organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(2-chloro­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 March 2011; accepted 23 March 2011; online 26 March 2011)

In the crystal structure of the title compound, C12H9Cl2NO2S, the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the S=O bonds. The mol­ecule is twisted at the S atom with an C—SO2—NH—C torsion angle of 57.6 (3)°. The N—H bond is syn to the ortho-chloro group in the anilino benzene ring. The two benzene rings are tilted relative to each other by 84.7 (1)°. The crystal structure features inversion dimers linked by N—H⋯O(S) hydrogen bonds. An intra­molecular N—H⋯Cl hydrogen bond is also observed.

Related literature

For our study of the effect of substituents on the oxidative strengths of N-chloro,N-aryl­sulfonamides, see: Gowda & Shetty (2004[Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.]), and on the structures of N-(ar­yl)-amides, see: Gowda et al. (2004[Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845-852.]), N-(ar­yl)-aryl­sulfonamides, see: Shakuntala et al. (2011[Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Submitted.]) and N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9Cl2NO2S

  • Mr = 302.16

  • Monoclinic, C 2/c

  • a = 14.950 (2) Å

  • b = 12.888 (2) Å

  • c = 14.568 (2) Å

  • β = 111.41 (1)°

  • V = 2613.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 293 K

  • 0.44 × 0.42 × 0.32 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.764, Tmax = 0.820

  • 5453 measured reflections

  • 2671 independent reflections

  • 2049 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.03

  • 2671 reflections

  • 166 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.81 (2) 2.29 (2) 3.044 (2) 155 (3)
N1—H1N⋯Cl2 0.81 (2) 2.57 (3) 2.945 (2) 110 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The sulfonamide moieties are important constituents of many biologically significant compounds. As a part of a study of the substituent effects on the structures and other aspects of this class of compounds (Gowda & Shetty, 2004; Gowda et al. 2004, 2007; Shakuntala et al., 2011), in the present work, the crystal structure of 4-chloro-N-(2-chlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—C bond in the C—SO2—NH—C segment is gauche with respect to the SO bonds. The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of 57.6 (3)°, compared to the value of -58.4 (3)° in 4-chloro-N-(3-chlorophenyl)benzenesulfonamide (II) (Shakuntala et al., 2011). The conformation of the N—H bond in the C—SO2—NH—C segment in (I) is syn to the ortho-chloro group in the adjacent anilino benzene ring, in contrast to the anti conformation observed between the N—H bond and the meta-chloro group in the anilino benzene ring of (II). The sulfonyl and the anilino benzene rings in (I) are tilted relative to each other by 84.7 (1)°, compared to the value of 77.1 (1)° in (II).

The structure shows simultaneous N—H···Cl intramolecular and N—H···O intermolecular H-bonding (Table 1). The crystal packing in (I) features dimeric aggregates stabilised by N—H···O(S) hydrogen bonds as shown in Fig.2.

Related literature top

For our study of the effect of substituents on the oxidative strengths of N-chloro,N-arylsulfonamides, see: Gowda & Shetty (2004), and on the structures of N-(aryl)-amides, see: Gowda et al. (2004), N-(aryl)-arylsulfonamides, see: Shakuntala et al. (2011) and N-(aryl)-methanesulfonamides, see: Gowda et al. (2007).

Experimental top

A solution of chlorobenzene (10 ml) in chloroform (40 ml) was treated drop wise with chlorosulfonic acid (25 ml) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with 2-chloroaniline in a stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant 4-chloro-N-(2-chlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol.

Colorless prisms used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The N-H atom was located in a difference map and refined with the distance restraint N—H = 0.86 ±0.02 Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonding shown as dashed lines.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Chloro-N-(2-chlorophenyl)benzenesulfonamide top
Crystal data top
C12H9Cl2NO2SF(000) = 1232
Mr = 302.16Dx = 1.536 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2370 reflections
a = 14.950 (2) Åθ = 2.8–27.7°
b = 12.888 (2) ŵ = 0.65 mm1
c = 14.568 (2) ÅT = 293 K
β = 111.41 (1)°Prism, colourless
V = 2613.2 (6) Å30.44 × 0.42 × 0.32 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD
2671 independent reflections
Radiation source: fine-focus sealed tube2049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Rotation method data acquisition using ω and phi scans.θmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1813
Tmin = 0.764, Tmax = 0.820k = 169
5453 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0576P)2 + 2.4691P]
where P = (Fo2 + 2Fc2)/3
2671 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.38 e Å3
Crystal data top
C12H9Cl2NO2SV = 2613.2 (6) Å3
Mr = 302.16Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.950 (2) ŵ = 0.65 mm1
b = 12.888 (2) ÅT = 293 K
c = 14.568 (2) Å0.44 × 0.42 × 0.32 mm
β = 111.41 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD
2671 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2049 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.820Rint = 0.021
5453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.38 e Å3
2671 reflectionsΔρmin = 0.38 e Å3
166 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47546 (14)0.24207 (18)0.44604 (15)0.0382 (5)
C20.45846 (18)0.3414 (2)0.4102 (2)0.0552 (6)
H20.40280.37580.40710.066*
C30.5242 (2)0.3898 (2)0.3789 (2)0.0636 (7)
H30.51380.45740.35490.076*
C40.60507 (18)0.3372 (2)0.38344 (18)0.0538 (6)
C50.62200 (18)0.2385 (2)0.4181 (2)0.0547 (6)
H50.67730.20400.42020.066*
C60.55683 (16)0.18986 (19)0.45023 (19)0.0473 (6)
H60.56780.12240.47450.057*
C70.28930 (15)0.11084 (18)0.30448 (17)0.0418 (5)
C80.20809 (17)0.12287 (19)0.21954 (17)0.0453 (5)
C90.1974 (2)0.0696 (2)0.13415 (19)0.0575 (7)
H90.14180.07820.07870.069*
C100.2680 (2)0.0043 (2)0.1304 (2)0.0650 (8)
H100.26130.03080.07250.078*
C110.3492 (2)0.0086 (2)0.2135 (2)0.0616 (7)
H110.39770.05260.21130.074*
C120.35983 (18)0.0428 (2)0.3001 (2)0.0531 (6)
H120.41460.03170.35590.064*
N10.29597 (13)0.16494 (18)0.39002 (15)0.0509 (5)
H1N0.2514 (16)0.199 (2)0.392 (2)0.061*
O10.43100 (13)0.08327 (17)0.52862 (14)0.0651 (5)
O20.36333 (12)0.25214 (19)0.54668 (13)0.0696 (6)
Cl10.68971 (6)0.39830 (8)0.34678 (7)0.0926 (3)
Cl20.11621 (5)0.20293 (8)0.22150 (6)0.0787 (3)
S10.39197 (4)0.18111 (5)0.48790 (4)0.04654 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0337 (10)0.0455 (12)0.0368 (10)0.0025 (9)0.0147 (8)0.0003 (9)
C20.0461 (13)0.0534 (15)0.0642 (16)0.0149 (12)0.0178 (12)0.0087 (13)
C30.0659 (17)0.0492 (16)0.0667 (17)0.0025 (13)0.0134 (14)0.0208 (13)
C40.0533 (14)0.0599 (16)0.0506 (14)0.0160 (12)0.0220 (11)0.0032 (12)
C50.0455 (13)0.0527 (15)0.0770 (17)0.0031 (11)0.0357 (13)0.0058 (13)
C60.0410 (12)0.0394 (12)0.0684 (15)0.0019 (10)0.0280 (11)0.0019 (11)
C70.0399 (11)0.0424 (12)0.0509 (13)0.0072 (9)0.0258 (10)0.0039 (10)
C80.0481 (12)0.0448 (13)0.0493 (13)0.0039 (10)0.0254 (10)0.0020 (11)
C90.0653 (16)0.0621 (17)0.0493 (14)0.0150 (14)0.0258 (12)0.0041 (13)
C100.084 (2)0.0568 (16)0.0720 (18)0.0214 (15)0.0499 (17)0.0228 (14)
C110.0672 (17)0.0485 (15)0.086 (2)0.0042 (13)0.0478 (16)0.0142 (14)
C120.0469 (13)0.0514 (15)0.0688 (16)0.0006 (11)0.0303 (12)0.0044 (13)
N10.0315 (9)0.0706 (14)0.0533 (11)0.0050 (9)0.0188 (9)0.0145 (11)
O10.0529 (10)0.0805 (14)0.0681 (12)0.0049 (10)0.0293 (9)0.0315 (11)
O20.0449 (9)0.1162 (18)0.0546 (10)0.0005 (10)0.0264 (8)0.0272 (11)
Cl10.0793 (5)0.1133 (7)0.0893 (6)0.0409 (5)0.0355 (5)0.0226 (5)
Cl20.0598 (4)0.1065 (7)0.0623 (4)0.0306 (4)0.0135 (3)0.0056 (4)
S10.0338 (3)0.0699 (4)0.0412 (3)0.0022 (3)0.0200 (2)0.0005 (3)
Geometric parameters (Å, º) top
C1—C21.371 (3)C7—N11.399 (3)
C1—C61.372 (3)C8—C91.378 (3)
C1—S11.761 (2)C8—Cl21.727 (2)
C2—C31.375 (4)C9—C101.367 (4)
C2—H20.9300C9—H90.9300
C3—C41.367 (4)C10—C111.376 (4)
C3—H30.9300C10—H100.9300
C4—C51.357 (4)C11—C121.381 (4)
C4—Cl11.732 (2)C11—H110.9300
C5—C61.376 (3)C12—H120.9300
C5—H50.9300N1—S11.625 (2)
C6—H60.9300N1—H1N0.807 (17)
C7—C81.390 (3)O1—S11.425 (2)
C7—C121.391 (3)O2—S11.4221 (19)
C2—C1—C6120.9 (2)C7—C8—Cl2119.58 (18)
C2—C1—S1119.47 (17)C10—C9—C8120.4 (3)
C6—C1—S1119.66 (18)C10—C9—H9119.8
C1—C2—C3119.6 (2)C8—C9—H9119.8
C1—C2—H2120.2C9—C10—C11119.0 (3)
C3—C2—H2120.2C9—C10—H10120.5
C4—C3—C2119.0 (2)C11—C10—H10120.5
C4—C3—H3120.5C10—C11—C12121.1 (3)
C2—C3—H3120.5C10—C11—H11119.5
C5—C4—C3121.6 (2)C12—C11—H11119.5
C5—C4—Cl1118.9 (2)C11—C12—C7120.5 (3)
C3—C4—Cl1119.5 (2)C11—C12—H12119.7
C4—C5—C6119.6 (2)C7—C12—H12119.7
C4—C5—H5120.2C7—N1—S1126.74 (16)
C6—C5—H5120.2C7—N1—H1N121 (2)
C1—C6—C5119.2 (2)S1—N1—H1N112 (2)
C1—C6—H6120.4O2—S1—O1119.12 (13)
C5—C6—H6120.4O2—S1—N1104.32 (10)
C8—C7—C12117.4 (2)O1—S1—N1110.37 (13)
C8—C7—N1119.5 (2)O2—S1—C1109.18 (12)
C12—C7—N1123.1 (2)O1—S1—C1107.73 (10)
C9—C8—C7121.6 (2)N1—S1—C1105.30 (10)
C9—C8—Cl2118.8 (2)
C6—C1—C2—C30.6 (4)C8—C9—C10—C111.0 (4)
S1—C1—C2—C3179.0 (2)C9—C10—C11—C120.4 (4)
C1—C2—C3—C40.5 (4)C10—C11—C12—C71.5 (4)
C2—C3—C4—C50.1 (4)C8—C7—C12—C111.3 (3)
C2—C3—C4—Cl1178.6 (2)N1—C7—C12—C11179.9 (2)
C3—C4—C5—C60.4 (4)C8—C7—N1—S1165.93 (19)
Cl1—C4—C5—C6178.1 (2)C12—C7—N1—S115.4 (4)
C2—C1—C6—C50.2 (4)C7—N1—S1—O2172.5 (2)
S1—C1—C6—C5179.4 (2)C7—N1—S1—O158.4 (2)
C4—C5—C6—C10.3 (4)C7—N1—S1—C157.6 (2)
C12—C7—C8—C90.1 (3)C2—C1—S1—O244.3 (2)
N1—C7—C8—C9178.7 (2)C6—C1—S1—O2135.3 (2)
C12—C7—C8—Cl2177.84 (18)C2—C1—S1—O1175.0 (2)
N1—C7—C8—Cl20.9 (3)C6—C1—S1—O14.6 (2)
C7—C8—C9—C101.2 (4)C2—C1—S1—N167.2 (2)
Cl2—C8—C9—C10179.0 (2)C6—C1—S1—N1113.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.81 (2)2.29 (2)3.044 (2)155 (3)
N1—H1N···Cl20.81 (2)2.57 (3)2.945 (2)110 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H9Cl2NO2S
Mr302.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.950 (2), 12.888 (2), 14.568 (2)
β (°) 111.41 (1)
V3)2613.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.44 × 0.42 × 0.32
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.764, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
5453, 2671, 2049
Rint0.021
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.03
No. of reflections2671
No. of parameters166
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.38

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.807 (17)2.29 (2)3.044 (2)155 (3)
N1—H1N···Cl20.807 (17)2.57 (3)2.945 (2)110 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.  Web of Science CrossRef CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845–852.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011). Submitted.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds