metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(tetra­butyl­ammonium) tris­­(nitrato-κ2O,O′)tetra­kis­(thio­cyanato-κN)thorium(IV)

aCEA, Nuclear Energy Division, Radio Chemistry and Processes Department, F-30207 Bagnols sur Cèze, France, bDepartamento de Fisica Aplicada, Cinvestav-Merida, Merida, Yuc. 97310, Mexico, and cCEA, IRAMIS, UMR 3299 CEA/CNRS, SIS2M, LCCEf, Bat. 125, F-91191 Gif-sur-Yvette, France
*Correspondence e-mail: christophe.denauwer@cea.fr

(Received 14 March 2011; accepted 15 March 2011; online 26 March 2011)

The title compound, (C16H36N)3[Th(NCS)4(NO3)3], was obtained from the reaction of Th(NO3)4·5H2O with (Bu4N)(NCS). The ThIV atom is in a ten-coordinate environment of irregular geometry, being bound to the N atoms of the four thio­cyanate ions and to three bidentate nitrate ions. The average Th—N and Th—O bond lengths are 2.481 (10) and 2.57 (3) Å, respectively.

Related literature

For the structures of the parent lanthanide complexes, see: Mullica et al. (1997[Mullica, D., Farmer, J. M. & Sappenfield, E. L. (1997). Inorg. Chim. Acta, 256, 115-119.], 1998[Mullica, D., Farmer, J. M. & Kautz, J. A. (1998). Inorg. Chem. Commun. 1, 217-221.]); Farmer et al. (2000[Farmer, J. M., Kautz, J. A., Kwon, H. S. & Mullica, D. F. (2000). J. Chem. Crystallogr. 30, 301-309.]). For the structures of related actinide thio­cyanate complexes, see: Countryman & McDonald (1971[Countryman, R. & McDonald, W. S. (1971). J. Inorg. Nucl. Chem. 33, 2213-2220.]); Al-Kazzaz et al. (1972[Al-Kazzaz, Z. M. S., Bagnall, K. W., Brown, D. & Whittaker, B. (1972). J. Chem. Soc. Dalton Trans. pp. 2273-2277.]); Charpin et al. (1983[Charpin, P., Lance, M. & Navaza, A. (1983). Acta Cryst. C39, 190-192.]); Budantseva et al. (2003[Budantseva, N. A., Andreev, G. B., Fedoseev, A. M. & Antipin, M. Y. (2003). Radiochemistry, 45, 335-338.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H36N)3[Th(NCS)4(NO3)3]

  • Mr = 1377.76

  • Monoclinic, P 21

  • a = 12.1057 (7) Å

  • b = 17.5943 (8) Å

  • c = 16.7084 (8) Å

  • β = 95.946 (3)°

  • V = 3539.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.28 mm−1

  • T = 150 K

  • 0.12 × 0.12 × 0.07 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.703, Tmax = 0.853

  • 170199 measured reflections

  • 13392 independent reflections

  • 11074 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.089

  • S = 1.04

  • 13392 reflections

  • 698 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.76 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 6435 Friedel pairs

  • Flack parameter: −0.008 (5)

Table 1
Selected geometric parameters (Å, °)

Th—N1 2.480 (5)
Th—N2 2.465 (7)
Th—N3 2.488 (5)
Th—N4 2.490 (7)
Th—O1 2.618 (5)
Th—O2 2.563 (4)
Th—O4 2.557 (4)
Th—O5 2.570 (4)
Th—O7 2.615 (6)
Th—O8 2.524 (5)
O1—Th—O2 49.51 (14)
O4—Th—O5 49.30 (13)
O7—Th—O8 49.44 (15)

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structures of the parent lanthanide complexes [NBu4]3[CeIII(NCS)2(NO3)4] (Mullica et al., 1998) and [NBu4]3[NdIII(NCS)2(NO3)4] (Farmer et al., 2000) have been determined. In these complexes, the lanthanide cation is ten-coordinated, with two N atoms from the thiocyanate groups and eight O atoms from the bidentate nitrate groups being coordinated. In the case of [NBu4]3[YbIII(NCS)4(NO3)2], the metal is eight-coordinated in agreement with the steric constraints due to lanthanidic contraction. Finally, [N(nC4H9)4]3[LuIII(NCS)6] exhibits an unusual octahedral coordination with 6 thiocyanates around the Lu cation (Mullica et al., 1997). In the mid-1960's, interest in the crystallochemistry of actinide thiocyanate complexes arose. At the beginning of the 1970's, the crystal structure of tetraethyl-ammonium-octathiocyanato-N-uranate(IV) [N(C2H5)4]4[UIV(NCS)8] was determined, and it exhibits eight thiocyanate ligands that are coordinated via the nitrogen atom and arranged in the vertices of a cube (Countryman & McDonald, 1971). The corresponding complexes of Th, Pa, Np and Pu were reported to be isostructural but no single-crystal data were determined (Al-Kazzaz et al., 1972). In 1983, the [N(C2H5)4]4[ThIV(NCS)8] complex was reported to display the same cubic coordination than the uranate complex (Charpin et al., 1983). Finally, in 1983, the neptunium adduct [N(CH3)4]4[NpIV(NCS)8] was reported to be similar to the previously described [N(C2H5)4]4[U(NCS)8] complex, although the coordination polyhedra are significantly different: in the uranium compound the 8 thiocyanate ligands form a distorted cube (U–N = 2.38 Å) whereas in the neptunium compound they form a distorted tetragonal antiprism (Np–N = 2.39–2.42 Å) (Budantseva et al., 2003).

The family of actinide thiocyanate derivatives is of potential interest for the comprehensive coordination chemistry of f-block elements with applications in selective reactivity. In comparison with parent lanthanide elements, actinide thiocyanate derivatives have been poorly studied in the past. In the title complex [NBu4]3[Th(NCS)4(NO3)3], (I), the metal cation is 10-coordinated with three bidentate nitrate ions and four N-bonded thiocyanates. The coordination polyhedron is quite irregular, but, if the three nitrate ions are considered as single donors, it may be noted that the four N atoms of the thiocyanate ions and the atom N5 of the nitrate ion bound through O1 and O2 define a mean plane with an r.m.s. deviation of 0.318 Å, which contains the Th atom, displaced by 0.003 (3) Å from it. The other two nitrate ions are on either side of the plane, with a N6···Th···N7 angle of 165.34 (16) °. The average Th–N and Th–O bond lengths of 2.481 (10) and 2.57 (3) Å, respectively, are in agreement with the average values from analogous structures in the Cambridge Structural Database (Version 5.32; Allen, 2002), i.e. 2.48 (3) and 2.58 (5) Å, for 5 and 27 hits, respectively.

Related literature top

For the structures of the parent lanthanide complexes, see: Mullica et al. (1997, 1998); Farmer et al. (2000). For the structures of related actinide thiocyanate complexes, see: Countryman & McDonald (1971); Al-Kazzaz et al. (1972); Charpin et al. (1983; Budantseva et al. (2003). For a dexcription of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Caution! With thorium being a radioactive and chemically toxic element, thorium-containing samples must be handled with suitable care and protection. All starting materials used in these synthetic reactions are available commercially and were used as obtained from the supplier. Th(NO3)4.5H2O (0.474 mmol, 0.27 g) was dissolved in hot ethanol (25 ml). After complete dissolution, tetrabutylammonium thiocyanate, C17H36N2S, (5 mmol, 1.5 g) was added directly to the solution in a ratio Th(IV):SCN- 1:10. The colourless solution was refluxed with stirring for 8 h. The resulting solution was left undisturbed at room temperature and colourless crystals were obtained within three days. The crystals were isolated and washed with cold ethanol. IR results (cm-1): ν(CH) 2962.16, 2874.55; ν(CN from SCN) 2040.99; ν(NO) 1278.73, 883.20; ν(CS) 744.29.

Refinement top

Restraints were applied for five bond lengths in the tetrabutylammonium cations. The H atoms were introduced at calculated positions as riding atoms, with C–H bond lengths of 0.97 Å (CH2) or 0.96 Å (CH3), and with Uiso(H) values of 1.2 (CH2) or 1.5 (CH3) times Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the anion in compound (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms have been omitted.
Tris(tetrabutylammonium) tris(nitrato-κ2O,O')tetrakis(thiocyanato-κN)thorium(IV) top
Crystal data top
(C16H36N)3[Th(NCS)4(NO3)3]F(000) = 1432
Mr = 1377.76Dx = 1.293 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 170199 reflections
a = 12.1057 (7) Åθ = 3.2–25.7°
b = 17.5943 (8) ŵ = 2.28 mm1
c = 16.7084 (8) ÅT = 150 K
β = 95.946 (3)°Irregular, colourless
V = 3539.6 (3) Å30.12 × 0.12 × 0.07 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
13392 independent reflections
Radiation source: fine-focus sealed tube11074 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
two ϕ and eleven ω scans with 2° steps (649 frames)θmax = 25.7°, θmin = 4.1°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1414
Tmin = 0.703, Tmax = 0.853k = 2121
170199 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0348P)2 + 4.0973P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
13392 reflectionsΔρmax = 0.98 e Å3
698 parametersΔρmin = 0.76 e Å3
6 restraintsAbsolute structure: Flack (1983), 6435 Friedel pairs
Primary atom site location: heavy-atom methodAbsolute structure parameter: 0.008 (5)
Crystal data top
(C16H36N)3[Th(NCS)4(NO3)3]V = 3539.6 (3) Å3
Mr = 1377.76Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.1057 (7) ŵ = 2.28 mm1
b = 17.5943 (8) ÅT = 150 K
c = 16.7084 (8) Å0.12 × 0.12 × 0.07 mm
β = 95.946 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
13392 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
11074 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.853Rint = 0.046
170199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.98 e Å3
S = 1.04Δρmin = 0.76 e Å3
13392 reflectionsAbsolute structure: Flack (1983), 6435 Friedel pairs
698 parametersAbsolute structure parameter: 0.008 (5)
6 restraints
Special details top

Experimental. crystal-to-detector distance 30 mm

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Th0.494552 (16)0.250260 (18)0.231036 (12)0.05183 (7)
S10.8148 (2)0.09946 (16)0.3932 (2)0.1219 (11)
S20.4103 (2)0.03910 (11)0.26535 (13)0.0803 (6)
S30.17368 (14)0.22589 (11)0.00503 (10)0.0718 (6)
S40.34264 (19)0.52512 (11)0.21889 (12)0.0778 (6)
O10.5736 (4)0.3482 (3)0.3402 (3)0.0666 (12)
O20.6625 (4)0.3393 (2)0.2343 (3)0.0597 (11)
O30.7191 (5)0.4203 (3)0.3291 (4)0.0858 (16)
O40.3034 (3)0.2585 (5)0.2829 (3)0.0724 (14)
O50.4354 (3)0.2291 (3)0.3727 (2)0.0661 (16)
O60.2663 (4)0.2292 (3)0.4035 (3)0.0840 (19)
O70.5662 (5)0.2889 (3)0.0944 (3)0.0688 (15)
O80.6172 (4)0.1797 (3)0.1428 (3)0.0688 (13)
O90.6818 (5)0.2177 (3)0.0337 (3)0.0942 (18)
N10.6508 (5)0.1905 (4)0.3162 (4)0.0662 (15)
N20.4402 (6)0.1159 (4)0.2416 (4)0.0707 (18)
N30.3500 (5)0.2278 (3)0.1164 (3)0.0693 (18)
N40.4190 (6)0.3796 (4)0.1990 (4)0.0686 (17)
N50.6536 (5)0.3704 (4)0.3031 (4)0.0665 (15)
N60.3322 (4)0.2384 (4)0.3553 (3)0.0603 (16)
N70.6217 (5)0.2291 (3)0.0884 (4)0.0616 (17)
N80.6507 (5)0.9468 (3)0.0700 (3)0.0554 (16)
N90.0172 (5)0.8172 (4)0.7822 (4)0.0602 (17)
N100.4640 (5)0.0695 (3)0.5465 (3)0.0586 (13)
C10.7183 (6)0.1502 (4)0.3480 (4)0.0594 (16)
C20.4261 (6)0.0508 (5)0.2514 (4)0.0595 (17)
C30.2766 (5)0.2270 (3)0.0657 (4)0.0605 (19)
C40.3867 (6)0.4403 (4)0.2094 (4)0.0560 (16)
C50.6163 (6)0.8641 (3)0.0603 (4)0.0587 (16)
H5A0.68230.83280.06990.070*
H5B0.58580.85600.00490.070*
C60.5313 (7)0.8369 (4)0.1155 (4)0.072 (2)
H6A0.55300.85430.17000.086*
H6B0.45920.85850.09780.086*
C70.5235 (6)0.7516 (7)0.1145 (4)0.0810 (19)
H7A0.59520.73000.13370.097*
H7B0.50400.73420.05980.097*
C80.4353 (9)0.7240 (5)0.1683 (7)0.117 (4)
H8A0.45530.74040.22270.176*
H8B0.43140.66950.16680.176*
H8C0.36420.74480.14900.176*
C90.5505 (7)0.9995 (4)0.0598 (5)0.067 (2)
H9A0.50370.98880.10220.081*
H9B0.57631.05150.06660.081*
C100.4810 (7)0.9931 (5)0.0202 (5)0.068 (2)
H10A0.45550.94110.02810.082*
H10B0.52611.00560.06300.082*
C110.3824 (8)1.0457 (6)0.0240 (8)0.106 (3)
H11A0.40861.09740.01510.127*
H11B0.33771.03280.01900.127*
C120.3102 (11)1.0419 (8)0.1038 (9)0.142 (6)
H12A0.34431.07060.14350.213*
H12B0.23831.06280.09760.213*
H12C0.30230.98990.12090.213*
C130.7278 (6)0.9613 (4)0.0074 (4)0.0640 (18)
H13A0.69020.94700.04450.077*
H13B0.79150.92800.01800.077*
C140.7700 (6)1.0420 (4)0.0011 (4)0.0676 (18)
H14A0.79181.06190.05450.081*
H14B0.71121.07390.02430.081*
C150.8697 (6)1.0440 (5)0.0483 (4)0.074 (2)
H15A0.85221.01410.09680.089*
H15B0.93261.02030.01740.089*
C160.9033 (8)1.1249 (6)0.0726 (7)0.087 (3)
H16A0.84461.14670.10830.130*
H16B0.96981.12220.09920.130*
H16C0.91651.15590.02530.130*
C170.7096 (8)0.9606 (5)0.1533 (4)0.080 (3)
H17A0.65870.94840.19260.096*
H17B0.72661.01430.15860.096*
C180.8160 (8)0.9161 (6)0.1741 (5)0.097 (3)
H18A0.80150.86260.16350.116*
H18B0.87090.93270.13950.116*
C190.8629 (11)0.9258 (8)0.2612 (6)0.174 (7)
H19A0.87470.97940.27250.209*
H19B0.80940.90710.29590.209*
C200.9715 (11)0.8837 (10)0.2800 (9)0.224 (10)
H20A0.96660.83480.25420.336*
H20B0.98610.87700.33710.336*
H20C1.03060.91240.26060.336*
C210.0421 (5)0.7440 (7)0.8028 (4)0.0671 (17)
H21A0.07890.75260.85080.081*
H21B0.09890.73240.75920.081*
C220.0341 (9)0.6752 (5)0.8168 (6)0.079 (3)
H22A0.06720.66400.76770.095*
H22B0.09360.68730.85820.095*
C230.0271 (8)0.6052 (6)0.8421 (6)0.104 (3)
H23A0.02540.56380.85220.125*
H23B0.05860.61590.89190.125*
C240.1173 (9)0.5810 (8)0.7801 (8)0.140 (5)
H24A0.18110.61290.78320.210*
H24B0.13680.52910.78940.210*
H24C0.09220.58550.72760.210*
C250.0753 (6)0.8069 (5)0.7064 (4)0.0689 (19)
H25A0.10530.85560.69200.083*
H25B0.13730.77240.71830.083*
C260.0016 (5)0.7765 (4)0.6342 (4)0.068 (2)
H26A0.06900.80290.62900.082*
H26B0.01240.72270.64150.082*
C270.0615 (7)0.7887 (5)0.5573 (4)0.083 (2)
H27A0.06990.84280.54820.099*
H27B0.13500.76630.56510.099*
C280.0035 (6)0.7532 (11)0.4846 (4)0.105 (2)
H28A0.00010.69880.48920.158*
H28B0.02790.76880.43680.158*
H28C0.07950.76940.48170.158*
C290.0710 (7)0.8776 (5)0.7731 (5)0.082 (2)
H29A0.10220.88290.82390.098*
H29B0.13010.86060.73350.098*
C300.0323 (10)0.9547 (6)0.7481 (6)0.108 (3)
H30A0.04740.95290.74600.129*
H30B0.04710.99140.78890.129*
C310.0882 (11)0.9828 (8)0.6652 (9)0.156 (5)
H31A0.06720.94930.62310.187*
H31B0.16820.98040.66500.187*
C320.0552 (13)1.0620 (8)0.6475 (10)0.176 (7)
H32A0.08641.09630.68370.265*
H32B0.08231.07460.59310.265*
H32C0.02431.06610.65420.265*
C330.1076 (6)0.8374 (5)0.8498 (5)0.074 (2)
H33A0.16250.79710.85400.089*
H33B0.14450.88340.83470.089*
C340.0682 (6)0.8496 (4)0.9324 (4)0.0705 (19)
H34A0.01080.88830.92860.085*
H34B0.03610.80280.95000.085*
C350.1609 (8)0.8737 (7)0.9933 (5)0.105 (3)
H35A0.22080.83720.99250.126*
H35B0.18870.92230.97660.126*
C360.1336 (9)0.8812 (8)1.0780 (6)0.100 (4)
H36A0.07950.92071.08100.150*
H36B0.19970.89381.11220.150*
H36C0.10420.83401.09520.150*
C370.5315 (7)0.0021 (4)0.5596 (5)0.0698 (19)
H37A0.58580.00520.60590.084*
H37B0.48250.04300.57250.084*
C380.5913 (9)0.0263 (5)0.4895 (6)0.089 (3)
H38A0.64780.01070.47980.107*
H38B0.53950.03030.44130.107*
C390.6447 (8)0.1034 (5)0.5101 (6)0.091 (3)
H39A0.69770.09830.55740.109*
H39B0.58780.13910.52260.109*
C400.7034 (12)0.1344 (7)0.4410 (8)0.140 (4)
H40A0.65150.13830.39370.211*
H40B0.73310.18380.45500.211*
H40C0.76270.10080.43070.211*
C410.3767 (7)0.0594 (6)0.4756 (5)0.072 (2)
H41A0.32890.10380.47220.087*
H41B0.41380.05780.42680.087*
C420.3047 (8)0.0106 (7)0.4780 (5)0.113 (4)
H42A0.34750.05480.46510.136*
H42B0.28450.01720.53220.136*
C430.2008 (8)0.0071 (7)0.4208 (6)0.125 (4)
H43A0.21800.01420.37000.150*
H43B0.17240.05810.41070.150*
C440.1158 (10)0.0395 (9)0.4535 (8)0.173 (6)
H44A0.10710.02340.50740.260*
H44B0.04650.03380.42050.260*
H44C0.13810.09190.45400.260*
C450.4096 (6)0.0820 (4)0.6231 (4)0.0636 (18)
H45A0.36160.03900.63030.076*
H45B0.46740.08200.66790.076*
C460.3425 (7)0.1532 (6)0.6281 (5)0.084 (2)
H46A0.28740.15700.58180.101*
H46B0.39040.19740.62900.101*
C470.2859 (8)0.1495 (5)0.7048 (5)0.099 (3)
H47A0.24040.10410.70290.118*
H47B0.34270.14410.74980.118*
C480.2151 (11)0.2156 (8)0.7206 (8)0.184 (8)
H48A0.25690.26160.71720.276*
H48B0.19130.21110.77340.276*
H48C0.15140.21670.68130.276*
C490.5345 (6)0.1377 (4)0.5282 (4)0.0653 (18)
H49A0.48620.18130.51730.078*
H49B0.56970.12710.47980.078*
C500.6245 (7)0.1583 (4)0.5958 (5)0.075 (2)
H50A0.59250.16490.64620.090*
H50B0.68050.11880.60260.090*
C510.6745 (10)0.2320 (9)0.5699 (6)0.148 (6)
H51A0.71690.22240.52480.177*
H51B0.61540.26730.55230.177*
C520.7486 (11)0.2670 (8)0.6372 (9)0.215 (9)
H52A0.70700.27590.68220.323*
H52B0.77710.31440.61960.323*
H52C0.80920.23320.65300.323*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Th0.05059 (10)0.05223 (10)0.05088 (10)0.00249 (19)0.00323 (7)0.00516 (19)
S10.0680 (14)0.115 (2)0.180 (3)0.0203 (13)0.0041 (16)0.076 (2)
S20.1165 (18)0.0563 (11)0.0730 (13)0.0104 (11)0.0329 (12)0.0032 (9)
S30.0569 (9)0.1043 (18)0.0523 (9)0.0091 (9)0.0034 (7)0.0080 (8)
S40.1015 (15)0.0605 (11)0.0671 (12)0.0195 (10)0.0124 (11)0.0097 (9)
O10.059 (3)0.085 (3)0.056 (3)0.013 (3)0.004 (2)0.014 (2)
O20.059 (3)0.061 (3)0.060 (3)0.003 (2)0.007 (2)0.008 (2)
O30.079 (4)0.064 (3)0.111 (4)0.002 (3)0.003 (3)0.031 (3)
O40.056 (2)0.088 (4)0.070 (3)0.023 (3)0.0072 (19)0.000 (4)
O50.050 (2)0.095 (5)0.053 (2)0.007 (2)0.0033 (18)0.019 (2)
O60.067 (3)0.102 (6)0.087 (3)0.001 (3)0.026 (3)0.017 (3)
O70.090 (4)0.054 (3)0.062 (3)0.020 (3)0.004 (3)0.005 (2)
O80.081 (3)0.053 (3)0.070 (3)0.015 (2)0.000 (3)0.003 (2)
O90.099 (4)0.115 (5)0.071 (3)0.017 (3)0.021 (3)0.024 (3)
N10.056 (3)0.068 (4)0.070 (4)0.014 (3)0.013 (3)0.003 (3)
N20.073 (4)0.061 (4)0.075 (4)0.001 (3)0.004 (4)0.012 (4)
N30.068 (3)0.079 (5)0.058 (3)0.010 (3)0.009 (3)0.006 (3)
N40.080 (4)0.062 (4)0.060 (4)0.022 (3)0.006 (3)0.001 (3)
N50.059 (4)0.061 (4)0.079 (4)0.014 (3)0.003 (3)0.017 (3)
N60.056 (3)0.054 (5)0.071 (3)0.002 (3)0.005 (3)0.008 (3)
N70.076 (4)0.047 (4)0.059 (3)0.004 (3)0.003 (3)0.005 (3)
N80.070 (4)0.055 (3)0.042 (3)0.007 (3)0.009 (3)0.015 (3)
N90.050 (3)0.076 (4)0.054 (4)0.000 (3)0.005 (3)0.000 (3)
N100.066 (3)0.064 (3)0.045 (3)0.005 (3)0.004 (3)0.009 (3)
C10.048 (4)0.074 (5)0.057 (4)0.004 (3)0.007 (3)0.008 (3)
C20.056 (4)0.075 (5)0.049 (4)0.008 (4)0.010 (3)0.008 (4)
C30.055 (3)0.072 (5)0.055 (4)0.010 (3)0.006 (3)0.016 (3)
C40.052 (4)0.063 (4)0.051 (4)0.000 (3)0.007 (3)0.001 (3)
C50.076 (5)0.045 (3)0.055 (4)0.001 (3)0.009 (3)0.009 (3)
C60.100 (6)0.049 (4)0.067 (5)0.013 (4)0.019 (4)0.004 (3)
C70.114 (5)0.062 (4)0.064 (4)0.022 (7)0.007 (3)0.015 (7)
C80.135 (8)0.091 (7)0.126 (8)0.032 (6)0.015 (7)0.020 (5)
C90.087 (6)0.050 (4)0.068 (5)0.008 (4)0.026 (4)0.013 (4)
C100.079 (7)0.051 (4)0.075 (7)0.004 (4)0.008 (5)0.000 (5)
C110.086 (7)0.065 (5)0.166 (11)0.017 (5)0.008 (7)0.010 (7)
C120.111 (9)0.128 (11)0.179 (15)0.031 (8)0.022 (10)0.058 (11)
C130.079 (5)0.073 (4)0.041 (3)0.005 (4)0.011 (3)0.010 (3)
C140.079 (5)0.076 (5)0.049 (4)0.012 (4)0.012 (3)0.005 (3)
C150.062 (4)0.107 (6)0.052 (4)0.002 (4)0.007 (3)0.003 (4)
C160.071 (6)0.104 (7)0.085 (6)0.024 (5)0.010 (5)0.008 (5)
C170.117 (7)0.086 (6)0.041 (4)0.024 (5)0.019 (4)0.011 (4)
C180.120 (8)0.108 (7)0.056 (5)0.029 (6)0.015 (5)0.011 (4)
C190.212 (15)0.229 (15)0.069 (7)0.105 (13)0.041 (8)0.016 (8)
C200.173 (13)0.31 (2)0.162 (13)0.091 (14)0.120 (11)0.133 (14)
C210.055 (3)0.088 (5)0.061 (3)0.002 (6)0.014 (3)0.002 (6)
C220.103 (7)0.068 (5)0.067 (6)0.003 (5)0.011 (6)0.010 (5)
C230.119 (8)0.100 (7)0.093 (7)0.027 (6)0.005 (6)0.003 (5)
C240.098 (9)0.143 (11)0.171 (12)0.018 (8)0.019 (8)0.016 (9)
C250.053 (4)0.088 (5)0.067 (5)0.008 (4)0.009 (3)0.010 (4)
C260.058 (4)0.084 (6)0.062 (4)0.000 (3)0.005 (3)0.006 (3)
C270.074 (5)0.116 (6)0.060 (4)0.005 (4)0.017 (4)0.001 (4)
C280.093 (5)0.167 (8)0.055 (4)0.002 (11)0.005 (3)0.005 (10)
C290.066 (5)0.084 (6)0.090 (6)0.019 (4)0.024 (4)0.002 (5)
C300.144 (9)0.095 (7)0.087 (7)0.009 (6)0.025 (6)0.001 (5)
C310.138 (11)0.155 (12)0.180 (13)0.028 (9)0.044 (9)0.077 (10)
C320.205 (15)0.130 (11)0.206 (15)0.041 (10)0.076 (12)0.083 (11)
C330.052 (4)0.095 (6)0.071 (5)0.010 (4)0.010 (4)0.013 (4)
C340.069 (5)0.079 (5)0.064 (4)0.002 (4)0.008 (4)0.005 (4)
C350.086 (6)0.151 (9)0.073 (5)0.011 (6)0.011 (5)0.043 (6)
C360.095 (8)0.142 (10)0.063 (6)0.008 (7)0.007 (5)0.020 (6)
C370.080 (5)0.059 (4)0.068 (5)0.002 (4)0.003 (4)0.009 (3)
C380.109 (7)0.060 (5)0.100 (7)0.012 (5)0.022 (6)0.003 (5)
C390.089 (6)0.076 (6)0.107 (7)0.017 (5)0.001 (5)0.004 (5)
C400.175 (12)0.103 (8)0.149 (11)0.021 (8)0.043 (10)0.014 (8)
C410.077 (5)0.090 (6)0.051 (4)0.006 (5)0.007 (4)0.007 (4)
C420.111 (7)0.153 (9)0.069 (5)0.058 (7)0.021 (5)0.003 (6)
C430.095 (7)0.191 (12)0.085 (7)0.007 (8)0.010 (6)0.015 (7)
C440.121 (10)0.250 (17)0.151 (12)0.073 (11)0.023 (8)0.027 (11)
C450.069 (4)0.081 (5)0.040 (3)0.014 (4)0.003 (3)0.008 (3)
C460.077 (5)0.120 (7)0.055 (4)0.019 (5)0.005 (4)0.004 (4)
C470.111 (7)0.115 (7)0.071 (5)0.001 (6)0.018 (5)0.021 (5)
C480.177 (12)0.27 (2)0.104 (8)0.089 (13)0.015 (8)0.011 (9)
C490.091 (5)0.048 (4)0.060 (4)0.011 (3)0.018 (4)0.013 (3)
C500.080 (5)0.074 (5)0.073 (5)0.018 (4)0.014 (4)0.006 (4)
C510.136 (9)0.205 (16)0.098 (7)0.097 (11)0.006 (6)0.036 (9)
C520.178 (13)0.107 (13)0.39 (2)0.054 (10)0.145 (16)0.061 (14)
Geometric parameters (Å, º) top
Th—N12.480 (5)C22—H22B0.9700
Th—N22.465 (7)C23—C241.487 (8)
Th—N32.488 (5)C23—H23A0.9700
Th—N42.490 (7)C23—H23B0.9700
Th—O12.618 (5)C24—H24A0.9600
Th—O22.563 (4)C24—H24B0.9600
Th—O42.557 (4)C24—H24C0.9600
Th—O52.570 (4)C25—C261.521 (9)
Th—O72.615 (6)C25—H25A0.9700
Th—O82.524 (5)C25—H25B0.9700
S1—C11.596 (7)C26—C271.554 (9)
S2—C21.613 (8)C26—H26A0.9700
S3—C31.626 (7)C26—H26B0.9700
S4—C41.599 (8)C27—C281.513 (12)
O1—N51.264 (7)C27—H27A0.9700
O2—N51.288 (7)C27—H27B0.9700
O3—N51.232 (7)C28—H28A0.9600
O4—N61.274 (7)C28—H28B0.9600
O5—N61.263 (6)C28—H28C0.9600
O6—N61.202 (6)C29—C301.508 (12)
O7—N71.258 (7)C29—H29A0.9700
O8—N71.263 (7)C29—H29B0.9700
O9—N71.243 (8)C30—C311.557 (15)
N1—C11.167 (8)C30—H30A0.9700
N2—C21.172 (9)C30—H30B0.9700
N3—C31.163 (8)C31—C321.487 (17)
N4—C41.156 (9)C31—H31A0.9700
N8—C131.495 (9)C31—H31B0.9700
N8—C51.516 (8)C32—H32A0.9600
N8—C171.517 (9)C32—H32B0.9600
N8—C91.522 (10)C32—H32C0.9600
N9—C291.504 (10)C33—C341.521 (10)
N9—C251.521 (9)C33—H33A0.9700
N9—C211.531 (13)C33—H33B0.9700
N9—C331.532 (9)C34—C351.496 (11)
N10—C371.506 (9)C34—H34A0.9700
N10—C411.514 (9)C34—H34B0.9700
N10—C451.514 (8)C35—C361.491 (13)
N10—C491.521 (8)C35—H35A0.9700
C5—C61.528 (9)C35—H35B0.9700
C5—H5A0.9700C36—H36A0.9600
C5—H5B0.9700C36—H36B0.9600
C6—C71.505 (14)C36—H36C0.9600
C6—H6A0.9700C37—C381.502 (11)
C6—H6B0.9700C37—H37A0.9700
C7—C81.545 (11)C37—H37B0.9700
C7—H7A0.9700C38—C391.526 (11)
C7—H7B0.9700C38—H38A0.9700
C8—H8A0.9600C38—H38B0.9700
C8—H8B0.9600C39—C401.517 (14)
C8—H8C0.9600C39—H39A0.9700
C9—C101.507 (12)C39—H39B0.9700
C9—H9A0.9700C40—H40A0.9600
C9—H9B0.9700C40—H40B0.9600
C10—C111.507 (12)C40—H40C0.9600
C10—H10A0.9700C41—C421.513 (12)
C10—H10B0.9700C41—H41A0.9700
C11—C121.518 (16)C41—H41B0.9700
C11—H11A0.9700C42—C431.500 (12)
C11—H11B0.9700C42—H42A0.9700
C12—H12A0.9600C42—H42B0.9700
C12—H12B0.9600C43—C441.465 (17)
C12—H12C0.9600C43—H43A0.9700
C13—C141.516 (10)C43—H43B0.9700
C13—H13A0.9700C44—H44A0.9600
C13—H13B0.9700C44—H44B0.9600
C14—C151.531 (9)C44—H44C0.9600
C14—H14A0.9700C45—C461.500 (11)
C14—H14B0.9700C45—H45A0.9700
C15—C161.546 (12)C45—H45B0.9700
C15—H15A0.9700C46—C471.515 (11)
C15—H15B0.9700C46—H46A0.9700
C16—H16A0.9600C46—H46B0.9700
C16—H16B0.9600C47—C481.485 (17)
C16—H16C0.9600C47—H47A0.9700
C17—C181.517 (13)C47—H47B0.9700
C17—H17A0.9700C48—H48A0.9600
C17—H17B0.9700C48—H48B0.9600
C18—C191.517 (12)C48—H48C0.9600
C18—H18A0.9700C49—C501.530 (10)
C18—H18B0.9700C49—H49A0.9700
C19—C201.51 (2)C49—H49B0.9700
C19—H19A0.9700C50—C511.513 (14)
C19—H19B0.9700C50—H50A0.9700
C20—H20A0.9600C50—H50B0.9700
C20—H20B0.9600C51—C521.496 (19)
C20—H20C0.9600C51—H51A0.9700
C21—C221.525 (14)C51—H51B0.9700
C21—H21A0.9700C52—H52A0.9600
C21—H21B0.9700C52—H52B0.9600
C22—C231.520 (13)C52—H52C0.9600
C22—H22A0.9700
O1—Th—O249.51 (14)C22—C21—H21A108.7
O4—Th—O549.30 (13)N9—C21—H21A108.7
O7—Th—O849.44 (15)C22—C21—H21B108.7
N2—Th—N175.3 (2)N9—C21—H21B108.7
N2—Th—N374.4 (2)H21A—C21—H21B107.6
N1—Th—N3143.89 (19)C23—C22—C21112.5 (8)
N2—Th—N4142.8 (2)C23—C22—H22A109.1
N1—Th—N4138.8 (2)C21—C22—H22A109.1
N3—Th—N476.5 (2)C23—C22—H22B109.1
N2—Th—O875.4 (2)C21—C22—H22B109.1
N1—Th—O870.55 (18)H22A—C22—H22B107.8
N3—Th—O883.21 (18)C24—C23—C22112.4 (9)
N4—Th—O8123.3 (2)C24—C23—H23A109.1
N2—Th—O476.9 (3)C22—C23—H23A109.1
N1—Th—O4119.51 (19)C24—C23—H23B109.1
N3—Th—O471.39 (16)C22—C23—H23B109.1
N4—Th—O472.3 (2)H23A—C23—H23B107.9
O8—Th—O4146.4 (2)C23—C24—H24A109.5
N2—Th—O2143.32 (19)C23—C24—H24B109.5
N1—Th—O272.00 (18)H24A—C24—H24B109.5
N3—Th—O2127.36 (16)C23—C24—H24C109.5
N4—Th—O273.7 (2)H24A—C24—H24C109.5
O8—Th—O278.46 (15)H24B—C24—H24C109.5
O4—Th—O2134.5 (2)C26—C25—N9114.7 (6)
N2—Th—O572.1 (2)C26—C25—H25A108.6
N1—Th—O571.26 (18)N9—C25—H25A108.6
N3—Th—O5116.39 (16)C26—C25—H25B108.6
N4—Th—O5101.48 (18)N9—C25—H25B108.6
O8—Th—O5134.70 (15)H25A—C25—H25B107.6
O2—Th—O5111.43 (14)C25—C26—C27108.8 (6)
N2—Th—O7115.3 (2)C25—C26—H26A109.9
N1—Th—O7108.01 (19)C27—C26—H26A109.9
N3—Th—O768.91 (18)C25—C26—H26B109.9
N4—Th—O773.88 (19)C27—C26—H26B109.9
O4—Th—O7132.42 (16)H26A—C26—H26B108.3
O2—Th—O761.66 (16)C28—C27—C26111.0 (6)
O5—Th—O7172.34 (16)C28—C27—H27A109.4
N2—Th—O1131.50 (19)C26—C27—H27A109.4
N1—Th—O171.16 (18)C28—C27—H27B109.4
N3—Th—O1144.92 (17)C26—C27—H27B109.4
N4—Th—O169.37 (18)H27A—C27—H27B108.0
O8—Th—O1122.41 (16)C27—C28—H28A109.5
O4—Th—O190.27 (18)C27—C28—H28B109.5
O5—Th—O164.56 (15)H28A—C28—H28B109.5
O7—Th—O1107.86 (17)C27—C28—H28C109.5
N5—O1—Th96.0 (4)H28A—C28—H28C109.5
N5—O2—Th98.0 (4)H28B—C28—H28C109.5
N6—O4—Th97.9 (3)N9—C29—C30115.3 (8)
N6—O5—Th97.6 (3)N9—C29—H29A108.5
N7—O7—Th94.6 (4)C30—C29—H29A108.5
N7—O8—Th98.8 (4)N9—C29—H29B108.5
C1—N1—Th167.1 (6)C30—C29—H29B108.5
C2—N2—Th172.2 (6)H29A—C29—H29B107.5
C3—N3—Th170.5 (5)C29—C30—C31114.4 (9)
C4—N4—Th159.1 (6)C29—C30—H30A108.7
O3—N5—O1123.0 (6)C31—C30—H30A108.7
O3—N5—O2120.5 (7)C29—C30—H30B108.7
O1—N5—O2116.5 (6)C31—C30—H30B108.7
O3—N5—Th177.2 (6)H30A—C30—H30B107.6
O1—N5—Th59.4 (3)C32—C31—C30111.9 (13)
O2—N5—Th57.1 (3)C32—C31—H31A109.2
O6—N6—O5122.5 (6)C30—C31—H31A109.2
O6—N6—O4122.6 (5)C32—C31—H31B109.2
O5—N6—O4114.9 (5)C30—C31—H31B109.2
O6—N6—Th176.1 (6)H31A—C31—H31B107.9
O5—N6—Th57.8 (3)C31—C32—H32A109.5
O4—N6—Th57.3 (3)C31—C32—H32B109.5
O9—N7—O7123.5 (6)H32A—C32—H32B109.5
O9—N7—O8119.3 (6)C31—C32—H32C109.5
O7—N7—O8117.1 (6)H32A—C32—H32C109.5
O9—N7—Th174.5 (5)H32B—C32—H32C109.5
O7—N7—Th60.7 (4)C34—C33—N9115.8 (6)
O8—N7—Th56.5 (3)C34—C33—H33A108.3
C13—N8—C5105.9 (5)N9—C33—H33A108.3
C13—N8—C17110.3 (6)C34—C33—H33B108.3
C5—N8—C17110.5 (6)N9—C33—H33B108.3
C13—N8—C9111.4 (6)H33A—C33—H33B107.4
C5—N8—C9111.5 (6)C35—C34—C33112.0 (7)
C17—N8—C9107.4 (6)C35—C34—H34A109.2
C29—N9—C25112.6 (6)C33—C34—H34A109.2
C29—N9—C21105.9 (6)C35—C34—H34B109.2
C25—N9—C21110.8 (6)C33—C34—H34B109.2
C29—N9—C33110.8 (6)H34A—C34—H34B107.9
C25—N9—C33106.6 (5)C36—C35—C34116.5 (8)
C21—N9—C33110.2 (6)C36—C35—H35A108.2
C37—N10—C41109.9 (6)C34—C35—H35A108.2
C37—N10—C45106.0 (5)C36—C35—H35B108.2
C41—N10—C45110.4 (5)C34—C35—H35B108.2
C37—N10—C49112.5 (5)H35A—C35—H35B107.3
C41—N10—C49107.2 (5)C35—C36—H36A109.5
C45—N10—C49110.9 (5)C35—C36—H36B109.5
N1—C1—S1176.7 (7)H36A—C36—H36B109.5
N2—C2—S2178.5 (7)C35—C36—H36C109.5
N3—C3—S3179.7 (7)H36A—C36—H36C109.5
N4—C4—S4177.1 (7)H36B—C36—H36C109.5
N8—C5—C6115.4 (5)C38—C37—N10115.0 (6)
N8—C5—H5A108.4C38—C37—H37A108.5
C6—C5—H5A108.4N10—C37—H37A108.5
N8—C5—H5B108.4C38—C37—H37B108.5
C6—C5—H5B108.4N10—C37—H37B108.5
H5A—C5—H5B107.5H37A—C37—H37B107.5
C7—C6—C5110.6 (6)C37—C38—C39107.7 (8)
C7—C6—H6A109.5C37—C38—H38A110.2
C5—C6—H6A109.5C39—C38—H38A110.2
C7—C6—H6B109.5C37—C38—H38B110.2
C5—C6—H6B109.5C39—C38—H38B110.2
H6A—C6—H6B108.1H38A—C38—H38B108.5
C6—C7—C8110.8 (8)C40—C39—C38111.7 (8)
C6—C7—H7A109.5C40—C39—H39A109.3
C8—C7—H7A109.5C38—C39—H39A109.3
C6—C7—H7B109.5C40—C39—H39B109.3
C8—C7—H7B109.5C38—C39—H39B109.3
H7A—C7—H7B108.1H39A—C39—H39B108.0
C7—C8—H8A109.5C39—C40—H40A109.5
C7—C8—H8B109.5C39—C40—H40B109.5
H8A—C8—H8B109.5H40A—C40—H40B109.5
C7—C8—H8C109.5C39—C40—H40C109.5
H8A—C8—H8C109.5H40A—C40—H40C109.5
H8B—C8—H8C109.5H40B—C40—H40C109.5
C10—C9—N8114.8 (6)C42—C41—N10115.6 (7)
C10—C9—H9A108.6C42—C41—H41A108.4
N8—C9—H9A108.6N10—C41—H41A108.4
C10—C9—H9B108.6C42—C41—H41B108.4
N8—C9—H9B108.6N10—C41—H41B108.4
H9A—C9—H9B107.6H41A—C41—H41B107.4
C9—C10—C11111.0 (7)C43—C42—C41113.4 (9)
C9—C10—H10A109.4C43—C42—H42A108.9
C11—C10—H10A109.4C41—C42—H42A108.9
C9—C10—H10B109.4C43—C42—H42B108.9
C11—C10—H10B109.4C41—C42—H42B108.9
H10A—C10—H10B108.0H42A—C42—H42B107.7
C10—C11—C12113.1 (10)C44—C43—C42111.1 (10)
C10—C11—H11A109.0C44—C43—H43A109.4
C12—C11—H11A109.0C42—C43—H43A109.4
C10—C11—H11B109.0C44—C43—H43B109.4
C12—C11—H11B109.0C42—C43—H43B109.4
H11A—C11—H11B107.8H43A—C43—H43B108.0
C11—C12—H12A109.5C43—C44—H44A109.5
C11—C12—H12B109.5C43—C44—H44B109.5
H12A—C12—H12B109.5H44A—C44—H44B109.5
C11—C12—H12C109.5C43—C44—H44C109.5
H12A—C12—H12C109.5H44A—C44—H44C109.5
H12B—C12—H12C109.5H44B—C44—H44C109.5
N8—C13—C14116.7 (5)C46—C45—N10117.0 (6)
N8—C13—H13A108.1C46—C45—H45A108.0
C14—C13—H13A108.1N10—C45—H45A108.0
N8—C13—H13B108.1C46—C45—H45B108.0
C14—C13—H13B108.1N10—C45—H45B108.0
H13A—C13—H13B107.3H45A—C45—H45B107.3
C13—C14—C15110.5 (6)C45—C46—C47107.9 (7)
C13—C14—H14A109.6C45—C46—H46A110.1
C15—C14—H14A109.6C47—C46—H46A110.1
C13—C14—H14B109.6C45—C46—H46B110.1
C15—C14—H14B109.6C47—C46—H46B110.1
H14A—C14—H14B108.1H46A—C46—H46B108.4
C14—C15—C16114.0 (7)C48—C47—C46115.9 (9)
C14—C15—H15A108.8C48—C47—H47A108.3
C16—C15—H15A108.8C46—C47—H47A108.3
C14—C15—H15B108.8C48—C47—H47B108.3
C16—C15—H15B108.8C46—C47—H47B108.3
H15A—C15—H15B107.7H47A—C47—H47B107.4
C15—C16—H16A109.5C47—C48—H48A109.5
C15—C16—H16B109.5C47—C48—H48B109.5
H16A—C16—H16B109.5H48A—C48—H48B109.5
C15—C16—H16C109.5C47—C48—H48C109.5
H16A—C16—H16C109.5H48A—C48—H48C109.5
H16B—C16—H16C109.5H48B—C48—H48C109.5
N8—C17—C18115.7 (7)N10—C49—C50114.2 (5)
N8—C17—H17A108.3N10—C49—H49A108.7
C18—C17—H17A108.3C50—C49—H49A108.7
N8—C17—H17B108.3N10—C49—H49B108.7
C18—C17—H17B108.3C50—C49—H49B108.7
H17A—C17—H17B107.4H49A—C49—H49B107.6
C19—C18—C17112.7 (9)C51—C50—C49105.5 (6)
C19—C18—H18A109.1C51—C50—H50A110.6
C17—C18—H18A109.1C49—C50—H50A110.6
C19—C18—H18B109.1C51—C50—H50B110.6
C17—C18—H18B109.1C49—C50—H50B110.6
H18A—C18—H18B107.8H50A—C50—H50B108.8
C20—C19—C18112.0 (10)C52—C51—C50111.4 (9)
C20—C19—H19A109.2C52—C51—H51A109.4
C18—C19—H19A109.2C50—C51—H51A109.4
C20—C19—H19B109.2C52—C51—H51B109.4
C18—C19—H19B109.2C50—C51—H51B109.4
H19A—C19—H19B107.9H51A—C51—H51B108.0
C19—C20—H20A109.5C51—C52—H52A109.5
C19—C20—H20B109.5C51—C52—H52B109.5
H20A—C20—H20B109.5H52A—C52—H52B109.5
C19—C20—H20C109.5C51—C52—H52C109.5
H20A—C20—H20C109.5H52A—C52—H52C109.5
H20B—C20—H20C109.5H52B—C52—H52C109.5
C22—C21—N9114.4 (5)

Experimental details

Crystal data
Chemical formula(C16H36N)3[Th(NCS)4(NO3)3]
Mr1377.76
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)12.1057 (7), 17.5943 (8), 16.7084 (8)
β (°) 95.946 (3)
V3)3539.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.28
Crystal size (mm)0.12 × 0.12 × 0.07
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.703, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
170199, 13392, 11074
Rint0.046
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.089, 1.04
No. of reflections13392
No. of parameters698
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.76
Absolute structureFlack (1983), 6435 Friedel pairs
Absolute structure parameter0.008 (5)

Computer programs: COLLECT (Nonius, 1998), HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Th—N12.480 (5)Th—O22.563 (4)
Th—N22.465 (7)Th—O42.557 (4)
Th—N32.488 (5)Th—O52.570 (4)
Th—N42.490 (7)Th—O72.615 (6)
Th—O12.618 (5)Th—O82.524 (5)
O1—Th—O249.51 (14)O7—Th—O849.44 (15)
O4—Th—O549.30 (13)
 

Acknowledgements

Financial support by the CEA Basic Research Program (RBPCH), Groupement National de Recherche PARIS and the International Research Staff Exchange Scheme of the European Community (HEXANE) is acknowledged.

References

First citationAl-Kazzaz, Z. M. S., Bagnall, K. W., Brown, D. & Whittaker, B. (1972). J. Chem. Soc. Dalton Trans. pp. 2273–2277.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBudantseva, N. A., Andreev, G. B., Fedoseev, A. M. & Antipin, M. Y. (2003). Radiochemistry, 45, 335–338.  CrossRef CAS Google Scholar
First citationCharpin, P., Lance, M. & Navaza, A. (1983). Acta Cryst. C39, 190–192.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCountryman, R. & McDonald, W. S. (1971). J. Inorg. Nucl. Chem. 33, 2213–2220.  CrossRef CAS Google Scholar
First citationFarmer, J. M., Kautz, J. A., Kwon, H. S. & Mullica, D. F. (2000). J. Chem. Crystallogr. 30, 301–309.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMullica, D., Farmer, J. M. & Kautz, J. A. (1998). Inorg. Chem. Commun. 1, 217–221.  CrossRef CAS Google Scholar
First citationMullica, D., Farmer, J. M. & Sappenfield, E. L. (1997). Inorg. Chim. Acta, 256, 115–119.  CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds