organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o932-o933

N1,N1-Di­methyl­propane-1,2-diaminium bis­­(6-carb­­oxy­pyridine-2-carboxyl­ate) monohydrate

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bDrug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran, and cDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Universita di Messina, 98166 Messina, Italy
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 17 February 2011; accepted 10 March 2011; online 19 March 2011)

The asymmetric unit of the title proton-transfer compound, C5H16N22+·2C7H4NO4·H2O, consists of two mono-deproton­ated pyridine-2,6-dicarb­oxy­lic acid mol­ecules as anions, viz. (py-2,6-dcH), one diprotonated N1,N1-dimethyl­propane-1,2-diamine mol­ecule as a cation, viz. (dmpdaH2)2+, and one water mol­ecule. The crystal packing shows extensive O—H⋯O, N—H⋯O, N—H⋯N and O—H⋯N and weak inter­molecular C—H⋯O hydrogen bonds. These inter­actions link the (dmpdaH2)2+ cation, the (py-2,6-dcH) anions and water mol­ecule and play an important role in the stabilization of crystal packing.

Related literature

For background to proton-transfer compounds, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc, 5, 184-227.]). For related structures, see: Aghabozorg, Bayan et al. (2011[Aghabozorg, H., Bayan, M., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, o610.]); Aghabozorg, Mofidi Rouchi et al. (2011[Aghabozorg, H., Mofidi Rouchi, A., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, o54.]); Aghabozorg, Saemi et al. (2011[Aghabozorg, H., Saemi, M., Khazaei, Z., Amani, V. & Notash, B. (2011). Acta Cryst. E67, o292.]); Sharif et al. (2010[Sharif, M. A., Tabatabaee, M., Adinehloo, M. & Aghabozorg, H. (2010). Acta Cryst. E66, o3232.]).

[Scheme 1]

Experimental

Crystal data
  • C5H16N22+·2C7H4NO4·H2O

  • Mr = 454.44

  • Orthorhombic, P 21 21 21

  • a = 11.826 (8) Å

  • b = 13.376 (8) Å

  • c = 13.479 (8) Å

  • V = 2132 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.42 × 0.38 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.708, Tmax = 0.746

  • 70173 measured reflections

  • 4650 independent reflections

  • 4509 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.084

  • S = 1.07

  • 4650 reflections

  • 298 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O9 0.91 1.82 2.711 (2) 165
N2—H1A⋯O9 0.89 2.55 3.392 (3) 158
N2—H1A⋯N3 0.89 2.40 2.988 (2) 124
N2—H2A⋯O5i 0.89 2.25 2.948 (2) 135
N2—H2A⋯N4i 0.89 2.32 3.123 (3) 151
O3—H3⋯O5 0.82 1.68 2.473 (2) 162
N2—H3A⋯O2ii 0.89 2.05 2.845 (2) 148
N2—H3A⋯O7i 0.89 2.30 2.902 (2) 125
O7—H7⋯O1iii 0.82 1.75 2.535 (2) 159
O9—H9A⋯O1 0.80 (2) 2.30 (2) 2.900 (2) 132 (2)
O9—H9A⋯N3 0.80 (2) 2.38 (2) 3.107 (3) 152 (2)
O9—H9B⋯O3 0.83 (2) 2.33 (3) 2.958 (3) 133 (3)
O9—H9B⋯O6 0.83 (2) 2.16 (2) 2.844 (2) 139 (3)
C3—H3B⋯O6iv 0.97 2.58 3.541 (3) 172
C3—H3C⋯O2ii 0.97 2.20 3.057 (3) 147
C4—H4⋯O4i 0.98 2.45 3.349 (3) 152
C15—H15⋯O8v 0.93 2.48 3.166 (3) 131
C2—H20A⋯O4i 0.96 2.57 3.443 (3) 152
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z; (iv) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (v) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Proton transfer is very important in chemistry, biochemistry and medicinal chemistry. In order to synthesize new types of proton transfer compounds our research group focusses on forming new compounds from pyridine dicarboxcylic acids (Aghabozorg et al. 2008) and different organic bases with nitrogen donor sites such as propane-1,3-diamine (Aghabozorg, Bayan et al., 2011), diethylenetriamine (Aghabozorg, Saemi et al., 2011) and 2-amino-4-methylpyridine (Aghabozorg, Mofidi Rouchi et al., 2011; Sharif et al., 2010).

The asymmetric unit of the title compound consists of two mono deprotonated pyridine-2,6-dicarboxylic acid as anion, one diprotonated N,N'-dimethyl-1,2-propanediamine as cation, and one water molecule (Fig. 1). In the crystal packing there are extensive O—H···O, N—H···O, N—H···N, O—H···N and weak intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2, Fig. 3). The N,N'-dimethyl-1,2-propanediaminium (dmpdaH2)2+ cation is linked to the water molecule by N—H···O hydrogen bonds. This water molecule also connects the cationic part to the anionic part by N—H···O, O—H···N and O—H···O hydrogen bonds. These hydrogen bonds play an important role in the stabilization of the crystal packing.

Related literature top

For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For related structures, see: Aghabozorg, Bayan et al. (2011); Aghabozorg, Mofidi Rouchi et al. (2011); Aghabozorg, Saemi et al. (2011); Sharif et al. (2010).

Experimental top

The solution of pyridine-2,6-dicarboxylic acid (0.334 g, 2 mmol) in 15 ml water was reacted with a solution of N,N'-dimethyl-1,2-propanediamine (0.258 ml, 2 mmol) in 7 ml water in 1:1 molar ratios. The reaction mixture was stirred for 2hrs at 298 K. The colorless crystals of the title compound appeared after slow evaporation of solvent at room temperature in darkness (m.p:177°C).

Refinement top

The hydrogen atoms of the water molecule were found in difference Fourier map and refined isotropically with distance restraints of O—H 0.80 (2) and 0.83 (2) for H9A and H9B, respectively and a H···H distance of 1.276 (4). The other H-atoms were included at calculated positions and treated as riding atoms: O—H = 0.82 Å, N—H = 0.91, 0.89 Å for NH and NH3, C—H = 0.93, 0.98, 0.97 and 0.96 Å for CH(aliphatic), CH(aromatic), CH2 and CH3 hydrogen atoms, respectively. These H-atoms were refined with Uiso(H) = k × Ueq(parent atom), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound showing hydrogen bonding interactions in the asymmetric unit as blue dashed lines.
[Figure 3] Fig. 3. The packing diagram of the title compound showing all hydrogen bonding interactions as blue dashed lines. Symmetry codes: (i) -x+1, y-1/2, -z+3/2; (ii) -x+1, y+1/2, -z+3/2; (iii) x, y+1, z; (iv) -x+3/2, -y+1, z-1/2; (v) -x+2, y-1/2, -z+3/2.
N1,N1-Dimethylpropane-1,2-diaminium bis(6-carboxypyridine-2-carboxylate) monohydrate top
Crystal data top
C5H16N22+·2C7H4NO4·H2OF(000) = 960
Mr = 454.44Dx = 1.416 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 296(2) reflections
a = 11.826 (8) Åθ = 2.2–27.0°
b = 13.376 (8) ŵ = 0.11 mm1
c = 13.479 (8) ÅT = 293 K
V = 2132 (2) Å3Irregular, colorless
Z = 40.42 × 0.38 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
4650 independent reflections
Radiation source: fine-focus sealed tube4509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.708, Tmax = 0.746k = 1717
70173 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.2616P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4650 reflectionsΔρmax = 0.23 e Å3
298 parametersΔρmin = 0.18 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (13)
Crystal data top
C5H16N22+·2C7H4NO4·H2OV = 2132 (2) Å3
Mr = 454.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.826 (8) ŵ = 0.11 mm1
b = 13.376 (8) ÅT = 293 K
c = 13.479 (8) Å0.42 × 0.38 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
4650 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4509 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.746Rint = 0.025
70173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0293 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.23 e Å3
4650 reflectionsΔρmin = 0.18 e Å3
298 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.82378 (16)0.49387 (15)0.59189 (15)0.0608 (4)
H10A0.79170.55780.60780.091*
H10B0.84570.49290.52330.091*
H10C0.88900.48230.63280.091*
C20.78465 (16)0.31373 (12)0.58604 (14)0.0589 (4)
H20A0.72780.26390.59790.088*
H20B0.84930.30050.62710.088*
H20C0.80670.31190.51750.088*
C30.63379 (12)0.43601 (10)0.55191 (10)0.0410 (3)
H3B0.64810.41940.48300.049*
H3C0.61940.50730.55520.049*
C40.52821 (12)0.38176 (9)0.58465 (9)0.0352 (3)
H40.54600.31120.59630.042*
C50.44060 (16)0.38990 (14)0.50382 (12)0.0557 (4)
H5A0.37310.35550.52390.084*
H5B0.46940.36030.44400.084*
H5C0.42350.45910.49210.084*
C60.51400 (11)0.21400 (9)0.86340 (10)0.0361 (3)
C70.44510 (11)0.29707 (9)0.91060 (9)0.0323 (2)
C80.34944 (14)0.27536 (10)0.96579 (11)0.0469 (3)
H80.32630.20950.97460.056*
C90.28930 (15)0.35256 (12)1.00737 (13)0.0547 (4)
H90.22440.33981.04420.066*
C100.32657 (12)0.44927 (11)0.99364 (11)0.0433 (3)
H100.28810.50291.02180.052*
C110.42230 (10)0.46459 (9)0.93714 (9)0.0309 (2)
C120.46436 (11)0.56979 (9)0.91995 (9)0.0347 (3)
C130.74414 (11)0.71223 (9)0.80029 (10)0.0360 (3)
C140.81762 (10)0.79792 (9)0.76580 (10)0.0327 (2)
C150.92660 (12)0.77789 (11)0.73243 (12)0.0446 (3)
H150.95310.71250.72910.054*
C160.99431 (12)0.85656 (12)0.70449 (13)0.0490 (4)
H161.06720.84520.68120.059*
C170.95259 (11)0.95225 (11)0.71152 (10)0.0402 (3)
H170.99751.00690.69510.048*
C180.84204 (10)0.96563 (9)0.74366 (9)0.0315 (2)
C190.79612 (10)1.07016 (9)0.75010 (9)0.0330 (2)
N10.73847 (10)0.41412 (9)0.61018 (8)0.0399 (3)
H10.72030.41500.67580.048*
N20.47949 (9)0.42609 (8)0.67685 (8)0.0340 (2)
H1A0.52980.42170.72580.051*
H2A0.41710.39300.69360.051*
H3A0.46260.49000.66610.051*
N30.48126 (8)0.39046 (7)0.89568 (7)0.0291 (2)
N40.77430 (8)0.89011 (7)0.76994 (7)0.0295 (2)
O10.59431 (8)0.23905 (6)0.80781 (8)0.0420 (2)
O20.48705 (13)0.12753 (7)0.88430 (10)0.0636 (4)
O30.54684 (9)0.57393 (7)0.85809 (8)0.0454 (2)
H30.56680.63220.85110.068*
O40.42263 (12)0.63994 (8)0.96310 (10)0.0592 (3)
O50.64280 (8)0.73404 (6)0.82184 (8)0.0417 (2)
O60.78683 (10)0.62868 (7)0.80691 (11)0.0570 (3)
O70.68767 (8)1.07388 (7)0.76530 (8)0.0428 (2)
H70.66731.13240.76810.064*
O80.85621 (10)1.14190 (8)0.74214 (11)0.0578 (3)
O90.72243 (10)0.42389 (9)0.81056 (8)0.0489 (3)
H9A0.6703 (19)0.3950 (18)0.835 (2)0.099 (9)*
H9B0.711 (3)0.4830 (14)0.827 (2)0.115 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0545 (9)0.0633 (10)0.0645 (10)0.0123 (8)0.0124 (8)0.0003 (8)
C20.0586 (10)0.0474 (9)0.0706 (10)0.0237 (8)0.0006 (8)0.0045 (8)
C30.0424 (7)0.0358 (6)0.0446 (7)0.0094 (6)0.0129 (5)0.0066 (6)
C40.0431 (7)0.0256 (5)0.0370 (6)0.0036 (5)0.0063 (5)0.0008 (5)
C50.0664 (10)0.0583 (9)0.0423 (7)0.0145 (8)0.0085 (7)0.0005 (7)
C60.0419 (6)0.0232 (5)0.0431 (6)0.0004 (5)0.0016 (5)0.0027 (5)
C70.0382 (6)0.0248 (5)0.0340 (5)0.0014 (5)0.0030 (5)0.0020 (4)
C80.0547 (8)0.0329 (7)0.0529 (8)0.0130 (6)0.0179 (7)0.0007 (6)
C90.0528 (9)0.0525 (8)0.0587 (9)0.0150 (7)0.0298 (8)0.0087 (7)
C100.0406 (7)0.0406 (7)0.0489 (7)0.0015 (5)0.0156 (6)0.0094 (6)
C110.0322 (6)0.0276 (5)0.0327 (5)0.0004 (5)0.0011 (5)0.0007 (4)
C120.0375 (6)0.0256 (5)0.0411 (6)0.0034 (5)0.0008 (5)0.0004 (5)
C130.0369 (6)0.0256 (5)0.0455 (7)0.0014 (5)0.0014 (5)0.0007 (5)
C140.0296 (6)0.0273 (5)0.0412 (6)0.0026 (4)0.0001 (5)0.0010 (5)
C150.0341 (6)0.0351 (6)0.0647 (9)0.0091 (5)0.0054 (6)0.0012 (6)
C160.0283 (6)0.0533 (8)0.0654 (9)0.0069 (6)0.0112 (6)0.0066 (7)
C170.0292 (6)0.0420 (7)0.0495 (7)0.0043 (5)0.0044 (5)0.0083 (6)
C180.0294 (5)0.0295 (6)0.0357 (6)0.0009 (4)0.0008 (5)0.0046 (4)
C190.0317 (5)0.0283 (5)0.0391 (6)0.0024 (5)0.0002 (5)0.0053 (5)
N10.0420 (6)0.0376 (6)0.0400 (5)0.0045 (5)0.0107 (5)0.0022 (4)
N20.0305 (5)0.0362 (5)0.0353 (5)0.0017 (4)0.0039 (4)0.0012 (4)
N30.0299 (5)0.0238 (4)0.0335 (5)0.0005 (4)0.0034 (4)0.0018 (4)
N40.0267 (4)0.0255 (4)0.0363 (5)0.0006 (4)0.0008 (4)0.0017 (4)
O10.0368 (4)0.0260 (4)0.0632 (6)0.0017 (4)0.0110 (4)0.0009 (4)
O20.0880 (9)0.0216 (4)0.0814 (8)0.0001 (5)0.0362 (7)0.0061 (5)
O30.0495 (5)0.0229 (4)0.0637 (6)0.0027 (4)0.0157 (5)0.0024 (4)
O40.0746 (8)0.0288 (5)0.0742 (8)0.0032 (5)0.0236 (7)0.0083 (5)
O50.0334 (4)0.0256 (4)0.0660 (6)0.0011 (4)0.0090 (4)0.0041 (4)
O60.0486 (6)0.0267 (5)0.0956 (9)0.0067 (4)0.0086 (6)0.0069 (5)
O70.0325 (4)0.0244 (4)0.0714 (6)0.0015 (3)0.0023 (4)0.0022 (4)
O80.0448 (6)0.0313 (5)0.0973 (9)0.0083 (4)0.0141 (6)0.0070 (5)
O90.0454 (6)0.0497 (6)0.0516 (6)0.0039 (5)0.0127 (5)0.0008 (5)
Geometric parameters (Å, º) top
C1—N11.489 (2)C10—H100.9300
C1—H10A0.9600C11—N31.3347 (15)
C1—H10B0.9600C11—C121.5104 (16)
C1—H10C0.9600C12—O41.2094 (16)
C2—N11.4857 (18)C12—O31.2843 (16)
C2—H20A0.9600C13—O61.2296 (16)
C2—H20B0.9600C13—O51.2672 (16)
C2—H20C0.9600C13—C141.5117 (17)
C3—N11.4950 (19)C14—N41.3364 (15)
C3—C41.5101 (18)C14—C151.3910 (18)
C3—H3B0.9700C15—C161.375 (2)
C3—H3C0.9700C15—H150.9300
C4—N21.4926 (15)C16—C171.375 (2)
C4—C51.507 (2)C16—H160.9300
C4—H40.9800C17—C181.3889 (17)
C5—H5A0.9600C17—H170.9300
C5—H5B0.9600C18—N41.3371 (15)
C5—H5C0.9600C18—C191.5025 (16)
C6—O21.2323 (16)C19—O81.1988 (16)
C6—O11.2553 (16)C19—O71.2996 (15)
C6—C71.5177 (17)N1—H10.9100
C7—N31.3356 (15)N2—H1A0.8900
C7—C81.3848 (18)N2—H2A0.8900
C8—C91.373 (2)N2—H3A0.8900
C8—H80.9300O3—H30.8200
C9—C101.379 (2)O7—H70.8200
C9—H90.9300O9—H9A0.799 (17)
C10—C111.3798 (18)O9—H9B0.830 (17)
N1—C1—H10A109.5N3—C11—C10123.33 (11)
N1—C1—H10B109.5N3—C11—C12117.12 (10)
H10A—C1—H10B109.5C10—C11—C12119.55 (11)
N1—C1—H10C109.5O4—C12—O3126.07 (13)
H10A—C1—H10C109.5O4—C12—C11120.98 (12)
H10B—C1—H10C109.5O3—C12—C11112.94 (10)
N1—C2—H20A109.5O6—C13—O5125.52 (13)
N1—C2—H20B109.5O6—C13—C14118.39 (12)
H20A—C2—H20B109.5O5—C13—C14116.08 (11)
N1—C2—H20C109.5N4—C14—C15123.12 (12)
H20A—C2—H20C109.5N4—C14—C13117.80 (11)
H20B—C2—H20C109.5C15—C14—C13119.08 (11)
N1—C3—C4115.91 (11)C16—C15—C14118.73 (13)
N1—C3—H3B108.3C16—C15—H15120.6
C4—C3—H3B108.3C14—C15—H15120.6
N1—C3—H3C108.3C15—C16—C17118.99 (13)
C4—C3—H3C108.3C15—C16—H16120.5
H3B—C3—H3C107.4C17—C16—H16120.5
N2—C4—C5107.93 (12)C16—C17—C18118.63 (12)
N2—C4—C3111.82 (11)C16—C17—H17120.7
C5—C4—C3108.80 (11)C18—C17—H17120.7
N2—C4—H4109.4N4—C18—C17123.32 (12)
C5—C4—H4109.4N4—C18—C19118.11 (10)
C3—C4—H4109.4C17—C18—C19118.57 (11)
C4—C5—H5A109.5O8—C19—O7124.64 (12)
C4—C5—H5B109.5O8—C19—C18121.69 (11)
H5A—C5—H5B109.5O7—C19—C18113.67 (10)
C4—C5—H5C109.5C2—N1—C1111.23 (13)
H5A—C5—H5C109.5C2—N1—C3111.49 (12)
H5B—C5—H5C109.5C1—N1—C3109.50 (12)
O2—C6—O1125.64 (13)C2—N1—H1108.2
O2—C6—C7116.91 (12)C1—N1—H1108.2
O1—C6—C7117.45 (10)C3—N1—H1108.2
N3—C7—C8122.59 (12)C4—N2—H1A109.5
N3—C7—C6116.73 (11)C4—N2—H2A109.5
C8—C7—C6120.68 (11)H1A—N2—H2A109.5
C9—C8—C7118.99 (12)C4—N2—H3A109.5
C9—C8—H8120.5H1A—N2—H3A109.5
C7—C8—H8120.5H2A—N2—H3A109.5
C8—C9—C10119.01 (13)C11—N3—C7117.68 (10)
C8—C9—H9120.5C14—N4—C18117.15 (10)
C10—C9—H9120.5C12—O3—H3109.5
C9—C10—C11118.40 (12)C19—O7—H7109.5
C9—C10—H10120.8H9A—O9—H9B103 (3)
C11—C10—H10120.8
N1—C3—C4—N275.97 (14)N4—C14—C15—C161.6 (2)
N1—C3—C4—C5164.91 (12)C13—C14—C15—C16177.73 (14)
O2—C6—C7—N3173.61 (14)C14—C15—C16—C170.7 (2)
O1—C6—C7—N35.34 (18)C15—C16—C17—C182.0 (2)
O2—C6—C7—C86.7 (2)C16—C17—C18—N41.2 (2)
O1—C6—C7—C8174.39 (14)C16—C17—C18—C19179.26 (13)
N3—C7—C8—C90.3 (2)N4—C18—C19—O8168.74 (14)
C6—C7—C8—C9179.99 (14)C17—C18—C19—O810.81 (19)
C7—C8—C9—C100.6 (3)N4—C18—C19—O710.92 (16)
C8—C9—C10—C111.0 (3)C17—C18—C19—O7169.53 (12)
C9—C10—C11—N30.5 (2)C4—C3—N1—C274.31 (15)
C9—C10—C11—C12179.35 (14)C4—C3—N1—C1162.17 (12)
N3—C11—C12—O4172.38 (13)C10—C11—N3—C70.30 (18)
C10—C11—C12—O47.7 (2)C12—C11—N3—C7179.80 (11)
N3—C11—C12—O36.62 (16)C8—C7—N3—C110.73 (19)
C10—C11—C12—O3173.29 (12)C6—C7—N3—C11179.55 (11)
O6—C13—C14—N4172.34 (13)C15—C14—N4—C182.43 (19)
O5—C13—C14—N46.38 (18)C13—C14—N4—C18176.91 (11)
O6—C13—C14—C157.0 (2)C17—C18—N4—C141.00 (18)
O5—C13—C14—C15174.25 (13)C19—C18—N4—C14178.52 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O90.911.822.711 (2)165
N2—H1A···O90.892.553.392 (3)158
N2—H1A···N30.892.402.988 (2)124
N2—H2A···O5i0.892.252.948 (2)135
N2—H2A···N4i0.892.323.123 (3)151
O3—H3···O50.821.682.473 (2)162
N2—H3A···O2ii0.892.052.845 (2)148
N2—H3A···O7i0.892.302.902 (2)125
O7—H7···O1iii0.821.752.535 (2)159
O9—H9A···O10.80 (2)2.30 (2)2.900 (2)132 (2)
O9—H9A···N30.80 (2)2.38 (2)3.107 (3)152 (2)
O9—H9B···O30.83 (2)2.33 (3)2.958 (3)133 (3)
O9—H9B···O60.83 (2)2.16 (2)2.844 (2)139 (3)
C3—H3B···O6iv0.972.583.541 (3)172
C3—H3C···O2ii0.972.203.057 (3)147
C4—H4···O4i0.982.453.349 (3)152
C15—H15···O8v0.932.483.166 (3)131
C2—H20A···O4i0.962.573.443 (3)152
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x+3/2, y+1, z1/2; (v) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC5H16N22+·2C7H4NO4·H2O
Mr454.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)11.826 (8), 13.376 (8), 13.479 (8)
V3)2132 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.42 × 0.38 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.708, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
70173, 4650, 4509
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.084, 1.07
No. of reflections4650
No. of parameters298
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O90.91001.82002.711 (2)165
N2—H1A···O90.89002.55003.392 (3)158
N2—H1A···N30.89002.40002.988 (2)124
N2—H2A···O5i0.89002.25002.948 (2)135
N2—H2A···N4i0.89002.32003.123 (3)151
O3—H3···O50.82001.68002.473 (2)162
N2—H3A···O2ii0.89002.05002.845 (2)148
N2—H3A···O7i0.89002.30002.902 (2)125
O7—H7···O1iii0.82001.75002.535 (2)159
O9—H9A···O10.80 (2)2.30 (2)2.900 (2)132 (2)
O9—H9A···N30.80 (2)2.38 (2)3.107 (3)152 (2)
O9—H9B···O30.83 (2)2.33 (3)2.958 (3)133 (3)
O9—H9B···O60.83 (2)2.16 (2)2.844 (2)139 (3)
C3—H3B···O6iv0.97002.58003.541 (3)172.00
C3—H3C···O2ii0.97002.20003.057 (3)147.00
C4—H4···O4i0.98002.45003.349 (3)152.00
C15—H15···O8v0.93002.48003.166 (3)131.00
C2—H20A···O4i0.96002.57003.443 (3)152.00
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x+3/2, y+1, z1/2; (v) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAghabozorg, H., Bayan, M., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, o610.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc, 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Mofidi Rouchi, A., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, o54.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Saemi, M., Khazaei, Z., Amani, V. & Notash, B. (2011). Acta Cryst. E67, o292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSharif, M. A., Tabatabaee, M., Adinehloo, M. & Aghabozorg, H. (2010). Acta Cryst. E66, o3232.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o932-o933
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds