C2A—C3A—H3A1111.00
C1—N2—C2B121.2 (2)C4B—C3B—H3B2110.00
C1—N2—C6B122.8 (3)C2B—C3B—H3B1110.00
C2A—N2—C6A112.6 (3)C2B—C3B—H3B2110.00
C2B—N2—C6B105.9 (4)C4B—C3B—H3B1110.00
H1—N1—H2109 (3)H3B1—C3B—H3B2109.00
H1—N1—H3110 (3)C3A—C4A—H4A1110.00
H1—N1—H4111 (3)C3A—C4A—H4A2110.00
H2—N1—H3102 (2)C5A—C4A—H4A2110.00
H2—N1—H4114 (3)H4A1—C4A—H4A2109.00
H3—N1—H4110 (3)C5A—C4A—H4A1110.00
S2—C1—N2120.70 (13)C5B—C4B—H4B1112.00
S1—C1—S2118.40 (9)H4B1—C4B—H4B2110.00
S1—C1—N2120.91 (13)C3B—C4B—H4B2111.00
N2—C2A—C3A107.5 (3)C5B—C4B—H4B2112.00
N2—C2B—C3B105.0 (5)C3B—C4B—H4B1112.00
C2A—C3A—C4A103.6 (7)C6A—C5A—H5A2109.00
C2B—C3B—C4B106.9 (12)C4A—C5A—H5A1109.00
C3A—C4A—C5A106.5 (10)C4A—C5A—H5A2109.00
C3B—C4B—C5B100.4 (15)C6A—C5A—H5A1109.00
C4A—C5A—C6A111.3 (8)H5A1—C5A—H5A2108.00
C4B—C5B—C6B104.9 (12)C4B—C5B—H5B2111.00
N2—C6A—C5A110.3 (5)C6B—C5B—H5B1111.00
N2—C6B—C5B101.5 (7)C4B—C5B—H5B1111.00
C3A—C2A—H2A2110.00H5B1—C5B—H5B2109.00
N2—C2A—H2A1110.00C6B—C5B—H5B2111.00
N2—C2A—H2A2110.00N2—C6A—H6A2110.00
C3A—C2A—H2A1110.00C5A—C6A—H6A1110.00
H2A1—C2A—H2A2108.00H6A1—C6A—H6A2108.00
N2—C2B—H2B1111.00C5A—C6A—H6A2110.00
N2—C2B—H2B2111.00N2—C6A—H6A1110.00
C3B—C2B—H2B2111.00H6B1—C6B—H6B2109.00
H2B1—C2B—H2B2109.00N2—C6B—H6B1111.00
C3B—C2B—H2B1111.00N2—C6B—H6B2112.00
C4A—C3A—H3A1111.00C5B—C6B—H6B1111.00
H3A1—C3A—H3A2109.00C5B—C6B—H6B2111.00
C2A—C3A—H3A2111.00
C2A—N2—C1—S117.9 (4)C1—N2—C6A—C5A159.2 (4)
C2A—N2—C1—S2161.9 (3)C2A—N2—C6A—C5A53.7 (6)
C6A—N2—C1—S1162.6 (4)N2—C2A—C3A—C4A65.1 (8)
C6A—N2—C1—S217.3 (4)C2A—C3A—C4A—C5A68.2 (10)
C1—N2—C2A—C3A152.3 (4)C3A—C4A—C5A—C6A64.0 (11)
C6A—N2—C2A—C3A61.1 (6)C4A—C5A—C6A—N256.6 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.78 (3)2.64 (3)3.4029 (19)167 (2)
N1—H2···S10.89 (3)2.49 (3)3.3565 (19)164 (2)
N1—H3···S1ii0.93 (3)2.51 (3)3.3967 (19)159 (2)
N1—H4···S2iii0.89 (3)2.48 (3)3.3632 (19)170 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x1/2, y+1/2, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaNH4+·C6H10NS2
Mr178.31
Crystal system, space groupMonoclinic, P21/a
Temperature (K)290
a, b, c (Å)8.8812 (9), 9.0025 (9), 11.8995 (5)
β (°) 104.318 (5)
V3)921.85 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.40 × 0.35 × 0.13
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.582, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
2847, 2684, 2093
Rint0.015
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.123, 1.06
No. of reflections2684
No. of parameters153
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.29

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.78 (3)2.64 (3)3.4029 (19)167 (2)
N1—H2···S10.89 (3)2.49 (3)3.3565 (19)164 (2)
N1—H3···S1ii0.93 (3)2.51 (3)3.3967 (19)159 (2)
N1—H4···S2iii0.89 (3)2.48 (3)3.3632 (19)170 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x1/2, y+1/2, z; (iii) x+1, y, z+1.
 

Acknowledgements

The author is grateful to the Instituto de Química de São Carlos and the Universidade de São Paulo for supporting this study.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWahlberg, A. (1979). Acta Cryst. B35, 485–487.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWahlberg, A. (1980). Acta Cryst. B36, 2099–2103.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWahlberg, A. (1981). Acta Cryst. B37, 1240–1244.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds