organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2-chloro­phenyl­sulfon­yl)suberamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 8 March 2011; accepted 10 March 2011; online 15 March 2011)

In the crystal of the title compound, C20H22Cl2N2O6S2, the asymmetric unit comprises half of a mol­ecule, the remaining portion is generated via an inversion centre. The conformation of the N—H and C=O bonds in the SO2–NH–C(O)–C segment is anti. The mol­ecule is bent at the S atom with the C–SO2–NH–C(O) torsion angle being 68.16 (19)°. The dihedral angle between the plane of the benzene ring and the SO2–NH–C(O)–C segment is 77.5 (1)°. Hydrogen bonds of the type N—H⋯O(C) link mol­ecules into supra­molecular chains along the b axis.

Related literature

For the study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791-800.]). For the effect of substituents in N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.]). For the effect of substituents on the structures of N-(aryl­sulfon­yl)-amides, see: Rodrigues et al. (2011[Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o837.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22Cl2N2O6S2

  • Mr = 521.42

  • Monoclinic, P 21 /c

  • a = 7.8737 (9) Å

  • b = 9.717 (1) Å

  • c = 14.616 (2) Å

  • β = 94.575 (9)°

  • V = 1114.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 293 K

  • 0.36 × 0.22 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.835, Tmax = 0.950

  • 4126 measured reflections

  • 2276 independent reflections

  • 1744 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.05

  • 2276 reflections

  • 148 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.83 (2) 2.20 (2) 3.020 (2) 172 (2)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide and sulfonamide moieties are important constituents of many biologically significant compounds. As part of an investigation studying the effect of substituents on the structures of this class of compounds (Gowda et al., 2000, 2005; Rodrigues et al., 2011), in the present work, the structure of N,N-bis(2-chlorophenylsulfonyl)-suberamide (I) has been determined (Fig. 1). The asymmetric unit comprises half of a molecule, the remaining portion is generated through an inversion centre, similar to that observed in N,N-bis(2-chlorophenylsulfonyl)-adipamide (II) (Rodrigues et al., 2011). The conformation of the N—H and CO bonds in the SO2—NH—C(O)—C segment is anti. The molecule is bent at the S atom with the C—SO2—NH—C(O) torsion angle being 68.16 (19) °, compared to the value of -65.1 (6)° in (II). The torsion angles C2—C1—S1—N1 and C6—C1—S1—N1 are, respectively, 70.6 (2)° and -113.32 (17)°. The corresponding values in (II) are -69.5 (6) ° and 108.8 (5) °, respectively. The dihedral angle between the planes of the benzene ring and the SO2—NH—C(O)—C segment in (I) is 77.5 (1) °, compared to the value of 89.6 (2) ° in (II).

A series of N—H···O(C) intermolecular hydrogen bonds (Table 1) link the molecules into chains running along the b axis (Fig. 2).

Related literature top

For the study of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2000). For the effect of substituents in N-(aryl)-arylsulfonamides, see: Gowda et al. (2005). For the effect of substituents on the structures of N-(arylsulfonyl)-amides, see: Rodrigues et al. (2011).

Experimental top

Compound (I) was prepared by refluxing a mixture of suberic acid (0.01 mol) with 2-chlorobenzenesulfonamide (0.02 mol) and POCl3 for 1 h on a water bath. The reaction mixture was allowed to cool and diethyl ether added. The solid product obtained was filtered, washed thoroughly with ether and hot ethanol. The compound was recrystallized to a constant melting point. Colourless prisms were grown by the slow evaporation of its ethanol solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86±0.02 Å. The other H atoms were positioned with idealized geometry using a riding model with aromati-C—H distance = 0.93 Å, and methylene-C—H = 0.97 Å. All H atoms were refined with Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) viewed in projection down the a axis and with hydrogen bonding shown as dashed lines.
N,N'-Bis(2-chlorophenylsulfonyl)octanediamide top
Crystal data top
C20H22Cl2N2O6S2F(000) = 540
Mr = 521.42Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1476 reflections
a = 7.8737 (9) Åθ = 2.6–27.7°
b = 9.717 (1) ŵ = 0.52 mm1
c = 14.616 (2) ÅT = 293 K
β = 94.575 (9)°Prism, colourless
V = 1114.7 (2) Å30.36 × 0.22 × 0.10 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2276 independent reflections
Radiation source: fine-focus sealed tube1744 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 99
Tmin = 0.835, Tmax = 0.950k = 1112
4126 measured reflectionsl = 188
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1117P]
where P = (Fo2 + 2Fc2)/3
2276 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.33 e Å3
Crystal data top
C20H22Cl2N2O6S2V = 1114.7 (2) Å3
Mr = 521.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.8737 (9) ŵ = 0.52 mm1
b = 9.717 (1) ÅT = 293 K
c = 14.616 (2) Å0.36 × 0.22 × 0.10 mm
β = 94.575 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2276 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1744 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.950Rint = 0.018
4126 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
2276 reflectionsΔρmin = 0.33 e Å3
148 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3294 (3)0.0856 (2)0.61075 (13)0.0301 (5)
C20.2763 (3)0.0520 (2)0.52035 (14)0.0329 (5)
C30.3042 (3)0.1437 (3)0.45110 (15)0.0449 (6)
H30.26640.12280.39080.054*
C40.3873 (4)0.2654 (3)0.47050 (17)0.0499 (7)
H40.40730.32580.42320.060*
C50.4412 (3)0.2986 (3)0.55920 (18)0.0479 (6)
H50.49770.38130.57190.057*
C60.4118 (3)0.2096 (2)0.62958 (16)0.0381 (5)
H60.44730.23270.68980.046*
C70.0104 (3)0.0734 (2)0.75061 (14)0.0306 (5)
C80.1521 (3)0.0352 (2)0.79001 (14)0.0347 (5)
H8A0.24600.08630.75940.042*
H8B0.17430.06220.78080.042*
C90.1371 (3)0.0685 (2)0.89303 (14)0.0385 (6)
H9A0.24770.05540.91670.046*
H9B0.10660.16470.90110.046*
C100.0071 (3)0.0185 (3)0.94906 (14)0.0394 (6)
H10A0.03840.11470.94220.047*
H10B0.10340.00650.92520.047*
N10.1046 (2)0.03505 (19)0.72033 (12)0.0316 (4)
H1N0.066 (3)0.1134 (18)0.7259 (16)0.038*
O10.3959 (2)0.03761 (18)0.78343 (10)0.0456 (4)
O20.3555 (2)0.16371 (17)0.68236 (10)0.0415 (4)
O30.0630 (2)0.19135 (16)0.74794 (11)0.0437 (4)
Cl10.17624 (9)0.10214 (7)0.49044 (4)0.0505 (2)
S10.31012 (7)0.02626 (6)0.70503 (3)0.03155 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0299 (11)0.0338 (12)0.0268 (10)0.0019 (9)0.0051 (8)0.0017 (9)
C20.0336 (12)0.0347 (12)0.0305 (11)0.0013 (10)0.0026 (9)0.0015 (9)
C30.0513 (15)0.0557 (16)0.0275 (11)0.0037 (13)0.0025 (11)0.0034 (11)
C40.0576 (17)0.0482 (16)0.0459 (14)0.0019 (13)0.0167 (12)0.0152 (12)
C50.0488 (16)0.0374 (14)0.0586 (16)0.0075 (11)0.0113 (13)0.0039 (12)
C60.0377 (13)0.0377 (13)0.0390 (12)0.0018 (10)0.0038 (10)0.0024 (10)
C70.0389 (12)0.0300 (12)0.0232 (9)0.0026 (10)0.0040 (9)0.0009 (9)
C80.0356 (12)0.0334 (12)0.0353 (12)0.0025 (10)0.0045 (9)0.0021 (10)
C90.0441 (14)0.0399 (14)0.0329 (12)0.0059 (11)0.0123 (10)0.0002 (10)
C100.0453 (14)0.0409 (14)0.0335 (12)0.0062 (11)0.0125 (10)0.0010 (10)
N10.0384 (11)0.0264 (10)0.0310 (9)0.0014 (8)0.0092 (8)0.0012 (8)
O10.0493 (11)0.0561 (11)0.0298 (8)0.0067 (8)0.0074 (7)0.0001 (8)
O20.0447 (10)0.0362 (9)0.0440 (9)0.0111 (7)0.0068 (7)0.0030 (7)
O30.0529 (11)0.0277 (9)0.0527 (10)0.0006 (8)0.0187 (8)0.0006 (7)
Cl10.0632 (4)0.0445 (4)0.0418 (3)0.0062 (3)0.0077 (3)0.0065 (3)
S10.0340 (3)0.0352 (3)0.0253 (3)0.0016 (2)0.0016 (2)0.0017 (2)
Geometric parameters (Å, º) top
C1—C61.385 (3)C7—C81.492 (3)
C1—C21.393 (3)C8—C91.535 (3)
C1—S11.771 (2)C8—H8A0.9700
C2—C31.379 (3)C8—H8B0.9700
C2—Cl11.732 (2)C9—C101.516 (3)
C3—C41.370 (4)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C51.370 (4)C10—C10i1.527 (4)
C4—H40.9300C10—H10A0.9700
C5—C61.378 (3)C10—H10B0.9700
C5—H50.9300N1—S11.6532 (19)
C6—H60.9300N1—H1N0.826 (16)
C7—O31.221 (3)O1—S11.4250 (16)
C7—N11.381 (3)O2—S11.4282 (17)
C6—C1—C2119.5 (2)C7—C8—H8B109.9
C6—C1—S1116.55 (16)C9—C8—H8B109.9
C2—C1—S1123.79 (17)H8A—C8—H8B108.3
C3—C2—C1119.4 (2)C10—C9—C8114.08 (18)
C3—C2—Cl1118.01 (18)C10—C9—H9A108.7
C1—C2—Cl1122.59 (17)C8—C9—H9A108.7
C4—C3—C2120.5 (2)C10—C9—H9B108.7
C4—C3—H3119.8C8—C9—H9B108.7
C2—C3—H3119.8H9A—C9—H9B107.6
C5—C4—C3120.4 (2)C9—C10—C10i112.9 (2)
C5—C4—H4119.8C9—C10—H10A109.0
C3—C4—H4119.8C10i—C10—H10A109.0
C4—C5—C6120.1 (2)C9—C10—H10B109.0
C4—C5—H5120.0C10i—C10—H10B109.0
C6—C5—H5120.0H10A—C10—H10B107.8
C5—C6—C1120.1 (2)C7—N1—S1124.07 (16)
C5—C6—H6119.9C7—N1—H1N117.4 (17)
C1—C6—H6119.9S1—N1—H1N115.6 (17)
O3—C7—N1120.9 (2)O1—S1—O2118.86 (10)
O3—C7—C8123.3 (2)O1—S1—N1108.65 (10)
N1—C7—C8115.66 (19)O2—S1—N1104.39 (10)
C7—C8—C9108.97 (18)O1—S1—C1107.08 (11)
C7—C8—H8A109.9O2—S1—C1110.79 (10)
C9—C8—H8A109.9N1—S1—C1106.41 (10)
C6—C1—C2—C31.0 (3)C7—C8—C9—C1066.2 (3)
S1—C1—C2—C3176.93 (18)C8—C9—C10—C10i179.1 (2)
C6—C1—C2—Cl1178.69 (17)O3—C7—N1—S117.2 (3)
S1—C1—C2—Cl12.8 (3)C8—C7—N1—S1160.00 (15)
C1—C2—C3—C41.7 (4)C7—N1—S1—O146.8 (2)
Cl1—C2—C3—C4178.1 (2)C7—N1—S1—O2174.61 (16)
C2—C3—C4—C51.1 (4)C7—N1—S1—C168.16 (19)
C3—C4—C5—C60.1 (4)C6—C1—S1—O12.7 (2)
C4—C5—C6—C10.7 (4)C2—C1—S1—O1173.29 (18)
C2—C1—C6—C50.2 (3)C6—C1—S1—O2133.79 (17)
S1—C1—C6—C5176.03 (19)C2—C1—S1—O242.2 (2)
O3—C7—C8—C964.1 (3)C6—C1—S1—N1113.32 (17)
N1—C7—C8—C9113.0 (2)C2—C1—S1—N170.6 (2)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3ii0.83 (2)2.20 (2)3.020 (2)172 (2)
Symmetry code: (ii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H22Cl2N2O6S2
Mr521.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.8737 (9), 9.717 (1), 14.616 (2)
β (°) 94.575 (9)
V3)1114.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.36 × 0.22 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.835, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
4126, 2276, 1744
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.05
No. of reflections2276
No. of parameters148
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.826 (16)2.200 (16)3.020 (2)172 (2)
Symmetry code: (i) x, y+1/2, z+3/2.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

References

First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.  CAS Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o837.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds