organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Nitro­benz­yl)morpholine

aDepartment of Applied Chemistry, College of Chemical Engineering, Sichuan University, Chengdu 610041, People's Republic of China, bState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China, and cWest China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: xieym@scu.edu.cn

(Received 6 January 2011; accepted 17 February 2011; online 2 March 2011)

In the title compound, C11H14N2O3, an inter­molecular inter­action between a nitro group O atom and a neighboring benzene ring helps to stabilize the crystal structure [N⋯centroid = 3.933 (2) Å]. No classical hydrogen bonds are observed in the crystal packing.

Related literature

For the biological activity of 4-(4-nitro­benz­yl)morpholine derivatives, see: Lan et al. (2010[Lan, P., Chen, W. N., Xiao, G. K., Sun, P. H. & Chen, W. M. (2010). Bioorg. Med. Chem. Lett. 20, 6764-6772.]); Bavetsias et al. (2010[Bavetsias, V., Large, J. M., Sun, C., Bouloc, N., Kosmopoulou, M., Matteucci, M., Wilsher, N. E., Martins, V., Reynisson, J., Atrash, B., Faisal, A., Urban, F., Valenti, M., Brandon, A. H., Box, G., Raynaud, F. I., Workman, P., Eccles, S. A., Richard, B., Julian, L. S. & McDonald, E. (2010). J. Med. Chem. 53, 5213-5228.]). For the synthesis, see: Tsou et al. (2008[Tsou, H. R., Otteng, M., Tran, T., Brawner Floyd, M., Marvin Reich, Jr, Birnberg, G., Kutterer, K., Ayral-Kaloustian, S., Ravi, M., Nilakantan, R., Grillo, M., McGinnis, J. P. & Rabindran, S. K. (2008). J. Med. Chem. 51, 3507-3525.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O3

  • Mr = 222.24

  • Monoclinic, P 21 /c

  • a = 6.1371 (2) Å

  • b = 8.2535 (4) Å

  • c = 21.9867 (9) Å

  • β = 94.929 (3)°

  • V = 1109.58 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.946, Tmax = 1.0

  • 6059 measured reflections

  • 2264 independent reflections

  • 1640 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.106

  • S = 1.04

  • 2264 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

4-(4-nitrobenzyl)morpholine derivatives are of great importance owing to their anticancer activity (Lan et al., 2010; Bavetsias et al., 2010). The title compound is one of the key intermediates in our synthetic investigations of anticancer drugs. In this paper, we synthesized the title compound and report its crystal structure. In the title compound, C11H14N2O3, (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angle between the best planes between the phenyl and morpholino rings is 87.78 (10)°. An intermolecular interaction between the nitro group atom O3 and the benzene ring helps to stabilize the crystal structure. The distance O3···Cg(1)a is 3.647 (2) Å (Fig.2, Cg(1) is the centroid of benzene ring C1-C6, symmetry operation (a): -x, -1/2+y, 1/2-z). There are no classical hydrogen bonds observed in the crystal packing.

Related literature top

For the biological activity of 4-(4-nitrobenzyl)morpholine derivatives, see: Lan et al. (2010); Bavetsias et al. (2010). For the synthesis, see: Tsou et al. (2008). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared by a method similar to that of Tsou et al. (2008). Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of dichloromethane.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å, N–H =0.91 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound showing the intermolecular interaction (dashed lines) between nitro group atom O3 and benzene ring C1-C6 (centroid indicated by pink sphere).
4-(4-Nitrobenzyl)morpholine top
Crystal data top
C11H14N2O3F(000) = 472
Mr = 222.24Dx = 1.330 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 2399 reflections
a = 6.1371 (2) Åθ = 3.1–29.2°
b = 8.2535 (4) ŵ = 0.10 mm1
c = 21.9867 (9) ÅT = 293 K
β = 94.929 (3)°Block, yellow
V = 1109.58 (8) Å30.40 × 0.30 × 0.25 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2264 independent reflections
Radiation source: fine-focus sealed tube1640 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 810
Tmin = 0.946, Tmax = 1.0l = 2527
6059 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.1325P]
where P = (Fo2 + 2Fc2)/3
2264 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C11H14N2O3V = 1109.58 (8) Å3
Mr = 222.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1371 (2) ŵ = 0.10 mm1
b = 8.2535 (4) ÅT = 293 K
c = 21.9867 (9) Å0.40 × 0.30 × 0.25 mm
β = 94.929 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2264 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
1640 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 1.0Rint = 0.018
6059 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.04Δρmax = 0.12 e Å3
2264 reflectionsΔρmin = 0.13 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40024 (19)0.31753 (14)0.53296 (5)0.0556 (3)
O20.4376 (2)0.42771 (17)0.28701 (7)0.0751 (4)
O30.1642 (2)0.57082 (16)0.32340 (8)0.0808 (5)
N10.33645 (19)0.14840 (16)0.41946 (6)0.0417 (3)
N20.2491 (2)0.44089 (19)0.30912 (6)0.0530 (4)
C10.1173 (2)0.29260 (19)0.31894 (7)0.0413 (4)
C20.2096 (2)0.1454 (2)0.30324 (7)0.0461 (4)
H20.35210.13920.28530.055*
C30.0870 (2)0.0064 (2)0.31460 (7)0.0467 (4)
H30.14840.09410.30440.056*
C40.1268 (2)0.0148 (2)0.34109 (7)0.0420 (4)
C50.2166 (2)0.1668 (2)0.35492 (7)0.0468 (4)
H50.36050.17430.37180.056*
C60.0965 (3)0.3056 (2)0.34414 (7)0.0471 (4)
H60.15760.40660.35360.057*
C70.2629 (3)0.1353 (2)0.35452 (7)0.0493 (4)
H7A0.38930.13250.33090.059*
H7B0.17710.23020.34210.059*
C80.5018 (2)0.2751 (2)0.43006 (8)0.0499 (4)
H8B0.44090.37850.41620.060*
H8A0.62560.25130.40690.060*
C90.5767 (3)0.2851 (2)0.49693 (9)0.0550 (5)
H9A0.64510.18350.51000.066*
H9B0.68530.37010.50330.066*
C100.1559 (2)0.1839 (2)0.45620 (8)0.0502 (4)
H10A0.04660.09910.45070.060*
H10B0.08790.28550.44300.060*
C110.2381 (3)0.1952 (2)0.52265 (8)0.0566 (5)
H11B0.11650.21910.54660.068*
H11A0.29920.09160.53610.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0660 (7)0.0481 (7)0.0523 (7)0.0032 (6)0.0017 (6)0.0124 (6)
O20.0609 (8)0.0800 (10)0.0819 (10)0.0136 (7)0.0089 (7)0.0130 (8)
O30.0861 (10)0.0489 (9)0.1079 (12)0.0023 (7)0.0107 (8)0.0089 (8)
N10.0422 (7)0.0462 (8)0.0372 (7)0.0052 (6)0.0053 (5)0.0017 (6)
N20.0584 (9)0.0565 (10)0.0451 (8)0.0045 (7)0.0101 (7)0.0050 (7)
C10.0460 (9)0.0465 (10)0.0314 (8)0.0000 (7)0.0045 (6)0.0033 (7)
C20.0416 (8)0.0573 (11)0.0385 (9)0.0041 (7)0.0026 (7)0.0006 (8)
C30.0516 (9)0.0469 (10)0.0408 (9)0.0081 (7)0.0002 (7)0.0019 (7)
C40.0474 (9)0.0495 (10)0.0294 (8)0.0016 (7)0.0055 (6)0.0017 (7)
C50.0399 (8)0.0607 (12)0.0394 (9)0.0034 (8)0.0001 (7)0.0014 (8)
C60.0502 (9)0.0476 (10)0.0435 (9)0.0104 (7)0.0044 (7)0.0016 (8)
C70.0542 (9)0.0555 (11)0.0386 (9)0.0047 (8)0.0065 (7)0.0027 (8)
C80.0463 (9)0.0492 (11)0.0546 (11)0.0072 (7)0.0059 (7)0.0007 (8)
C90.0523 (10)0.0501 (11)0.0610 (12)0.0059 (8)0.0047 (8)0.0050 (9)
C100.0457 (9)0.0588 (11)0.0468 (10)0.0069 (7)0.0080 (7)0.0067 (8)
C110.0632 (11)0.0609 (12)0.0472 (10)0.0092 (9)0.0128 (8)0.0105 (9)
Geometric parameters (Å, º) top
O1—C91.421 (2)C5—H50.9300
O1—C111.4218 (19)C5—C61.372 (2)
O2—N21.2210 (17)C6—H60.9300
O3—N21.2214 (17)C7—H7A0.9700
N1—C71.4641 (19)C7—H7B0.9700
N1—C81.4616 (19)C8—H8B0.9700
N1—C101.456 (2)C8—H8A0.9700
N2—C11.473 (2)C8—C91.504 (2)
C1—C21.372 (2)C9—H9A0.9700
C1—C61.384 (2)C9—H9B0.9700
C2—H20.9300C10—H10A0.9700
C2—C31.383 (2)C10—H10B0.9700
C3—H30.9300C10—C111.507 (2)
C3—C41.3911 (19)C11—H11B0.9700
C4—C51.393 (2)C11—H11A0.9700
C4—C71.509 (2)
O1—C9—C8111.83 (13)C4—C3—H3119.6
O1—C9—H9A109.3C4—C5—H5119.4
O1—C9—H9B109.3C4—C7—H7A109.3
O1—C11—C10111.71 (14)C4—C7—H7B109.3
O1—C11—H11B109.3C5—C4—C7119.67 (13)
O1—C11—H11A109.3C5—C6—C1118.75 (15)
O2—N2—O3123.32 (15)C5—C6—H6120.6
O2—N2—C1118.31 (15)C6—C1—N2118.95 (15)
O3—N2—C1118.38 (14)C6—C5—C4121.20 (14)
N1—C7—C4111.73 (13)C6—C5—H5119.4
N1—C7—H7A109.3H7A—C7—H7B107.9
N1—C7—H7B109.3C8—N1—C7111.09 (12)
N1—C8—H8B109.6C8—C9—H9A109.3
N1—C8—H8A109.6C8—C9—H9B109.3
N1—C8—C9110.15 (14)H8B—C8—H8A108.1
N1—C10—H10A109.6C9—O1—C11109.49 (13)
N1—C10—H10B109.6C9—C8—H8B109.6
N1—C10—C11110.07 (13)C9—C8—H8A109.6
C1—C2—H2120.6H9A—C9—H9B107.9
C1—C2—C3118.87 (14)C10—N1—C7111.73 (12)
C1—C6—H6120.6C10—N1—C8108.57 (13)
C2—C1—N2119.30 (14)C10—C11—H11B109.3
C2—C1—C6121.76 (15)C10—C11—H11A109.3
C2—C3—H3119.6H10A—C10—H10B108.2
C2—C3—C4120.88 (15)C11—C10—H10A109.6
C3—C2—H2120.6C11—C10—H10B109.6
C3—C4—C5118.51 (15)H11B—C11—H11A107.9
C3—C4—C7121.81 (15)

Experimental details

Crystal data
Chemical formulaC11H14N2O3
Mr222.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.1371 (2), 8.2535 (4), 21.9867 (9)
β (°) 94.929 (3)
V3)1109.58 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.946, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
6059, 2264, 1640
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 1.04
No. of reflections2264
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19.  CrossRef Web of Science Google Scholar
First citationBavetsias, V., Large, J. M., Sun, C., Bouloc, N., Kosmopoulou, M., Matteucci, M., Wilsher, N. E., Martins, V., Reynisson, J., Atrash, B., Faisal, A., Urban, F., Valenti, M., Brandon, A. H., Box, G., Raynaud, F. I., Workman, P., Eccles, S. A., Richard, B., Julian, L. S. & McDonald, E. (2010). J. Med. Chem. 53, 5213–5228.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLan, P., Chen, W. N., Xiao, G. K., Sun, P. H. & Chen, W. M. (2010). Bioorg. Med. Chem. Lett. 20, 6764–6772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsou, H. R., Otteng, M., Tran, T., Brawner Floyd, M., Marvin Reich, Jr, Birnberg, G., Kutterer, K., Ayral-Kaloustian, S., Ravi, M., Nilakantan, R., Grillo, M., McGinnis, J. P. & Rabindran, S. K. (2008). J. Med. Chem. 51, 3507–3525.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds