metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m505-m506

cis-Bis[4-amino-N-(pyrimidin-2-yl)benzene­sulfonamido-κ2N,N′]bis­­(di­methyl sulfoxide-κO)cadmium

aDepartment of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
*Correspondence e-mail: acsbd@yahoo.com

(Received 14 February 2011; accepted 23 March 2011; online 26 March 2011)

The complete mol­ecule of the title compound, [Cd(C10H9N4O2S)2(C2H6OS)2], is completed by the application of a twofold rotation axis. The CdII atom is six coordinated by two bidentate sulfadiazinate anions and two dimethyl­sulfoxide mol­ecules. The resulting N4O2 donor set displays a distorted trigonal–prismatic coordination geometry. The S atom and methyl groups of dimethyl­sulfoxide are disordered over two sets of sites, with site occupancies of 0.715 (4) and 0.285 (4). The crystal structure features inter­molecular N—H⋯N and N—H⋯O hydrogen bonds that lead to the formation of layers in the ab plane.

Related literature

For related structures, see: Heren et al. (2006[Heren, Z., Paşaoğlu, H. & Kaştaş, G. (2006). Acta Cryst. E62, o3437-o3439.]); Hossain & Amoroso (2007[Hossain, G. M. G. & Amoroso, A. J. (2007). Acta Cryst. E63, m759-m760.]). For background to hydrogen bonds formed by sulfadiazinate anions, see: Paşaoğlu et al. (2008[Paşaoğlu, H., Kaştaş, G., Heren, Z. & Büyükgüngör, O. (2008). Acta Cryst. E64, m1192.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C10H9N4O2S)2(C2H6OS)2]

  • Mr = 767.20

  • Orthorhombic, P b c n

  • a = 16.9168 (5) Å

  • b = 15.2448 (3) Å

  • c = 11.8402 (3) Å

  • V = 3053.51 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 150 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.803, Tmax = 0.835

  • 21431 measured reflections

  • 3503 independent reflections

  • 2545 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.102

  • S = 1.09

  • 3503 reflections

  • 235 parameters

  • 30 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.268 (3)
Cd1—N11 2.305 (3)
Cd1—N12 2.452 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14A⋯N13i 0.94 (3) 2.30 (3) 3.168 (5) 152 (4)
N14—H14B⋯O11ii 0.95 (3) 2.02 (3) 2.967 (5) 173 (4)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In an attempt to prepare a complex of sulfadiazine with the cadmium(II) ion in methanol by the reaction of a cadmium salt and sulfadiazine followed by crystallization from dimethylsulfoxide, the compound isolated was shown by crystallography to have the formula [Cd(C10H9N4O2S)2](DMSO)2.

The six coordinate cadmium complex is trigonal prismatic, Fig. 1. The C18–N14 bond distance of 1.366 (5) Å and the C15–S11–N11–C11 torsion angle of 66.1 (3) ° are comparable to those observed in related structures (Heren et al., 2006; Hossain & Amoroso, 2007). The Cd—O bond distance is shorter than the Cd—N bonds (Table 1). The dihedral angle between the aromatic rings of the anion of 88.65 (12) ° and this is greater than value of 71.10 (14) ° in the sulfadiazinate anion (Hossain & Amoroso, 2007). This is because in the latter the molecule is not bonded to a metal ion. The packing of (I) (Fig. 2) is stabilized by intermolecular N—H···N and N—H···O hydrogen bonds (Table 2) occurring between the anions in accord with a literature precedent (Paşaoğlu, et al., 2008). This hydrogen bonding leads to layers in the ab plane, Fig. 2.

Related literature top

For related structures, see: Heren et al. (2006); Hossain & Amoroso (2007). For background to hydrogen bonds formed by sulfadiazinate anions, see: Paşaoğlu et al. (2008).

Experimental top

The sodium salt of sulfadiazine (5.446 g, 2 mmol) was dissolved in hot methanol (50 ml) and a methanol solution (10 ml) of (CH3COO)2Cd.2H2O (2.6647 g, 1 mmol) was added slowly with constant stirring on a hot plate. A white precipitate was formed and the mixture was stirred for a further 2 h. The precipitate was filtered off and dried over silica gel. It was then dissolved in dimethylsulfoxide solution (50 ml), Colourless blocks were filtered off and dried over silica gel.

Refinement top

The S atoms and methyl groups of dimethylsulfoxide were disordered. This was modelled with two different orientations and from refinement the site occupancies were 0.715 (4):0.285 (4). The H atoms were positioned geometrically and refined using in the riding model approximation, with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C). The N—H H atoms were located from a difference map and refined freely.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. The S atom and methyl groups of dimethylsulfoxide are disordered over two sites, with occupancies of 0.715 (4) and 0.285 (4)
[Figure 2] Fig. 2. The packing of (I), viewed down the a-axis, showing one layer of molecules connected by N—H···N and N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
cis-Bis[4-amino-N-(pyrimidin-2-yl)benzenesulfonamido- κ2N,N']bis(dimethyl sulfoxide-κO)cadmium top
Crystal data top
[Cd(C10H9N4O2S)2(C2H6OS)2]F(000) = 1560
Mr = 767.20Dx = 1.669 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3503 reflections
a = 16.9168 (5) Åθ = 2.9–27.5°
b = 15.2448 (3) ŵ = 1.04 mm1
c = 11.8402 (3) ÅT = 150 K
V = 3053.51 (13) Å3Block, white
Z = 40.22 × 0.20 × 0.18 mm
Data collection top
Nonius KappaCCD
diffractometer
3503 independent reflections
Radiation source: fine-focus sealed tube2545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 2118
Tmin = 0.803, Tmax = 0.835k = 1919
21431 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0172P)2 + 6.2081P]
where P = (Fo2 + 2Fc2)/3
3503 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.74 e Å3
30 restraintsΔρmin = 0.78 e Å3
Crystal data top
[Cd(C10H9N4O2S)2(C2H6OS)2]V = 3053.51 (13) Å3
Mr = 767.20Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.9168 (5) ŵ = 1.04 mm1
b = 15.2448 (3) ÅT = 150 K
c = 11.8402 (3) Å0.22 × 0.20 × 0.18 mm
Data collection top
Nonius KappaCCD
diffractometer
3503 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2545 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.835Rint = 0.088
21431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04530 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.74 e Å3
3503 reflectionsΔρmin = 0.78 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.00000.12725 (2)0.25000.02037 (13)
S110.15957 (6)0.26178 (6)0.36236 (8)0.0199 (2)
O110.20168 (16)0.21509 (17)0.2743 (2)0.0270 (7)
O120.19685 (16)0.26244 (17)0.4719 (2)0.0257 (6)
N110.07346 (19)0.21814 (19)0.3648 (3)0.0198 (7)
N120.05166 (19)0.1969 (2)0.4215 (3)0.0199 (7)
N130.0247 (2)0.3085 (2)0.5150 (3)0.0249 (8)
N140.1601 (2)0.6222 (2)0.1768 (3)0.0303 (8)
H14A0.129 (2)0.630 (3)0.111 (3)0.049 (15)*
H14B0.204 (2)0.655 (3)0.204 (4)0.050 (15)*
C110.0156 (2)0.2441 (2)0.4378 (3)0.0192 (8)
C120.1152 (2)0.2199 (3)0.4811 (3)0.0262 (9)
H120.16370.19010.46850.031*
C130.1122 (3)0.2854 (3)0.5601 (4)0.0328 (11)
H130.15750.30160.60260.039*
C140.0402 (3)0.3271 (3)0.5751 (4)0.0329 (11)
H140.03670.37140.63130.039*
C150.1503 (2)0.3716 (2)0.3178 (3)0.0206 (8)
C160.1968 (3)0.4361 (3)0.3654 (3)0.0280 (10)
H160.22690.42320.43120.034*
C170.2005 (3)0.5188 (3)0.3195 (4)0.0288 (10)
H170.23360.56190.35300.035*
C180.1556 (2)0.5402 (2)0.2229 (3)0.0231 (9)
C190.1065 (3)0.4757 (3)0.1783 (4)0.0312 (10)
H190.07390.48890.11520.037*
C200.1045 (3)0.3927 (3)0.2248 (4)0.0332 (11)
H200.07110.34930.19240.040*
O10.08770 (19)0.01537 (18)0.2349 (2)0.0364 (8)
S10.08063 (10)0.05478 (10)0.14466 (12)0.0277 (5)0.715 (4)
S1'0.1400 (3)0.0149 (3)0.1457 (3)0.0378 (15)0.285 (4)
C10.1509 (6)0.0296 (6)0.0397 (7)0.068 (2)0.715 (4)
H1A0.20360.02650.07390.101*0.715 (4)
H1B0.15040.07530.01850.101*0.715 (4)
H1C0.13790.02710.00530.101*0.715 (4)
C20.1237 (6)0.1479 (5)0.2028 (7)0.051 (2)0.715 (4)
H2A0.08960.17100.26280.076*0.715 (4)
H2B0.13040.19250.14400.076*0.715 (4)
H2C0.17540.13270.23460.076*0.715 (4)
C1'0.0900 (11)0.0263 (12)0.0231 (14)0.042 (4)0.285 (4)
H1'10.08430.03110.01320.064*0.285 (4)
H1'20.11920.06590.02710.064*0.285 (4)
H1'30.03750.05080.03840.064*0.285 (4)
C2'0.1696 (10)0.1245 (11)0.1724 (15)0.040 (4)0.285 (4)
H2'10.12690.16460.15120.060*0.285 (4)
H2'20.21690.13800.12780.060*0.285 (4)
H2'30.18160.13150.25290.060*0.285 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0263 (2)0.0129 (2)0.0219 (2)0.0000.00159 (18)0.000
S110.0156 (5)0.0151 (5)0.0291 (5)0.0010 (4)0.0004 (4)0.0004 (4)
O110.0217 (15)0.0207 (15)0.0386 (17)0.0055 (12)0.0096 (13)0.0029 (12)
O120.0208 (15)0.0236 (15)0.0328 (15)0.0002 (12)0.0050 (12)0.0048 (12)
N110.0178 (17)0.0148 (16)0.0269 (17)0.0027 (13)0.0023 (15)0.0019 (13)
N120.0162 (17)0.0201 (17)0.0234 (16)0.0028 (14)0.0008 (14)0.0010 (13)
N130.0215 (19)0.0261 (18)0.0270 (18)0.0002 (15)0.0013 (15)0.0092 (14)
N140.039 (2)0.0210 (18)0.0309 (19)0.0042 (18)0.0156 (18)0.0058 (15)
C110.017 (2)0.0179 (19)0.0223 (19)0.0025 (16)0.0031 (16)0.0003 (15)
C120.018 (2)0.033 (2)0.028 (2)0.0020 (18)0.0021 (18)0.0006 (18)
C130.023 (2)0.042 (3)0.033 (2)0.004 (2)0.0073 (19)0.010 (2)
C140.028 (3)0.038 (3)0.033 (2)0.002 (2)0.005 (2)0.017 (2)
C150.018 (2)0.0148 (19)0.029 (2)0.0010 (17)0.0021 (17)0.0018 (15)
C160.032 (3)0.022 (2)0.030 (2)0.0020 (19)0.0095 (19)0.0010 (17)
C170.030 (2)0.019 (2)0.038 (2)0.0068 (19)0.012 (2)0.0014 (17)
C180.024 (2)0.0173 (19)0.028 (2)0.0019 (17)0.0015 (18)0.0007 (15)
C190.036 (3)0.020 (2)0.038 (2)0.0013 (19)0.020 (2)0.0011 (18)
C200.037 (3)0.016 (2)0.047 (3)0.0023 (19)0.019 (2)0.0017 (18)
O10.048 (2)0.0229 (15)0.0381 (17)0.0132 (15)0.0010 (15)0.0059 (13)
S10.0303 (11)0.0219 (8)0.0310 (8)0.0015 (7)0.0025 (7)0.0043 (6)
S1'0.040 (3)0.038 (3)0.036 (2)0.001 (2)0.0012 (19)0.0055 (18)
C10.074 (4)0.066 (4)0.063 (4)0.014 (4)0.024 (4)0.011 (3)
C20.071 (4)0.031 (3)0.050 (4)0.012 (3)0.008 (3)0.003 (3)
C1'0.051 (6)0.039 (6)0.037 (6)0.004 (5)0.005 (5)0.002 (4)
C2'0.041 (6)0.036 (6)0.043 (6)0.008 (5)0.005 (5)0.006 (4)
Geometric parameters (Å, º) top
Cd1—O12.268 (3)C16—H160.9500
Cd1—O1i2.268 (3)C17—C181.412 (6)
Cd1—N11i2.305 (3)C17—H170.9500
Cd1—N112.305 (3)C18—C191.391 (6)
Cd1—N122.452 (3)C19—C201.380 (6)
Cd1—N12i2.452 (3)C19—H190.9500
S11—O121.442 (3)C20—H200.9500
S11—O111.449 (3)O1—S1'1.452 (5)
S11—N111.602 (3)O1—S11.516 (3)
S11—C151.762 (4)S1—C21.738 (7)
N11—C111.364 (5)S1—C11.763 (8)
N12—C121.333 (5)S1'—C1'1.689 (16)
N12—C111.361 (5)S1'—C2'1.774 (18)
N13—C141.339 (5)C1—H1A0.9800
N13—C111.351 (5)C1—H1B0.9800
N14—C181.366 (5)C1—H1C0.9800
N14—H14A0.94 (3)C2—H2A0.9800
N14—H14B0.95 (3)C2—H2B0.9800
C12—C131.369 (6)C2—H2C0.9800
C12—H120.9500C1'—H1'10.9800
C13—C141.385 (6)C1'—H1'20.9800
C13—H130.9500C1'—H1'30.9800
C14—H140.9500C2'—H2'10.9800
C15—C161.381 (5)C2'—H2'20.9800
C15—C201.385 (6)C2'—H2'30.9800
C16—C171.373 (6)
O1—Cd1—O1i82.45 (16)N13—C14—H14118.1
O1—Cd1—N11i139.32 (10)C13—C14—H14118.1
O1i—Cd1—N11i98.40 (11)C16—C15—C20118.6 (4)
O1—Cd1—N1198.40 (11)C16—C15—S11120.3 (3)
O1i—Cd1—N11139.32 (10)C20—C15—S11120.6 (3)
N11i—Cd1—N11106.09 (15)C17—C16—C15121.2 (4)
O1—Cd1—N12128.62 (10)C17—C16—H16119.4
O1i—Cd1—N1291.54 (11)C15—C16—H16119.4
N11i—Cd1—N1292.06 (11)C16—C17—C18120.5 (4)
N11—Cd1—N1256.20 (11)C16—C17—H17119.7
O1—Cd1—N12i91.54 (11)C18—C17—H17119.7
O1i—Cd1—N12i128.62 (10)N14—C18—C19121.9 (4)
N11i—Cd1—N12i56.20 (11)N14—C18—C17120.3 (4)
N11—Cd1—N12i92.06 (11)C19—C18—C17117.8 (4)
N12—Cd1—N12i128.72 (14)C20—C19—C18120.7 (4)
O12—S11—O11115.81 (17)C20—C19—H19119.6
O12—S11—N11112.60 (17)C18—C19—H19119.6
O11—S11—N11104.83 (17)C19—C20—C15121.1 (4)
O12—S11—C15107.54 (17)C19—C20—H20119.4
O11—S11—C15107.16 (17)C15—C20—H20119.4
N11—S11—C15108.61 (17)S1'—O1—S146.5 (2)
C11—N11—S11122.9 (3)S1'—O1—Cd1134.0 (2)
C11—N11—Cd199.3 (2)S1—O1—Cd1122.32 (18)
S11—N11—Cd1136.84 (18)O1—S1—C2105.3 (3)
C12—N12—C11117.4 (3)O1—S1—C1106.8 (3)
C12—N12—Cd1147.1 (3)C2—S1—C1100.1 (5)
C11—N12—Cd192.8 (2)O1—S1'—C1'110.7 (7)
C14—N13—C11114.8 (3)O1—S1'—C2'110.0 (6)
C18—N14—H14A114 (3)C1'—S1'—C2'101.4 (9)
C18—N14—H14B114 (3)S1'—C1'—H1'1109.5
H14A—N14—H14B130 (4)S1'—C1'—H1'2109.5
N13—C11—N12125.1 (3)H1'1—C1'—H1'2109.5
N13—C11—N11123.9 (3)S1'—C1'—H1'3109.5
N12—C11—N11110.9 (3)H1'1—C1'—H1'3109.5
N12—C12—C13121.6 (4)H1'2—C1'—H1'3109.5
N12—C12—H12119.2S1'—C2'—H2'1109.5
C13—C12—H12119.2S1'—C2'—H2'2109.5
C12—C13—C14117.1 (4)H2'1—C2'—H2'2109.5
C12—C13—H13121.5S1'—C2'—H2'3109.5
C14—C13—H13121.5H2'1—C2'—H2'3109.5
N13—C14—C13123.8 (4)H2'2—C2'—H2'3109.5
O12—S11—N11—C1152.9 (3)N12—C12—C13—C140.2 (7)
O11—S11—N11—C11179.7 (3)C11—N13—C14—C130.9 (6)
C15—S11—N11—C1166.1 (3)C12—C13—C14—N132.1 (7)
O12—S11—N11—Cd1140.9 (2)O12—S11—C15—C1620.1 (4)
O11—S11—N11—Cd114.2 (3)O11—S11—C15—C16105.1 (3)
C15—S11—N11—Cd1100.1 (3)N11—S11—C15—C16142.2 (3)
O1—Cd1—N11—C11137.0 (2)O12—S11—C15—C20168.7 (3)
O1i—Cd1—N11—C1148.8 (3)O11—S11—C15—C2066.1 (4)
N11i—Cd1—N11—C1175.9 (2)N11—S11—C15—C2046.6 (4)
N12—Cd1—N11—C115.6 (2)C20—C15—C16—C172.6 (6)
N12i—Cd1—N11—C11131.2 (2)S11—C15—C16—C17168.8 (3)
O1—Cd1—N11—S1154.8 (3)C15—C16—C17—C181.0 (7)
O1i—Cd1—N11—S11142.9 (2)C16—C17—C18—N14179.3 (4)
N11i—Cd1—N11—S1192.4 (3)C16—C17—C18—C191.6 (6)
N12—Cd1—N11—S11173.9 (3)N14—C18—C19—C20178.4 (4)
N12i—Cd1—N11—S1137.1 (3)C17—C18—C19—C202.5 (6)
O1—Cd1—N12—C12125.0 (5)C18—C19—C20—C150.9 (7)
O1i—Cd1—N12—C1243.4 (5)C16—C15—C20—C191.7 (7)
N11i—Cd1—N12—C1255.0 (5)S11—C15—C20—C19169.7 (4)
N11—Cd1—N12—C12163.1 (5)O1i—Cd1—O1—S1'115.6 (4)
N12i—Cd1—N12—C12101.8 (5)N11i—Cd1—O1—S1'21.5 (4)
O1—Cd1—N12—C1177.5 (2)N11—Cd1—O1—S1'105.5 (4)
O1i—Cd1—N12—C11159.1 (2)N12—Cd1—O1—S1'158.5 (3)
N11i—Cd1—N12—C11102.5 (2)N12i—Cd1—O1—S1'13.1 (4)
N11—Cd1—N12—C115.6 (2)O1i—Cd1—O1—S157.01 (18)
N12i—Cd1—N12—C1155.66 (19)N11i—Cd1—O1—S137.1 (3)
C14—N13—C11—N122.6 (6)N11—Cd1—O1—S1164.1 (2)
C14—N13—C11—N11176.9 (4)N12—Cd1—O1—S1142.92 (18)
C12—N12—C11—N134.7 (6)N12i—Cd1—O1—S171.8 (2)
Cd1—N12—C11—N13171.2 (3)S1'—O1—S1—C286.3 (4)
C12—N12—C11—N11174.9 (3)Cd1—O1—S1—C2151.5 (4)
Cd1—N12—C11—N118.4 (3)S1'—O1—S1—C119.5 (4)
S11—N11—C11—N130.0 (5)Cd1—O1—S1—C1102.7 (4)
Cd1—N11—C11—N13170.5 (3)S1—O1—S1'—C1'45.6 (7)
S11—N11—C11—N12179.5 (3)Cd1—O1—S1'—C1'50.6 (8)
Cd1—N11—C11—N129.1 (3)S1—O1—S1'—C2'65.6 (7)
C11—N12—C12—C133.3 (6)Cd1—O1—S1'—C2'161.8 (6)
Cd1—N12—C12—C13157.7 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···N13ii0.94 (3)2.30 (3)3.168 (5)152 (4)
N14—H14B···O11iii0.95 (3)2.02 (3)2.967 (5)173 (4)
Symmetry codes: (ii) x, y+1, z1/2; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cd(C10H9N4O2S)2(C2H6OS)2]
Mr767.20
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)150
a, b, c (Å)16.9168 (5), 15.2448 (3), 11.8402 (3)
V3)3053.51 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.803, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
21431, 3503, 2545
Rint0.088
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.102, 1.09
No. of reflections3503
No. of parameters235
No. of restraints30
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.78

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cd1—O12.268 (3)Cd1—N122.452 (3)
Cd1—N112.305 (3)N14—C181.366 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···N13i0.94 (3)2.30 (3)3.168 (5)152 (4)
N14—H14B···O11ii0.95 (3)2.02 (3)2.967 (5)173 (4)
Symmetry codes: (i) x, y+1, z1/2; (ii) x1/2, y+1/2, z.
 

Acknowledgements

The author is grateful to the Ministry of Science and Information & Communication Technology for financial support and to the School of Chemistry, Cardiff University, Wales, for crystallographic services.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHeren, Z., Paşaoğlu, H. & Kaştaş, G. (2006). Acta Cryst. E62, o3437–o3439.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHossain, G. M. G. & Amoroso, A. J. (2007). Acta Cryst. E63, m759–m760.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPaşaoğlu, H., Kaştaş, G., Heren, Z. & Büyükgüngör, O. (2008). Acta Cryst. E64, m1192.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m505-m506
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds