organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(3,4-Dimeth­­oxy­phen­yl)-1-(4-hy­dr­oxy­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Chemistry, P.A. College of Engineering, Mangalore, 574 153, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mysore 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 28 February 2011; accepted 1 March 2011; online 9 March 2011)

In the title compound, C17H16O4, the dihedral angle between the mean planes of the hy­droxy­phenyl and dimeth­oxy­phenyl rings is 19.34 (7)°. The mean plane of the prop-2-en-1-one group, the active site in this mol­ecule, makes angles of 7.40 (8) and 13.25 (8)°, respectively, with the hy­droxy­phenyl and dimeth­oxy­phenyl rings. The crystal packing is stabilized by O—H⋯O hydrogen bonds, weak inter­molecular C—H⋯O and ππ stacking inter­actions [centroid–centroid distance = 3.7386 (9) Å].

Related literature

For related chalcone structures, see: Butcher et al. (2006[Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633-o1635.]); Cao et al. (2005[Cao, D.-X., Li, G.-Z., Xue, G., Yu, W.-T. & Liu, Z.-Q. (2005). Acta Cryst. E61, o977-o979.]); Harrison et al. (2007[Harrison, W. T. A., Kumari, V., Ravindra, H. J. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2928.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o2936-o2937.], 2011a[Jasinski, J. P., Butcher, R. J., Siddaraju, B. P., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o313-o314.],b[Jasinski, J. P., Butcher, R. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o352-o353.]); Ngaini et al. (2009[Ngaini, Z., Fadzillah, S. M. H., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o1301-o1302.]); Radha Krishna et al. (2005[Radha Krishna, J., Jagadeesh Kumar, N., Krishnaiah, M., Venkata Rao, C., Koteswara Rao, Y. & Puranik, V. G. (2005). Acta Cryst. E61, o1323-o1325.]); Sharma et al. (1997[Sharma, N. K., Kumar, R., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1438-1440.]); Wu et al. (2005[Wu, H., Xu, Z. & Liang, Y.-M. (2005). Acta Cryst. E61, o1434-o1435.])

[Scheme 1]

Experimental

Crystal data
  • C17H16O4

  • Mr = 284.30

  • Orthorhombic, P b c a

  • a = 15.1435 (1) Å

  • b = 8.4364 (1) Å

  • c = 22.9454 (2) Å

  • V = 2931.43 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 295 K

  • 0.57 × 0.28 × 0.19 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.606, Tmax = 1.000

  • 9187 measured reflections

  • 3022 independent reflections

  • 2545 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.132

  • S = 1.05

  • 3022 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.82 1.90 2.7154 (15) 176
C6—H6A⋯O4ii 0.93 2.46 3.2803 (16) 147
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation to our studies on crystal structures of chalcones (Jasinski et al., 2010, 2011a, 2011b), we report here the synthesis, Fig. 1, and crystal structure of a new chalcone, (I), Fig. 2. The dihedral angle between the mean planes of the hydroxyphenyl and dimethoxyphenyl rings is 19.34 (7)° (Fig. 2). The mean plane of the prop-2-en-1-one group, the active site in this molecule, makes angles of 7.40 (8) ° and 13.25 (8) °, respectively, with the hydroxyphenyl and dimethoxyphenyl rings. Bond lengths and angles are normal and correspond to those observed in related compounds (Butcher et al., 2006; Cao et al., 2005; Harrison et al., 2007; Jasinski et al., 2010, 2011a, 2011b; Ngaini et al., 2009; Radha Krishna et al., 2005; Sharma et al., 1997; Wu et al., 2005). Crystal packing is stabilized by O—H···O hydrogen bonds, weak C—H···O contacts (Table 2) and ππ stacking interactions (Table 3); see Fig. 3.

Related literature top

For related chalcone structures, see: Butcher et al. (2006); Cao et al. (2005); Harrison et al. (2007); Jasinski et al. (2010, 2011a,b); Ngaini et al. (2009); Radha Krishna et al. (2005); Sharma et al. (1997); Wu et al. (2005)

Experimental top

4-Hydroxyacetophenone (1.36 g, 0.01 mol) was mixed with 3,4-dimethoxybenzaldehyde (1.66 g, 0.01 mol) and dissolved in ethanol (40 ml), Fig.1. To this solution, 5 ml of KOH (50%) was added at 278 K. The reaction mixture stirred overnight at room temperature and poured on to crushed ice. The pH of this mixture was adjusted to 3–4 with 2 M HCl aqueous solution. The resulting crude solid was filtered, washed successively with dilute HCl solution and distilled water, and finally recrystallized from ethyl alcohol (95%) to give the pure chalcone. Crystals suitable for X-ray diffraction studies were grown by the slow evaporation of the solution of the compound in ethyl alcohol:DMF (4:1) (M.pt.: 438–442 K). Composition: Found (Calculated) for C17H16O4, C 75.22 (75.28); H: 5.95 (5.92) %.

Refinement top

The hydroxyl hydrogen was located by a Fourier map, fixed at 0.82 Å and refined using the riding model. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.93 Å (CH) and 0.96 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.19–1.20 (CH), 1.50 (CH3) or 1.50 (OH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction scheme for (I).
[Figure 2] Fig. 2. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed down the c axis. Dashed lines indicate O—H···O hydrogen bonds.
(2E)-3-(3,4-Dimethoxyphenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one top
Crystal data top
C17H16O4F(000) = 1200
Mr = 284.30Dx = 1.288 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2abCell parameters from 5957 reflections
a = 15.1435 (1) Åθ = 4.8–77.2°
b = 8.4364 (1) ŵ = 0.75 mm1
c = 22.9454 (2) ÅT = 295 K
V = 2931.43 (5) Å3Thick needle, pale yellow
Z = 80.57 × 0.28 × 0.19 mm
Data collection top
Oxford Diffraction Gemini R
diffractometer
3022 independent reflections
Radiation source: fine-focus sealed tube2545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.5081 pixels mm-1θmax = 77.4°, θmin = 4.8°
ϕ and ω scansh = 1916
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 108
Tmin = 0.606, Tmax = 1.000l = 2927
9187 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0854P)2 + 0.2601P]
where P = (Fo2 + 2Fc2)/3
3022 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H16O4V = 2931.43 (5) Å3
Mr = 284.30Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 15.1435 (1) ŵ = 0.75 mm1
b = 8.4364 (1) ÅT = 295 K
c = 22.9454 (2) Å0.57 × 0.28 × 0.19 mm
Data collection top
Oxford Diffraction Gemini R
diffractometer
3022 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2545 reflections with I > 2σ(I)
Tmin = 0.606, Tmax = 1.000Rint = 0.019
9187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
3022 reflectionsΔρmin = 0.19 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35344 (7)0.04833 (15)0.56975 (5)0.0633 (3)
H1A0.30540.05980.55380.095*
O20.69247 (6)0.40373 (15)0.47932 (5)0.0632 (3)
O30.52144 (7)0.68821 (14)0.18477 (4)0.0623 (3)
O40.64891 (8)0.87474 (16)0.15770 (5)0.0709 (4)
C10.54831 (8)0.30167 (16)0.48339 (5)0.0446 (3)
C20.56558 (9)0.21781 (19)0.53484 (6)0.0531 (3)
H2A0.62240.21900.55030.064*
C30.50099 (9)0.1343 (2)0.56289 (6)0.0565 (4)
H3A0.51420.07860.59680.068*
C40.41531 (9)0.13271 (17)0.54069 (6)0.0488 (3)
C50.39652 (9)0.21501 (18)0.48989 (6)0.0514 (3)
H5A0.33950.21440.47490.062*
C60.46232 (9)0.29769 (17)0.46166 (6)0.0486 (3)
H6A0.44910.35190.42750.058*
C70.61991 (8)0.39056 (17)0.45507 (6)0.0467 (3)
C80.60426 (8)0.46360 (16)0.39746 (5)0.0468 (3)
H8A0.55570.43170.37560.056*
C90.65801 (8)0.57388 (16)0.37626 (6)0.0470 (3)
H9A0.70450.60390.40040.056*
C100.65336 (8)0.65384 (15)0.31995 (5)0.0432 (3)
C110.58497 (8)0.62733 (15)0.27941 (5)0.0444 (3)
H11A0.53930.55800.28860.053*
C120.58516 (8)0.70317 (16)0.22628 (5)0.0457 (3)
C130.65482 (9)0.80698 (17)0.21138 (6)0.0481 (3)
C140.72135 (9)0.83476 (17)0.25115 (6)0.0517 (3)
H14A0.76710.90400.24200.062*
C150.71971 (9)0.75892 (18)0.30489 (6)0.0506 (3)
H15A0.76450.77940.33150.061*
C160.44645 (10)0.5955 (2)0.19866 (7)0.0639 (4)
H16A0.46460.48890.20710.096*
H16B0.40650.59490.16620.096*
H16C0.41740.63970.23210.096*
C170.71898 (15)0.9741 (3)0.13898 (8)0.0870 (6)
H17A0.72101.06720.16300.130*
H17B0.70951.00440.09910.130*
H17C0.77390.91790.14210.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0503 (5)0.0816 (8)0.0582 (6)0.0019 (5)0.0053 (4)0.0155 (5)
O20.0424 (5)0.0845 (8)0.0628 (6)0.0018 (5)0.0107 (4)0.0177 (6)
O30.0555 (6)0.0791 (7)0.0522 (5)0.0210 (5)0.0170 (4)0.0141 (5)
O40.0766 (7)0.0823 (8)0.0539 (6)0.0329 (6)0.0121 (5)0.0175 (6)
C10.0423 (6)0.0489 (7)0.0426 (6)0.0079 (5)0.0023 (5)0.0020 (5)
C20.0424 (6)0.0675 (9)0.0495 (7)0.0072 (6)0.0075 (5)0.0054 (6)
C30.0520 (7)0.0708 (9)0.0469 (7)0.0090 (7)0.0031 (5)0.0115 (7)
C40.0457 (7)0.0551 (8)0.0455 (6)0.0066 (6)0.0049 (5)0.0012 (6)
C50.0405 (6)0.0639 (8)0.0496 (7)0.0051 (6)0.0033 (5)0.0023 (6)
C60.0446 (6)0.0585 (8)0.0428 (6)0.0065 (5)0.0040 (5)0.0048 (5)
C70.0414 (6)0.0523 (7)0.0464 (6)0.0083 (5)0.0031 (5)0.0011 (5)
C80.0423 (6)0.0549 (7)0.0431 (6)0.0039 (5)0.0028 (5)0.0027 (5)
C90.0441 (6)0.0493 (7)0.0476 (6)0.0051 (5)0.0080 (5)0.0035 (5)
C100.0408 (6)0.0442 (6)0.0447 (6)0.0039 (5)0.0034 (5)0.0034 (5)
C110.0387 (6)0.0466 (7)0.0479 (6)0.0022 (5)0.0028 (5)0.0003 (5)
C120.0415 (6)0.0504 (7)0.0451 (6)0.0033 (5)0.0053 (5)0.0026 (5)
C130.0493 (7)0.0488 (7)0.0463 (6)0.0054 (5)0.0011 (5)0.0003 (5)
C140.0462 (7)0.0537 (7)0.0553 (7)0.0111 (6)0.0019 (5)0.0017 (6)
C150.0428 (6)0.0558 (8)0.0533 (7)0.0036 (6)0.0105 (5)0.0049 (6)
C160.0474 (7)0.0847 (11)0.0596 (8)0.0175 (7)0.0120 (6)0.0011 (8)
C170.0952 (14)0.0961 (14)0.0697 (10)0.0435 (12)0.0063 (9)0.0232 (10)
Geometric parameters (Å, º) top
O1—C41.3524 (17)C8—C91.328 (2)
O1—H1A0.8200C8—H8A0.9300
O2—C71.2368 (16)C9—C101.4592 (18)
O3—C121.3617 (15)C9—H9A0.9300
O3—C161.4153 (17)C10—C151.3837 (19)
O4—C131.3608 (17)C10—C111.4100 (16)
O4—C171.419 (2)C11—C121.3768 (18)
C1—C61.3947 (18)C11—H11A0.9300
C1—C21.4009 (18)C12—C131.4131 (18)
C1—C71.4698 (19)C13—C141.3794 (19)
C2—C31.367 (2)C14—C151.389 (2)
C2—H2A0.9300C14—H14A0.9300
C3—C41.3940 (19)C15—H15A0.9300
C3—H3A0.9300C16—H16A0.9600
C4—C51.3863 (19)C16—H16B0.9600
C5—C61.378 (2)C16—H16C0.9600
C5—H5A0.9300C17—H17A0.9600
C6—H6A0.9300C17—H17B0.9600
C7—C81.4775 (17)C17—H17C0.9600
C4—O1—H1A109.5C15—C10—C11118.05 (12)
C12—O3—C16117.54 (11)C15—C10—C9118.83 (11)
C13—O4—C17118.23 (12)C11—C10—C9123.11 (12)
C6—C1—C2117.60 (12)C12—C11—C10120.59 (12)
C6—C1—C7122.88 (12)C12—C11—H11A119.7
C2—C1—C7119.51 (12)C10—C11—H11A119.7
C3—C2—C1121.58 (13)O3—C12—C11125.08 (12)
C3—C2—H2A119.2O3—C12—C13114.66 (12)
C1—C2—H2A119.2C11—C12—C13120.25 (11)
C2—C3—C4119.93 (13)O4—C13—C14125.14 (12)
C2—C3—H3A120.0O4—C13—C12115.48 (12)
C4—C3—H3A120.0C14—C13—C12119.37 (13)
O1—C4—C5122.41 (12)C13—C14—C15119.73 (13)
O1—C4—C3118.02 (12)C13—C14—H14A120.1
C5—C4—C3119.57 (13)C15—C14—H14A120.1
C6—C5—C4120.02 (12)C10—C15—C14121.98 (12)
C6—C5—H5A120.0C10—C15—H15A119.0
C4—C5—H5A120.0C14—C15—H15A119.0
C5—C6—C1121.28 (12)O3—C16—H16A109.5
C5—C6—H6A119.4O3—C16—H16B109.5
C1—C6—H6A119.4H16A—C16—H16B109.5
O2—C7—C1120.15 (12)O3—C16—H16C109.5
O2—C7—C8120.51 (12)H16A—C16—H16C109.5
C1—C7—C8119.34 (11)H16B—C16—H16C109.5
C9—C8—C7121.42 (12)O4—C17—H17A109.5
C9—C8—H8A119.3O4—C17—H17B109.5
C7—C8—H8A119.3H17A—C17—H17B109.5
C8—C9—C10128.19 (12)O4—C17—H17C109.5
C8—C9—H9A115.9H17A—C17—H17C109.5
C10—C9—H9A115.9H17B—C17—H17C109.5
C6—C1—C2—C30.2 (2)C8—C9—C10—C112.9 (2)
C7—C1—C2—C3179.60 (14)C15—C10—C11—C120.59 (19)
C1—C2—C3—C40.7 (2)C9—C10—C11—C12178.34 (12)
C2—C3—C4—O1179.88 (14)C16—O3—C12—C114.2 (2)
C2—C3—C4—C50.6 (2)C16—O3—C12—C13175.33 (14)
O1—C4—C5—C6179.27 (13)C10—C11—C12—O3178.55 (13)
C3—C4—C5—C60.0 (2)C10—C11—C12—C131.0 (2)
C4—C5—C6—C10.5 (2)C17—O4—C13—C144.3 (3)
C2—C1—C6—C50.3 (2)C17—O4—C13—C12176.96 (16)
C7—C1—C6—C5178.98 (13)O3—C12—C13—O40.94 (19)
C6—C1—C7—O2172.43 (13)C11—C12—C13—O4179.51 (13)
C2—C1—C7—O26.9 (2)O3—C12—C13—C14177.85 (13)
C6—C1—C7—C87.6 (2)C11—C12—C13—C141.7 (2)
C2—C1—C7—C8173.06 (12)O4—C13—C14—C15179.55 (14)
O2—C7—C8—C915.9 (2)C12—C13—C14—C150.9 (2)
C1—C7—C8—C9164.20 (13)C11—C10—C15—C141.4 (2)
C7—C8—C9—C10178.09 (12)C9—C10—C15—C14177.55 (13)
C8—C9—C10—C15176.03 (14)C13—C14—C15—C100.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.902.7154 (15)176
C6—H6A···O4ii0.932.463.2803 (16)147
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H16O4
Mr284.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)15.1435 (1), 8.4364 (1), 22.9454 (2)
V3)2931.43 (5)
Z8
Radiation typeCu Kα
µ (mm1)0.75
Crystal size (mm)0.57 × 0.28 × 0.19
Data collection
DiffractometerOxford Diffraction Gemini R
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.606, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9187, 3022, 2545
Rint0.019
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 1.05
No. of reflections3022
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.902.7154 (15)176
C6—H6A···O4ii0.932.463.2803 (16)147
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y1/2, z+1/2.
Selected geometric parmeters (Å): Cg···Cg π stacking interactions, Cg1 is the centroid of ring C1—C6 [Symmetry codes: (i) 1-x, -y, 1-z] top
CgI···CgJCg···Cg (Å)CgI Perp (Å)Cgj Perp (Å)Slippage (Å)
Cg1···Cg1i3.7386 (9)-3.3959 (6)-3.3958 (6)1.56 (4)
 

Acknowledgements

BKS thanks the BRNS, DAE, Government of India (grant No. 2008/34/05-BRNS/457). VMK thanks P. A. College of Engineering for the research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

References

First citationButcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633–o1635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCao, D.-X., Li, G.-Z., Xue, G., Yu, W.-T. & Liu, Z.-Q. (2005). Acta Cryst. E61, o977–o979.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Kumari, V., Ravindra, H. J. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2928.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o2936–o2937.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o352–o353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddaraju, B. P., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o313–o314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNgaini, Z., Fadzillah, S. M. H., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o1301–o1302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRadha Krishna, J., Jagadeesh Kumar, N., Krishnaiah, M., Venkata Rao, C., Koteswara Rao, Y. & Puranik, V. G. (2005). Acta Cryst. E61, o1323–o1325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharma, N. K., Kumar, R., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1438–1440.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H., Xu, Z. & Liang, Y.-M. (2005). Acta Cryst. E61, o1434–o1435.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds