metal-organic compounds
catena-Poly[copper(II)-{μ3-4,4′-dibromo-2,2′-[butane-1,4-diylbis(nitrilomethanylylidene)]diphenolato-κ4N,O:N′,O′:O′}]
aChemistry Department, Payame Noor University, Tehran 19395-4697, I. R. of Iran, and bX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: hkargar@pnu.ac.ir
The 18H16Br2N2O2)]n, consists of a Schiff base complex in which a crystallographic twofold rotation axis bisects the central C—C bonds of the n-butyl spacers of the designated Schiff base ligands, making symmetry-related dimer units, which are twisted around CuII atoms in a bis-bidentate coordination mode. In the crystal, these dimeric units are connected through Cu—O bonds, forming one-dimensional coordination polymers, which propagate along [001]. The CuII atom adopts a square-based pyramidal coordination geometry, being coordinated by two N and two O atoms of symmetry-related ligands and by a third O atom of a neighboring complex. Furthermore, intermolecular π–π interactions [centroid–centroid distance = 3.786 (2) Å] and C—H⋯O interactions stabilize the crystal packing.
of the title coordination polymer, [Cu(CRelated literature
For van der Waals radii, see: Bondi (1964). For background to coordination polymers, see: Kido & Okamoto (2002); Li et al. (2006); Eddaoudi et al. (2001); Dietzel et al. (2005). For background to bis-bidentate Schiff base complexes, see: Hannon et al. (1999); Lavalette et al. (2003). For the synthesis and structural variations of Schiff base complexes see: Granovski et al. (1993); Elmali et al. (2000). For the of the chloro derivative, see: Kargar & Kia (2011).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811009949/su2263sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811009949/su2263Isup2.hkl
The title complex was synthesized by the template method of mixing an ethanolic solution (50 ml) of 5-bromosalicylaldeyde (4 mmol), 1,4-butanediamine (2 mmol), and CuCl2.4H2O (2.1 mmol). After stirring at reflux conditions for 2 h, the solution was filtered and the resulting green solid was crystallized from ethanol, giving single crystals suitable for X-ray diffraction.
All H-atoms were positioned geometrically and constrained to ride on the parent atoms using the riding-model approximation: C—H = 0.93 - 0.97 Å with Uiso(H) = 1.2Ueq(C). In case of the large maximum residual density, located < 1 Å from the Br atoms, it was not possible to find any sign of
or missed atoms.Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Cu(C18H16Br2N2O2)] | F(000) = 2024 |
Mr = 515.69 | Dx = 1.969 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9961 reflections |
a = 24.0964 (9) Å | θ = 2.4–34.8° |
b = 10.5885 (3) Å | µ = 5.86 mm−1 |
c = 15.3528 (5) Å | T = 100 K |
β = 117.354 (3)° | Block, green |
V = 3479.2 (2) Å3 | 0.41 × 0.32 × 0.17 mm |
Z = 8 |
Bruker SMART APEXII CCD area-detector diffractometer | 6017 independent reflections |
Radiation source: fine-focus sealed tube | 4887 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 32.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −35→35 |
Tmin = 0.197, Tmax = 0.439 | k = −15→15 |
36229 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.19 | w = 1/[σ2(Fo2) + (0.0486P)2 + 32.1161P] where P = (Fo2 + 2Fc2)/3 |
6017 reflections | (Δ/σ)max = 0.001 |
226 parameters | Δρmax = 2.19 e Å−3 |
0 restraints | Δρmin = −0.73 e Å−3 |
[Cu(C18H16Br2N2O2)] | V = 3479.2 (2) Å3 |
Mr = 515.69 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 24.0964 (9) Å | µ = 5.86 mm−1 |
b = 10.5885 (3) Å | T = 100 K |
c = 15.3528 (5) Å | 0.41 × 0.32 × 0.17 mm |
β = 117.354 (3)° |
Bruker SMART APEXII CCD area-detector diffractometer | 6017 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 4887 reflections with I > 2σ(I) |
Tmin = 0.197, Tmax = 0.439 | Rint = 0.037 |
36229 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.19 | w = 1/[σ2(Fo2) + (0.0486P)2 + 32.1161P] where P = (Fo2 + 2Fc2)/3 |
6017 reflections | Δρmax = 2.19 e Å−3 |
226 parameters | Δρmin = −0.73 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.47745 (2) | −0.03938 (5) | 0.38413 (4) | 0.01976 (11) | |
Br1 | 0.819293 (19) | 0.00198 (4) | 0.58443 (3) | 0.02766 (11) | |
Br2 | 0.134787 (18) | 0.00911 (4) | 0.11824 (3) | 0.02394 (10) | |
O1 | 0.54761 (13) | 0.0506 (3) | 0.4822 (2) | 0.0236 (6) | |
O2 | 0.40617 (13) | −0.1341 (3) | 0.2998 (2) | 0.0252 (6) | |
N1 | 0.53131 (15) | −0.1956 (3) | 0.4080 (2) | 0.0198 (6) | |
N2 | 0.43372 (16) | 0.1252 (3) | 0.3280 (3) | 0.0217 (6) | |
C1 | 0.60593 (18) | 0.0376 (4) | 0.4980 (3) | 0.0218 (7) | |
C2 | 0.64637 (19) | 0.1423 (4) | 0.5324 (3) | 0.0249 (8) | |
H2A | 0.6310 | 0.2195 | 0.5405 | 0.030* | |
C3 | 0.70866 (19) | 0.1318 (4) | 0.5542 (3) | 0.0247 (8) | |
H3A | 0.7347 | 0.2021 | 0.5755 | 0.030* | |
C4 | 0.73222 (18) | 0.0156 (4) | 0.5442 (3) | 0.0213 (7) | |
C5 | 0.69348 (17) | −0.0878 (4) | 0.5073 (3) | 0.0209 (7) | |
H5A | 0.7094 | −0.1640 | 0.4987 | 0.025* | |
C6 | 0.62944 (17) | −0.0775 (4) | 0.4828 (3) | 0.0194 (7) | |
C7 | 0.59134 (18) | −0.1902 (4) | 0.4466 (3) | 0.0209 (7) | |
H7A | 0.6123 | −0.2657 | 0.4517 | 0.025* | |
C8 | 0.50307 (18) | −0.3230 (4) | 0.3790 (3) | 0.0214 (7) | |
H8A | 0.4702 | −0.3323 | 0.3984 | 0.026* | |
H8B | 0.5347 | −0.3863 | 0.4138 | 0.026* | |
C9 | 0.47575 (17) | −0.3465 (4) | 0.2686 (3) | 0.0208 (7) | |
H9A | 0.4544 | −0.4273 | 0.2533 | 0.025* | |
H9B | 0.4449 | −0.2817 | 0.2341 | 0.025* | |
C10 | 0.34829 (17) | −0.0968 (4) | 0.2555 (3) | 0.0204 (7) | |
C11 | 0.30077 (18) | −0.1890 (4) | 0.2123 (3) | 0.0223 (7) | |
H11A | 0.3120 | −0.2728 | 0.2115 | 0.027* | |
C12 | 0.23841 (18) | −0.1575 (4) | 0.1715 (3) | 0.0224 (7) | |
H12A | 0.2080 | −0.2199 | 0.1450 | 0.027* | |
C13 | 0.22092 (17) | −0.0308 (4) | 0.1703 (3) | 0.0194 (7) | |
C14 | 0.26555 (18) | 0.0625 (4) | 0.2037 (3) | 0.0218 (7) | |
H14A | 0.2534 | 0.1467 | 0.1980 | 0.026* | |
C15 | 0.32968 (18) | 0.0317 (4) | 0.2466 (3) | 0.0209 (7) | |
C16 | 0.37388 (19) | 0.1347 (4) | 0.2777 (3) | 0.0225 (7) | |
H16A | 0.3576 | 0.2157 | 0.2597 | 0.027* | |
C17 | 0.47047 (19) | 0.2436 (4) | 0.3495 (3) | 0.0229 (7) | |
H17A | 0.4937 | 0.2543 | 0.4200 | 0.028* | |
H17B | 0.4421 | 0.3145 | 0.3233 | 0.028* | |
C18 | 0.51627 (19) | 0.2440 (4) | 0.3057 (3) | 0.0243 (8) | |
H18A | 0.5427 | 0.3181 | 0.3289 | 0.029* | |
H18B | 0.5429 | 0.1701 | 0.3289 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01465 (19) | 0.0223 (2) | 0.0209 (2) | 0.00107 (16) | 0.00695 (16) | −0.00268 (18) |
Br1 | 0.01623 (17) | 0.0374 (2) | 0.0292 (2) | −0.00192 (15) | 0.01023 (15) | −0.00306 (17) |
Br2 | 0.01591 (17) | 0.0263 (2) | 0.0279 (2) | 0.00093 (13) | 0.00856 (15) | 0.00019 (15) |
O1 | 0.0168 (12) | 0.0281 (15) | 0.0256 (14) | −0.0010 (11) | 0.0096 (11) | −0.0052 (12) |
O2 | 0.0177 (12) | 0.0233 (14) | 0.0292 (15) | 0.0028 (10) | 0.0062 (11) | −0.0047 (12) |
N1 | 0.0179 (14) | 0.0220 (15) | 0.0194 (14) | 0.0005 (11) | 0.0086 (12) | 0.0001 (12) |
N2 | 0.0222 (15) | 0.0200 (15) | 0.0246 (16) | −0.0012 (12) | 0.0123 (13) | −0.0036 (13) |
C1 | 0.0171 (15) | 0.0266 (19) | 0.0196 (16) | −0.0004 (14) | 0.0066 (13) | −0.0041 (15) |
C2 | 0.0224 (17) | 0.0256 (19) | 0.0271 (19) | −0.0002 (15) | 0.0117 (16) | −0.0049 (16) |
C3 | 0.0213 (17) | 0.0268 (19) | 0.0262 (19) | −0.0051 (14) | 0.0111 (15) | −0.0053 (16) |
C4 | 0.0159 (15) | 0.031 (2) | 0.0174 (16) | −0.0006 (14) | 0.0083 (13) | −0.0012 (14) |
C5 | 0.0178 (15) | 0.0236 (18) | 0.0198 (16) | 0.0000 (13) | 0.0075 (13) | −0.0022 (14) |
C6 | 0.0174 (15) | 0.0227 (17) | 0.0169 (15) | 0.0002 (13) | 0.0068 (13) | −0.0002 (13) |
C7 | 0.0199 (16) | 0.0220 (17) | 0.0196 (16) | 0.0022 (13) | 0.0080 (14) | −0.0004 (14) |
C8 | 0.0186 (16) | 0.0206 (17) | 0.0245 (18) | −0.0019 (13) | 0.0095 (14) | 0.0003 (14) |
C9 | 0.0165 (15) | 0.0222 (17) | 0.0234 (17) | −0.0019 (13) | 0.0089 (14) | −0.0014 (14) |
C10 | 0.0187 (16) | 0.0234 (18) | 0.0183 (16) | 0.0015 (13) | 0.0078 (13) | −0.0005 (14) |
C11 | 0.0186 (16) | 0.0224 (18) | 0.0223 (18) | 0.0013 (13) | 0.0062 (14) | −0.0005 (14) |
C12 | 0.0184 (16) | 0.0235 (18) | 0.0222 (17) | 0.0007 (13) | 0.0067 (14) | 0.0004 (15) |
C13 | 0.0141 (14) | 0.0234 (17) | 0.0177 (16) | 0.0025 (12) | 0.0047 (12) | 0.0018 (13) |
C14 | 0.0179 (16) | 0.0194 (17) | 0.0268 (18) | 0.0008 (13) | 0.0091 (14) | 0.0011 (14) |
C15 | 0.0196 (16) | 0.0221 (17) | 0.0188 (16) | 0.0018 (13) | 0.0070 (13) | −0.0004 (14) |
C16 | 0.0219 (17) | 0.0210 (17) | 0.0254 (18) | 0.0002 (14) | 0.0115 (15) | −0.0023 (15) |
C17 | 0.0221 (17) | 0.0208 (18) | 0.0286 (19) | −0.0033 (14) | 0.0140 (15) | −0.0034 (15) |
C18 | 0.0213 (17) | 0.0277 (19) | 0.0270 (19) | −0.0019 (14) | 0.0138 (15) | −0.0010 (15) |
Cu1—O2 | 1.894 (3) | C7—H7A | 0.9300 |
Cu1—O1 | 1.922 (3) | C8—C9 | 1.530 (6) |
Cu1—N2 | 2.014 (4) | C8—H8A | 0.9700 |
Cu1—N1 | 2.029 (3) | C8—H8B | 0.9700 |
Cu1—O1i | 2.393 (3) | C9—C9ii | 1.519 (7) |
Br1—C4 | 1.901 (4) | C9—H9A | 0.9700 |
Br2—C13 | 1.898 (4) | C9—H9B | 0.9700 |
O1—C1 | 1.319 (5) | C10—C11 | 1.416 (5) |
O1—Cu1i | 2.393 (3) | C10—C15 | 1.420 (6) |
O2—C10 | 1.301 (5) | C11—C12 | 1.377 (5) |
N1—C7 | 1.288 (5) | C11—H11A | 0.9300 |
N1—C8 | 1.484 (5) | C12—C13 | 1.404 (6) |
N2—C16 | 1.289 (5) | C12—H12A | 0.9300 |
N2—C17 | 1.481 (5) | C13—C14 | 1.374 (5) |
C1—C6 | 1.408 (6) | C14—C15 | 1.412 (5) |
C1—C2 | 1.409 (6) | C14—H14A | 0.9300 |
C2—C3 | 1.384 (6) | C15—C16 | 1.444 (6) |
C2—H2A | 0.9300 | C16—H16A | 0.9300 |
C3—C4 | 1.393 (6) | C17—C18 | 1.534 (5) |
C3—H3A | 0.9300 | C17—H17A | 0.9700 |
C4—C5 | 1.380 (6) | C17—H17B | 0.9700 |
C5—C6 | 1.414 (5) | C18—C18ii | 1.519 (8) |
C5—H5A | 0.9300 | C18—H18A | 0.9700 |
C6—C7 | 1.451 (6) | C18—H18B | 0.9700 |
O2—Cu1—O1 | 173.11 (14) | C9—C8—H8A | 109.1 |
O2—Cu1—N2 | 91.94 (13) | N1—C8—H8B | 109.1 |
O1—Cu1—N2 | 90.31 (14) | C9—C8—H8B | 109.1 |
O2—Cu1—N1 | 89.76 (13) | H8A—C8—H8B | 107.8 |
O1—Cu1—N1 | 90.18 (13) | C9ii—C9—C8 | 113.8 (4) |
N2—Cu1—N1 | 161.46 (14) | C9ii—C9—H9A | 108.8 |
O2—Cu1—O1i | 93.04 (12) | C8—C9—H9A | 108.8 |
O1—Cu1—O1i | 80.22 (12) | C9ii—C9—H9B | 108.8 |
N2—Cu1—O1i | 96.98 (12) | C8—C9—H9B | 108.8 |
N1—Cu1—O1i | 101.37 (12) | H9A—C9—H9B | 107.7 |
C1—O1—Cu1 | 124.9 (3) | O2—C10—C11 | 118.6 (4) |
C1—O1—Cu1i | 120.3 (3) | O2—C10—C15 | 123.8 (4) |
Cu1—O1—Cu1i | 99.78 (12) | C11—C10—C15 | 117.6 (3) |
C10—O2—Cu1 | 127.9 (3) | C12—C11—C10 | 121.7 (4) |
C7—N1—C8 | 116.2 (3) | C12—C11—H11A | 119.2 |
C7—N1—Cu1 | 122.4 (3) | C10—C11—H11A | 119.2 |
C8—N1—Cu1 | 121.3 (2) | C11—C12—C13 | 119.7 (4) |
C16—N2—C17 | 117.2 (4) | C11—C12—H12A | 120.2 |
C16—N2—Cu1 | 123.0 (3) | C13—C12—H12A | 120.2 |
C17—N2—Cu1 | 119.7 (3) | C14—C13—C12 | 120.2 (3) |
O1—C1—C6 | 122.4 (4) | C14—C13—Br2 | 120.9 (3) |
O1—C1—C2 | 118.8 (4) | C12—C13—Br2 | 118.8 (3) |
C6—C1—C2 | 118.8 (4) | C13—C14—C15 | 120.6 (4) |
C3—C2—C1 | 121.0 (4) | C13—C14—H14A | 119.7 |
C3—C2—H2A | 119.5 | C15—C14—H14A | 119.7 |
C1—C2—H2A | 119.5 | C14—C15—C10 | 119.7 (4) |
C2—C3—C4 | 119.7 (4) | C14—C15—C16 | 117.6 (4) |
C2—C3—H3A | 120.2 | C10—C15—C16 | 122.7 (3) |
C4—C3—H3A | 120.2 | N2—C16—C15 | 126.2 (4) |
C5—C4—C3 | 120.9 (4) | N2—C16—H16A | 116.9 |
C5—C4—Br1 | 120.7 (3) | C15—C16—H16A | 116.9 |
C3—C4—Br1 | 118.4 (3) | N2—C17—C18 | 112.4 (3) |
C4—C5—C6 | 119.9 (4) | N2—C17—H17A | 109.1 |
C4—C5—H5A | 120.1 | C18—C17—H17A | 109.1 |
C6—C5—H5A | 120.1 | N2—C17—H17B | 109.1 |
C1—C6—C5 | 119.7 (4) | C18—C17—H17B | 109.1 |
C1—C6—C7 | 122.9 (3) | H17A—C17—H17B | 107.9 |
C5—C6—C7 | 117.4 (4) | C18ii—C18—C17 | 113.0 (4) |
N1—C7—C6 | 126.3 (4) | C18ii—C18—H18A | 109.0 |
N1—C7—H7A | 116.8 | C17—C18—H18A | 109.0 |
C6—C7—H7A | 116.8 | C18ii—C18—H18B | 109.0 |
N1—C8—C9 | 112.6 (3) | C17—C18—H18B | 109.0 |
N1—C8—H8A | 109.1 | H18A—C18—H18B | 107.8 |
N2—Cu1—O1—C1 | −124.9 (3) | O1—C1—C6—C5 | −175.7 (4) |
N1—Cu1—O1—C1 | 36.6 (3) | C2—C1—C6—C5 | 3.5 (6) |
O1i—Cu1—O1—C1 | 138.1 (4) | O1—C1—C6—C7 | 1.4 (6) |
N2—Cu1—O1—Cu1i | 97.03 (13) | C2—C1—C6—C7 | −179.3 (4) |
N1—Cu1—O1—Cu1i | −101.51 (13) | C4—C5—C6—C1 | −1.3 (6) |
O1i—Cu1—O1—Cu1i | 0.0 | C4—C5—C6—C7 | −178.6 (4) |
N2—Cu1—O2—C10 | −21.9 (4) | C8—N1—C7—C6 | −178.3 (4) |
N1—Cu1—O2—C10 | 176.6 (4) | Cu1—N1—C7—C6 | 3.4 (6) |
O1i—Cu1—O2—C10 | 75.2 (4) | C1—C6—C7—N1 | 13.1 (6) |
O2—Cu1—N1—C7 | 164.8 (3) | C5—C6—C7—N1 | −169.7 (4) |
O1—Cu1—N1—C7 | −22.1 (3) | C7—N1—C8—C9 | −101.6 (4) |
N2—Cu1—N1—C7 | 69.4 (6) | Cu1—N1—C8—C9 | 76.7 (4) |
O1i—Cu1—N1—C7 | −102.2 (3) | N1—C8—C9—C9ii | 64.2 (3) |
O2—Cu1—N1—C8 | −13.5 (3) | Cu1—O2—C10—C11 | −167.0 (3) |
O1—Cu1—N1—C8 | 159.6 (3) | Cu1—O2—C10—C15 | 13.7 (6) |
N2—Cu1—N1—C8 | −108.9 (5) | O2—C10—C11—C12 | 174.4 (4) |
O1i—Cu1—N1—C8 | 79.6 (3) | C15—C10—C11—C12 | −6.3 (6) |
O2—Cu1—N2—C16 | 17.4 (3) | C10—C11—C12—C13 | 1.5 (6) |
O1—Cu1—N2—C16 | −156.1 (3) | C11—C12—C13—C14 | 4.2 (6) |
N1—Cu1—N2—C16 | 112.4 (5) | C11—C12—C13—Br2 | −177.6 (3) |
O1i—Cu1—N2—C16 | −75.9 (3) | C12—C13—C14—C15 | −4.9 (6) |
O2—Cu1—N2—C17 | −166.6 (3) | Br2—C13—C14—C15 | 177.0 (3) |
O1—Cu1—N2—C17 | 19.9 (3) | C13—C14—C15—C10 | −0.1 (6) |
N1—Cu1—N2—C17 | −71.6 (5) | C13—C14—C15—C16 | 178.4 (4) |
O1i—Cu1—N2—C17 | 100.1 (3) | O2—C10—C15—C14 | −175.2 (4) |
Cu1—O1—C1—C6 | −31.8 (6) | C11—C10—C15—C14 | 5.6 (6) |
Cu1i—O1—C1—C6 | 98.5 (4) | O2—C10—C15—C16 | 6.4 (6) |
Cu1—O1—C1—C2 | 148.9 (3) | C11—C10—C15—C16 | −172.8 (4) |
Cu1i—O1—C1—C2 | −80.7 (4) | C17—N2—C16—C15 | 178.4 (4) |
O1—C1—C2—C3 | 177.1 (4) | Cu1—N2—C16—C15 | −5.6 (6) |
C6—C1—C2—C3 | −2.2 (6) | C14—C15—C16—N2 | 171.5 (4) |
C1—C2—C3—C4 | −1.4 (7) | C10—C15—C16—N2 | −10.1 (7) |
C2—C3—C4—C5 | 3.8 (6) | C16—N2—C17—C18 | −118.7 (4) |
C2—C3—C4—Br1 | −175.2 (3) | Cu1—N2—C17—C18 | 65.1 (4) |
C3—C4—C5—C6 | −2.5 (6) | N2—C17—C18—C18ii | 65.9 (3) |
Br1—C4—C5—C6 | 176.6 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C18H16Br2N2O2)] |
Mr | 515.69 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 24.0964 (9), 10.5885 (3), 15.3528 (5) |
β (°) | 117.354 (3) |
V (Å3) | 3479.2 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 5.86 |
Crystal size (mm) | 0.41 × 0.32 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.197, 0.439 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 36229, 6017, 4887 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.746 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.139, 1.19 |
No. of reflections | 6017 |
No. of parameters | 226 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0486P)2 + 32.1161P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.19, −0.73 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
HK thans PNU for support of this work. RK thanks the Science and Research Branch, Islamic Azad University.
References
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dietzel, P. D. C., Morita, Y., Blom, R. & Fjellvag, H. (2005). Angew. Chem. Int. Ed. 44, 1483–1492. Web of Science CSD CrossRef Google Scholar
Eddaoudi, M., Moler, D., Li, H., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330. Web of Science CrossRef PubMed CAS Google Scholar
Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. Google Scholar
Hannon, M. J., Painting, L. C. & Alcock, N. W. (1999). Chem. Commun. pp. 2023–2024. Web of Science CSD CrossRef Google Scholar
Kargar, H. & Kia, R. (2011). Acta Cryst. E67, m497–m498. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357–2368. Web of Science CrossRef PubMed CAS Google Scholar
Lavalette, A., Tuna, F., Clarkson, G., Alcock, N. W. & Hannon, M. J. (2003). Chem. Commun. pp. 2666–2667. Web of Science CSD CrossRef Google Scholar
Li, Y., Zheng, F.-K., Liu, X., Zou, W.-Q., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2006). Inorg. Chem. 45, 6308–6316. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and construction of metal-organic coordination polymers (MOCPs) have attracted considerable attention, not only for their novel topologies but also for their potential in the area of magnetic applications and functional materials (Kido & Okamoto, 2002; Li et al., 2006; Eddaoudi et al., 2001; Dietzel et al., 2005). One of the key strategies in the construction of metal-organic coordination polymers is to select suitable bi- or multi-dentate bridging ligands. Among these, bis-bidentate NN- or NO-donor Schiff base ligands with aliphatic and aromatic spacers (Hannon et al., 1999; Lavalette et al., 2003) have attracted much attention because of the flexibility in their coordination modes and the resulting intermolecular interactions. The long chain aliphatic spacers or rigid aromatic spacers with large bite angles in these ligands favour the bis-bidentate coordination mode and allow the ligands to accomodate metal centers in one unit of the ligand. On the other hand, Schiff bases are one of the most prevalent ligands in coordination chemistry and their complexes are some of the most important stereochemical models in transition metal-organic chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Elmali et al., 2000).
The crystal structure of the chloro derivative, Poly[N,N'-Bis(5-chlorosalicylidene)-1,4-butanediaminato copper(II)], has been descibed in the previous paper (Kargar & Kia, 2011).
The molecular structure of the title complex (Fig. 1) consists of symmetry-related dimers in which the Schiff base ligands are twisted around CuII centers in a bis-bidentate coordinnation mode, having a crystallographic twofold rotation axis which passes through the central C—C bonds of the n-butyl spacers [C9—C9Ai and C18—C18Ai; symmetry code: (i) -x + 1, y, -z + 1/2].
In the crystal the dimer units are connected through Cu—O bonds, forming one-diensional coordination polymer running along the c axis (Fig. 2), in which the CuII atom adopts a square-based pyramidal coordination geometry. The CuII atoms are supported by the two nitrogen and oxygen atoms of the symmetry-related ligands and a third oxygen atom of neighboring complexes. The lengths of the intermolecular Cu1—O1i bonds [2.394 (3) Å Å; symetry code (i) -x, -y + 1, -z] is significantly shorter than the sum of the van der Waals (vdW) radii of these atoms [Cu, 1.43Å and O, 1.52 Å; Bondi, 1964]. There are different non-bonded internuclear Cu···Cu distances. The longer one is separated by the butyl spacers [4.718 Å], and the shorter one is in the centrosymmetric Cu2O2 rectangular unit [3.314 Å]. Furthermore, intermolecular π-π interactions stabilize the crystal packings with centroid to centroid distances of 3.786 (2)Å [Cg1 and Cg2 are the centroids of the rings (C1–C6) and (C10–C15)]. There are also C—H···O interactions present (Table 1).