metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m414-m415

(Carbonato-κ2O,O′)bis­­(di-2-pyridyl­amine-κ2N,N′)cobalt(III) bromide

aFaculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland, and bDepartment of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
*Correspondence e-mail: magdan@amu.edu.pl

(Received 2 March 2011; accepted 3 March 2011; online 9 March 2011)

In the title compound, [Co(CO3)(C10H9N3)2]Br, a distorted octa­hedral coordination of the CoIII atom is completed by four N atoms of the two chelating di-2-pyridyl­amine ligands and two O atoms of the chelating carbonate anion. The di-2-pyridyl­amine ligands are nonplanar and the dihedral angles between the 2-pyridyl groups are 29.11 (9) and 37.15 (12)°. The coordination cation, which has approximate C2 symmetry, is connected to the bromide ion via an N—H⋯Br hydrogen bond. The ionic pair thus formed is further assembled into a dimer via N—H⋯O inter­actions about an inversion centre. A set of weaker C—H⋯O and C—H⋯Br inter­actions connect the dimers into a three-dimensional network.

Related literature

For the crystal structure of the isostructural [bis­(di-2-pyridyl­amine-κ2N,N′)](carbonato-κ2O,O′)cobalt(III) nitrate, see: Castillo et al. (2011[Castillo, O., Luque, A., De la Pinta, N. & Román, P. (2011). Acta Cryst. E67, e15.]). For the crystal structure of the perchlorate salt, see: Williams et al. (1987[Williams, A. F., Bocquet, B. & Bernardinelli, G. (1987). Acta Cryst. C43, 883-885.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(CO3)(C10H9N3)2]Br

  • Mr = 541.25

  • Monoclinic, P 21 /n

  • a = 16.9605 (3) Å

  • b = 7.4322 (1) Å

  • c = 17.2590 (4) Å

  • β = 105.839 (2)°

  • V = 2092.96 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.77 mm−1

  • T = 130 K

  • 0.30 × 0.15 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.710, Tmax = 0.874

  • 29846 measured reflections

  • 4277 independent reflections

  • 3386 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.080

  • S = 1.01

  • 4277 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O2 1.901 (2)
Co1—O1 1.904 (2)
Co1—N9B 1.919 (2)
Co1—N1A 1.923 (2)
Co1—N1B 1.925 (2)
Co1—N9A 1.933 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7A—H7A⋯O2i 0.86 2.08 2.876 (3) 154
N7B—H7B⋯Br1 0.86 2.49 3.327 (2) 164
C10B—H10B⋯O3ii 0.95 2.34 3.225 (4) 155
C5A—H5A⋯O1iii 0.95 2.44 3.265 (4) 146
C13A—H13A⋯O3i 0.95 2.43 3.316 (4) 156
C13B—H13B⋯Br1 0.95 2.83 3.623 (3) 142
C5B—H5B⋯Br1iv 0.95 2.86 3.741 (3) 155
C4B—H4B⋯Br1v 0.95 2.89 3.657 (3) 139
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y-1, z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (Fig. 1) was obtained as a byproduct in the preparation of [Co(Hdpa)2(apo)]Br from CoBr2, where apo is 2-acetylphenolate ion and Hdpa is di-2-pyridylamine. The chelating carbonate ligand in the coordination cation was identified from its geometrical parameters, namely the two bonds of 1.325 (4) and 1.341 (4) Å indicated single C—O bonds and the bond length of 1.183 (4) Å pointed to a C=O bond. The presence of the carbonate anion in the studied compound concurred with the +3 oxidation state of the cobalt atom. The CoIII atom shows a distorted octahedral coordination that is completed by four N atoms of the two chelating di-2-pyridylamine ligands and two O atoms of the chelating carbonate anion (Table 1). The bidentate Hdpa ligands chelate the CoIII atom to form two six-membered rings with the N1—Co1—N9 bite angles of 90.42 (10) and 88.48 (10)°, in ligand A and B respectively. The diimine ligands are non-planar with the N(py)—C—N(H)—C torsion angles of 28.1 (4) and -27.6 (4)° in the A ligand and 28.0 (4) and -33.5 (4)° in the B Hdpa ligand.

The coordination cation has approximate C2 symmetry with a pseudo-twofold axis passing through atoms O3, C1 and Co1. It binds one Br- anion via a N—H···Br- hydrogen bond and the ionic pair thus formed assembles into a dimer, via N—H···O hydrogen bonds (Fig. 2, Table 2), centered about an inversion center. These dimers are further connected via a C10B—H10B···O3(x, y - 1, z) interaction into chains extended along [010] and the chains are joined via a set of C—H···O and C—H···Br- interactions into a three-dimensional network (Table 2).

Interesingly, similar interactions between the coordination cation and the anion, and the formation of dimers of the ionic pairs, was also observed in the nitrate and perchlorate salts of the same cation (Castillo et al., 2011; Williams et al., 1987). Moreover, the crystals of the nitrate salt and the title bromide salt are to a large extent isostructural.

Related literature top

For the crystal structure of isostructural [bis(di-2-pyridylamine-κ2N,N')](carbonato-κ2O,O')cobalt(III) nitrate, see: Castillo et al. (2011). For the crystal structure of the perchlorate salt, see: Williams et al. (1987).

Experimental top

2 mmol (0.342 g) of di-2-pyridylamine (Hdpam), dissolved in a small amount of EtOH, was added to a solution of 1 mmol (0.238 g) of CoBr2.H2O in 5 ml of EtOH and the mixture was stirred for 30 min. Then, to this mixture was added dropwise an ethanolic solution containing 1 mmol (0.136 g) of 2-hydroxyacetophenone (Hapo) and 1 mmol of CH3ONa. The solution was stirred at room temperature under an argon atmosphere for 2 h or refluxed with continuous stirring. Two types of crystals precipitated from the solution. The main product, in the form of small crystals of light orange color, was identified as the mixed-ligand CoII complex [Co(dpamH)2(apo)]Br (mean yield 62%). The side-product, in the form of large dark-red crystals, was identified as the CoIIIcomplex, [Co(dpamH)2(CO3)]Br. When the reaction between CoBr2 and Hdpam was repeated in air the title compound, [Co(dpamH)2(CO3)]Br, was obtained as the main product.

Refinement top

The H-atoms of the NH groups were located in difference electron-density maps. In the final cycles of lease-squares refinement the N—H bond lengths were constrained to 0.86 Å with Uiso(H) = 1.2Ueq(N). All the other H-atoms were initially identified in difference electron-density maps but were placed at calculated positions, with C—H = 0.95 Å, and were refined as riding on their carrier atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound with the displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. Centrosymmetric dimers of the ionic pairs of the title compound connected via C10B—H10B···O3 interaction into chains extended along [0 1 0]. N, O, Br and Co atoms are shown as spheres of arbitrary radii. Short contacts and hydrogen bonds are shown with dashed lines.
(Carbonato-κ2O,O')bis(di-2-pyridylamine- κ2N,N')cobalt(III) bromide top
Crystal data top
[Co(CO3)(C10H9N3)2]BrF(000) = 1088
Mr = 541.25Dx = 1.718 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8233 reflections
a = 16.9605 (3) Åθ = 3.0–30.3°
b = 7.4322 (1) ŵ = 2.77 mm1
c = 17.2590 (4) ÅT = 130 K
β = 105.839 (2)°Plate, red
V = 2092.96 (7) Å30.30 × 0.15 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
4277 independent reflections
Radiation source: fine-focus sealed tube3386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 16.1544 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 99
Tmin = 0.710, Tmax = 0.874l = 2121
29846 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0316P)2]
where P = (Fo2 + 2Fc2)/3
4277 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Co(CO3)(C10H9N3)2]BrV = 2092.96 (7) Å3
Mr = 541.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.9605 (3) ŵ = 2.77 mm1
b = 7.4322 (1) ÅT = 130 K
c = 17.2590 (4) Å0.30 × 0.15 × 0.05 mm
β = 105.839 (2)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
4277 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
3386 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.874Rint = 0.064
29846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.01Δρmax = 0.79 e Å3
4277 reflectionsΔρmin = 0.50 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.79115 (2)0.47425 (5)0.48500 (2)0.01679 (12)
Br10.42522 (2)0.71322 (4)0.36946 (2)0.02940 (11)
N1A0.83606 (15)0.3707 (3)0.40419 (14)0.0189 (6)
C2A0.91367 (19)0.3175 (4)0.42120 (18)0.0203 (7)
C3A0.9525 (2)0.2829 (4)0.36081 (19)0.0255 (8)
H3A1.00910.25350.37410.031*
C4A0.9066 (2)0.2925 (4)0.2818 (2)0.0305 (8)
H4A0.93110.26770.23960.037*
C5A0.8242 (2)0.3387 (4)0.2639 (2)0.0303 (8)
H5A0.79140.34290.20970.036*
C6A0.7916 (2)0.3778 (4)0.32558 (18)0.0261 (8)
H6A0.73550.41140.31340.031*
N7A0.95794 (15)0.2983 (3)0.50046 (15)0.0223 (6)
H7A1.00910.27870.50590.027*
C8A0.92811 (19)0.2571 (4)0.56488 (18)0.0193 (7)
N9A0.85087 (15)0.3025 (3)0.56334 (14)0.0171 (6)
C10A0.8212 (2)0.2466 (4)0.62506 (18)0.0211 (7)
H10A0.76560.27080.62270.025*
C11A0.8687 (2)0.1567 (4)0.69034 (19)0.0253 (8)
H11A0.84690.12050.73310.030*
C12A0.9494 (2)0.1196 (4)0.6927 (2)0.0287 (8)
H12A0.98380.05980.73810.034*
C13A0.9796 (2)0.1685 (4)0.63018 (19)0.0266 (8)
H13A1.03470.14260.63130.032*
N1B0.74231 (14)0.5957 (3)0.55895 (14)0.0169 (5)
C2B0.66482 (18)0.6546 (4)0.53146 (17)0.0171 (7)
C3B0.63533 (19)0.7949 (4)0.56985 (18)0.0195 (7)
H3B0.58270.84530.54640.023*
C4B0.68320 (19)0.8582 (4)0.64138 (19)0.0223 (7)
H4B0.66410.95300.66850.027*
C5B0.76043 (19)0.7830 (4)0.67458 (19)0.0219 (7)
H5B0.79260.81790.72650.026*
C6B0.78852 (19)0.6586 (4)0.63082 (18)0.0202 (7)
H6B0.84270.61390.65140.024*
N7B0.61387 (15)0.5775 (3)0.46391 (14)0.0182 (6)
H7B0.56460.61830.44920.022*
C8B0.61995 (18)0.4030 (4)0.43871 (17)0.0173 (7)
N9B0.69443 (15)0.3281 (3)0.45216 (14)0.0170 (6)
C10B0.69889 (19)0.1502 (4)0.43516 (18)0.0203 (7)
H10B0.75120.09430.44740.024*
C11B0.63142 (19)0.0493 (4)0.40141 (18)0.0219 (7)
H11B0.63650.07540.39170.026*
C12B0.5554 (2)0.1309 (4)0.38152 (18)0.0248 (7)
H12B0.50780.06430.35530.030*
C13B0.54920 (19)0.3088 (4)0.39994 (18)0.0224 (7)
H13B0.49740.36700.38650.027*
C10.82969 (19)0.7580 (4)0.4471 (2)0.0224 (7)
O10.75759 (13)0.6760 (3)0.41586 (12)0.0240 (5)
O20.87502 (12)0.6516 (3)0.50343 (12)0.0229 (5)
O30.85043 (14)0.8971 (3)0.42570 (15)0.0363 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0119 (2)0.0186 (2)0.0203 (2)0.00264 (17)0.00510 (18)0.00095 (17)
Br10.02154 (19)0.02402 (18)0.0356 (2)0.00546 (14)0.00408 (15)0.00196 (15)
N1A0.0141 (14)0.0245 (14)0.0179 (14)0.0031 (11)0.0042 (11)0.0019 (11)
C2A0.0197 (18)0.0205 (16)0.0220 (17)0.0004 (13)0.0077 (14)0.0015 (13)
C3A0.0230 (19)0.0280 (18)0.0289 (19)0.0047 (14)0.0126 (16)0.0012 (15)
C4A0.035 (2)0.036 (2)0.0261 (19)0.0044 (16)0.0169 (17)0.0010 (15)
C5A0.032 (2)0.036 (2)0.0225 (19)0.0023 (16)0.0063 (16)0.0009 (15)
C6A0.0230 (19)0.0319 (19)0.0231 (18)0.0001 (15)0.0058 (15)0.0038 (15)
N7A0.0114 (14)0.0331 (15)0.0230 (15)0.0053 (11)0.0054 (12)0.0009 (12)
C8A0.0167 (17)0.0209 (16)0.0203 (17)0.0022 (13)0.0051 (14)0.0042 (13)
N9A0.0154 (14)0.0182 (13)0.0187 (14)0.0019 (10)0.0063 (11)0.0018 (10)
C10A0.0220 (18)0.0178 (16)0.0250 (17)0.0011 (13)0.0089 (15)0.0016 (13)
C11A0.035 (2)0.0195 (16)0.0222 (18)0.0013 (15)0.0089 (16)0.0003 (14)
C12A0.031 (2)0.0256 (18)0.0242 (18)0.0072 (15)0.0007 (16)0.0011 (15)
C13A0.0202 (18)0.0299 (18)0.0278 (19)0.0079 (15)0.0030 (15)0.0021 (15)
N1B0.0115 (13)0.0173 (13)0.0213 (14)0.0012 (10)0.0036 (11)0.0011 (11)
C2B0.0174 (17)0.0142 (14)0.0207 (16)0.0019 (12)0.0070 (14)0.0035 (13)
C3B0.0153 (17)0.0192 (16)0.0260 (18)0.0053 (13)0.0091 (14)0.0041 (13)
C4B0.0259 (19)0.0166 (15)0.0278 (18)0.0020 (14)0.0132 (15)0.0017 (14)
C5B0.0258 (19)0.0194 (16)0.0195 (17)0.0048 (14)0.0044 (15)0.0025 (13)
C6B0.0163 (17)0.0189 (15)0.0240 (17)0.0002 (13)0.0035 (14)0.0019 (13)
N7B0.0106 (13)0.0199 (13)0.0233 (14)0.0047 (10)0.0032 (11)0.0007 (11)
C8B0.0155 (16)0.0186 (15)0.0179 (16)0.0014 (13)0.0047 (13)0.0010 (13)
N9B0.0139 (14)0.0198 (13)0.0173 (13)0.0023 (11)0.0045 (11)0.0018 (11)
C10B0.0202 (18)0.0196 (16)0.0210 (17)0.0049 (13)0.0057 (14)0.0005 (13)
C11B0.0259 (19)0.0180 (16)0.0230 (17)0.0009 (14)0.0086 (15)0.0017 (13)
C12B0.0213 (18)0.0264 (18)0.0253 (18)0.0059 (14)0.0040 (15)0.0047 (14)
C13B0.0139 (17)0.0256 (18)0.0268 (18)0.0003 (13)0.0039 (14)0.0014 (14)
C10.0176 (18)0.0240 (18)0.0320 (19)0.0082 (14)0.0175 (15)0.0041 (15)
O10.0208 (13)0.0246 (12)0.0286 (13)0.0063 (10)0.0099 (10)0.0058 (10)
O20.0129 (11)0.0253 (11)0.0314 (13)0.0001 (9)0.0074 (10)0.0032 (10)
O30.0330 (15)0.0249 (13)0.0612 (17)0.0006 (11)0.0300 (13)0.0030 (12)
Geometric parameters (Å, º) top
Co1—O21.901 (2)C13A—H13A0.9500
Co1—O11.904 (2)N1B—C2B1.343 (4)
Co1—N9B1.919 (2)N1B—C6B1.357 (4)
Co1—N1A1.923 (2)C2B—N7B1.373 (4)
Co1—N1B1.925 (2)C2B—C3B1.399 (4)
Co1—N9A1.933 (2)C3B—C4B1.363 (4)
N1A—C2A1.328 (4)C3B—H3B0.9500
N1A—C6A1.362 (4)C4B—C5B1.395 (4)
C2A—N7A1.376 (4)C4B—H4B0.9500
C2A—C3A1.401 (4)C5B—C6B1.360 (4)
C3A—C4A1.375 (4)C5B—H5B0.9500
C3A—H3A0.9500C6B—H6B0.9500
C4A—C5A1.389 (5)N7B—C8B1.380 (4)
C4A—H4A0.9500N7B—H7B0.8599
C5A—C6A1.358 (4)C8B—N9B1.341 (4)
C5A—H5A0.9500C8B—C13B1.393 (4)
C6A—H6A0.9500N9B—C10B1.361 (4)
N7A—C8A1.376 (4)C10B—C11B1.359 (4)
N7A—H7A0.8600C10B—H10B0.9500
C8A—N9A1.346 (4)C11B—C12B1.380 (4)
C8A—C13A1.389 (4)C11B—H11B0.9500
N9A—C10A1.362 (4)C12B—C13B1.371 (4)
C10A—C11A1.367 (4)C12B—H12B0.9500
C10A—H10A0.9500C13B—H13B0.9500
C11A—C12A1.386 (5)C1—O31.183 (4)
C11A—H11A0.9500C1—O21.325 (4)
C12A—C13A1.364 (4)C1—O11.341 (4)
C12A—H12A0.9500
O2—Co1—O168.96 (9)C12A—C13A—C8A118.7 (3)
O2—Co1—N9B169.04 (10)C12A—C13A—H13A120.7
O1—Co1—N9B100.10 (10)C8A—C13A—H13A120.7
O2—Co1—N1A88.42 (10)C2B—N1B—C6B118.4 (3)
O1—Co1—N1A88.32 (10)C2B—N1B—Co1118.4 (2)
N9B—Co1—N1A92.01 (10)C6B—N1B—Co1121.5 (2)
O2—Co1—N1B90.10 (9)N1B—C2B—N7B119.5 (3)
O1—Co1—N1B86.40 (9)N1B—C2B—C3B121.2 (3)
N9B—Co1—N1B88.48 (10)N7B—C2B—C3B119.3 (3)
N1A—Co1—N1B174.69 (10)C4B—C3B—C2B119.0 (3)
O2—Co1—N9A96.62 (10)C4B—C3B—H3B120.5
O1—Co1—N9A165.55 (10)C2B—C3B—H3B120.5
N9B—Co1—N9A94.32 (10)C3B—C4B—C5B119.6 (3)
N1A—Co1—N9A90.42 (10)C3B—C4B—H4B120.2
N1B—Co1—N9A94.81 (10)C5B—C4B—H4B120.2
C2A—N1A—C6A118.5 (3)C6B—C5B—C4B118.5 (3)
C2A—N1A—Co1121.6 (2)C6B—C5B—H5B120.8
C6A—N1A—Co1119.1 (2)C4B—C5B—H5B120.8
N1A—C2A—N7A119.3 (3)N1B—C6B—C5B122.6 (3)
N1A—C2A—C3A122.0 (3)N1B—C6B—H6B118.7
N7A—C2A—C3A118.7 (3)C5B—C6B—H6B118.7
C4A—C3A—C2A118.3 (3)C2B—N7B—C8B125.2 (2)
C4A—C3A—H3A120.9C2B—N7B—H7B116.0
C2A—C3A—H3A120.9C8B—N7B—H7B112.9
C3A—C4A—C5A119.8 (3)N9B—C8B—N7B118.9 (3)
C3A—C4A—H4A120.1N9B—C8B—C13B121.5 (3)
C5A—C4A—H4A120.1N7B—C8B—C13B119.7 (3)
C6A—C5A—C4A118.6 (3)C8B—N9B—C10B118.1 (2)
C6A—C5A—H5A120.7C8B—N9B—Co1120.32 (19)
C4A—C5A—H5A120.7C10B—N9B—Co1121.3 (2)
C5A—C6A—N1A122.6 (3)N9B—C10B—C11B122.6 (3)
C5A—C6A—H6A118.7N9B—C10B—H10B118.7
N1A—C6A—H6A118.7C11B—C10B—H10B118.7
C2A—N7A—C8A127.2 (3)C10B—C11B—C12B118.9 (3)
C2A—N7A—H7A112.7C10B—C11B—H11B120.5
C8A—N7A—H7A117.3C12B—C11B—H11B120.5
N9A—C8A—N7A119.9 (3)C13B—C12B—C11B119.5 (3)
N9A—C8A—C13A121.9 (3)C13B—C12B—H12B120.3
N7A—C8A—C13A118.2 (3)C11B—C12B—H12B120.3
C8A—N9A—C10A118.3 (3)C12B—C13B—C8B119.1 (3)
C8A—N9A—Co1120.1 (2)C12B—C13B—H13B120.5
C10A—N9A—Co1120.9 (2)C8B—C13B—H13B120.5
N9A—C10A—C11A122.2 (3)O3—C1—O2126.0 (3)
N9A—C10A—H10A118.9O3—C1—O1126.0 (3)
C11A—C10A—H10A118.9O2—C1—O1107.9 (3)
C10A—C11A—C12A118.5 (3)O3—C1—Co1177.2 (3)
C10A—C11A—H11A120.8O2—C1—Co153.86 (14)
C12A—C11A—H11A120.8O1—C1—Co154.00 (14)
C13A—C12A—C11A120.3 (3)C1—O1—Co191.28 (17)
C13A—C12A—H12A119.8C1—O2—Co191.90 (18)
C11A—C12A—H12A119.8
N1A—C2A—N7A—C8A28.1 (4)N1B—C2B—N7B—C8B28.0 (4)
N9A—C8A—N7A—C2A27.6 (4)N9B—C8B—N7B—C2B33.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7A—H7A···O2i0.862.082.876 (3)154
N7B—H7B···Br10.862.493.327 (2)164
C10B—H10B···O3ii0.952.343.225 (4)155
C5A—H5A···O1iii0.952.443.265 (4)146
C13A—H13A···O3i0.952.433.316 (4)156
C13B—H13B···Br10.952.833.623 (3)142
C5B—H5B···Br1iv0.952.863.741 (3)155
C4B—H4B···Br1v0.952.893.657 (3)139
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Co(CO3)(C10H9N3)2]Br
Mr541.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)130
a, b, c (Å)16.9605 (3), 7.4322 (1), 17.2590 (4)
β (°) 105.839 (2)
V3)2092.96 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.77
Crystal size (mm)0.30 × 0.15 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur E
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Tmin, Tmax0.710, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
29846, 4277, 3386
Rint0.064
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.080, 1.01
No. of reflections4277
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.50

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Selected geometric parameters (Å, º) top
Co1—O21.901 (2)Co1—N1A1.923 (2)
Co1—O11.904 (2)Co1—N1B1.925 (2)
Co1—N9B1.919 (2)Co1—N9A1.933 (2)
O2—Co1—O168.96 (9)N9B—Co1—N1B88.48 (10)
O2—Co1—N9B169.04 (10)N1A—Co1—N1B174.69 (10)
O1—Co1—N9B100.10 (10)O2—Co1—N9A96.62 (10)
O2—Co1—N1A88.42 (10)O1—Co1—N9A165.55 (10)
O1—Co1—N1A88.32 (10)N9B—Co1—N9A94.32 (10)
N9B—Co1—N1A92.01 (10)N1A—Co1—N9A90.42 (10)
O2—Co1—N1B90.10 (9)N1B—Co1—N9A94.81 (10)
O1—Co1—N1B86.40 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7A—H7A···O2i0.862.082.876 (3)154
N7B—H7B···Br10.862.493.327 (2)164
C10B—H10B···O3ii0.952.343.225 (4)155
C5A—H5A···O1iii0.952.443.265 (4)146
C13A—H13A···O3i0.952.433.316 (4)156
C13B—H13B···Br10.952.833.623 (3)142
C5B—H5B···Br1iv0.952.863.741 (3)155
C4B—H4B···Br1v0.952.893.657 (3)139
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+1, y+2, z+1.
 

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationCastillo, O., Luque, A., De la Pinta, N. & Román, P. (2011). Acta Cryst. E67, e15.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, A. F., Bocquet, B. & Bernardinelli, G. (1987). Acta Cryst. C43, 883–885.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m414-m415
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds