metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,5-Di­methyl­phen­yl)piperazine-1,4-diium tetra­chloridozincate monohydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, bLaboratoire C2P2 (COMS group), École Supérieure de Chimie Physique Électronique, Villeurbanne, France, and cYoungstown State University, Department of Chemistry, One University Plaza, Youngstown, Ohio 44555-3663, USA
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 24 February 2011; accepted 28 February 2011; online 9 March 2011)

In the title compound, (C12H20N2)[ZnCl4]·H2O, the two piperazine N atoms are protonated and the [ZnCl4]2− anions adopt a slightly distorted tetra­hedral configuration. In the crystal, O—H⋯Cl hydrogen bonds link the tetra­chloridozincate anions and the water mol­ecules into corrugated inorganic chains parallel to [010]. The crystal structure is stabilized by N—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonds, with the N—H hydrogen bond originating from one of the two N atoms being trifurcated.

Related literature

For common applications of organic–inorganic hybrid materials, see: Dai et al. (2002[Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Wu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sum, Q.-Q. (2002). Inorg. Chem. 41, 1391-1396.]); Tao et al. (2003[Tao, J., Yin, X., Jiang, Y.-B., Yang, L.-F., Huang, R.-B. & Zheng, L.-S. (2003). Eur. J. Inorg. Chem. pp. 2678-2682.]). For a related structure and discussion of geometrical features, see: Ben Gharbia et al. (2007[Ben Gharbia, I., Kefi, R. & Ben Nasr, C. (2007). Anal. Sci. 23, 243-244.]). For the geometry around the zinc atom, see: Harrison (2005[Harrison, W. T. A. (2005). Acta Cryst. E61, m1951-m1952.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H20N2)[ZnCl4]·H2O

  • Mr = 417.49

  • Monoclinic, P 21 /c

  • a = 7.0999 (8) Å

  • b = 8.0679 (8) Å

  • c = 29.933 (3) Å

  • β = 95.314 (2)°

  • V = 1707.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 100 K

  • 0.45 × 0.39 × 0.31 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.589, Tmax = 0.746

  • 10440 measured reflections

  • 4995 independent reflections

  • 4738 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.064

  • S = 1.13

  • 4995 reflections

  • 194 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl3i 0.90 (2) 2.46 (2) 3.2300 (14) 144 (2)
N2—H2A⋯O1 0.92 1.92 2.7925 (17) 157
N2—H2B⋯O1ii 0.92 2.19 2.9145 (17) 135
N2—H2B⋯Cl4ii 0.92 2.77 3.3965 (14) 127
N2—H2B⋯Cl1iii 0.92 2.85 3.4036 (14) 120
O1—H1C⋯Cl2 0.83 (2) 2.43 (2) 3.2361 (12) 164 (2)
O1—H1B⋯Cl4iii 0.84 (2) 2.31 (2) 3.1518 (13) 178 (3)
Symmetry codes: (i) x+1, y-1, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic-inorganic hybrid materials continue to attract much attention due to their potential applications in various fields (Dai et al., 2002; Tao et al., 2003). In this work, we report the crystal structure of one such compound, [1-(2,5-(CH3)2C6H3)C4H11N2]ZnCl4.H2O. As shown in Fig. 1, the asymmetric unit consists of one 1-(2,5-dimethyphenyl)piperazine-1,4-diium dication doubly protonated at the N1 and N2 nitrogen atoms, one water molecule and one [ZnCl4]2- anion. The atomic arrangement of [1-(2,5-(CH3)2C6H3)C4H11N2]ZnCl4.H2O can be described as built up by corrugated inorganic chains of [ZnCl4]2- tetrahedra and water molecules that extend along the b axis, held together by O—H···Cl hydrogen bonds (Fig. 2, Table 1). Two such chains cross the unit cell at z = (2n +1)/4 and x = 1/2. The organic groups are located between these chains and connect to them through N—H···Cl and N—H···O hydrogen bonds to form a three dimensional infinite network (Fig. 3, Table 1). Among all the hydrogen bonds, one is trifurcated: N2—H2B···(Cl1, Cl4, O1). Within the network, the 1-(2,5-dimethylphenyl)piperazine-1,4-diium dications are arranged into antiparallel dimers. No π-π stacking interactions between the phenylene rings or C—H···π interactions towards them are observed. In the organic entity, the piperazine-1,4-diium ring adopts a typical chair conformation and all the geometrical features agree with those found in 1-(2,3-dimethylphenyl)piperazinium tetrachlorozincate(II) monohydrate (Ben Gharbia et al., 2007). It is worth noticing that in the [ZnCl4]2- anion, the Zn—Cl bond lengths and Cl—Zn—Cl bond angles are not equal to one another, but vary with the environment around the Cl atom with Zn—Cl bond lengths between 2.2619 (4) and 2.2857 (4) Å. In the title compound, all the chloride ions are involved in hydrogen bonding. However, only the Cl4 chloride atom participates in two N—H···Cl bonds, and the Zn1—Cl4 bond distance is with 2.2857 (4) Å the longest (Table 1). The Cl—Zn—Cl angles range between 105.803 (16) and 112.737 (17)°. These values indicate that the coordination geometry of the Zn atom can be regarded as being a slightly distorted tetrahedron (Harrison, 2005).

Related literature top

For common applications of organic–inorganic hybrid materials, see: Dai et al. (2002); Tao et al. (2003). For a related structure and discussion of geometrical features, see: Ben Gharbia et al. (2007). For the geometry around the zinc atom, see: Harrison (2005).

Experimental top

A mixture of an aqueous solution of 1-(2,5-dimethyphenyl)piperazine (2 mmol, 0.380 g), zinc chloride (2 mmol, 0.396 g) and HCl (10 ml, 0.4 M) in a Petri dish was slowly evaporated at room temperature. Single crystals of the title compound, suitable for X-ray diffraction analysis, were obtained after several days by slow evaporation at room temperature (yield 68%).

Refinement top

Reflection (0 0 1) was obscured by the beamstop and was omitted from the refinement. C—H hydrogen atoms were placed in calculated positions with C—H distances in the range 0.93–0.97 Å. The water hydrogen atom positions were refined with O—H distance restraints of 0.84 (2) Å, and the N—H distance of N1 to 0.91 (2) Å. The Uiso(H) values of all H atoms were constrained to 1.2 or 1.5 times Ueq of the respective parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 50% probability displacement ellipsoids, arbitrary spheres for the H atoms, and the atom numbering scheme.
[Figure 2] Fig. 2. Projection along the a axis of the inorganic corrugated chain in the structure of the title compound. Hydrogen bonds are denoted as dashed lines.
[Figure 3] Fig. 3. The packing of [1-(2,5-(CH3)2C6H3)C4H11N2]ZnCl4.H2O, viewed down the b axis. Hydrogen bonds are denoted by dashed lines.
1-(2,5-Dimethylphenyl)piperazine-1,4-diium tetrachloridozincate monohydrate top
Crystal data top
(C12H20N2)[ZnCl4]·H2OF(000) = 856
Mr = 417.49Dx = 1.624 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6435 reflections
a = 7.0999 (8) Åθ = 2.6–31.0°
b = 8.0679 (8) ŵ = 2.06 mm1
c = 29.933 (3) ÅT = 100 K
β = 95.314 (2)°Block, colourless
V = 1707.2 (3) Å30.45 × 0.39 × 0.31 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4995 independent reflections
Radiation source: fine-focus sealed tube4738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 31.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 710
Tmin = 0.589, Tmax = 0.746k = 119
10440 measured reflectionsl = 4335
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0258P)2 + 1.2487P]
where P = (Fo2 + 2Fc2)/3
4995 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.56 e Å3
3 restraintsΔρmin = 0.44 e Å3
Crystal data top
(C12H20N2)[ZnCl4]·H2OV = 1707.2 (3) Å3
Mr = 417.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0999 (8) ŵ = 2.06 mm1
b = 8.0679 (8) ÅT = 100 K
c = 29.933 (3) Å0.45 × 0.39 × 0.31 mm
β = 95.314 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4995 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4738 reflections with I > 2σ(I)
Tmin = 0.589, Tmax = 0.746Rint = 0.016
10440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.56 e Å3
4995 reflectionsΔρmin = 0.44 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8731 (2)0.27945 (19)0.07313 (5)0.0113 (3)
C20.8347 (2)0.4334 (2)0.05374 (5)0.0130 (3)
H20.85730.53140.07100.016*
C30.7627 (2)0.4442 (2)0.00884 (5)0.0141 (3)
C40.7332 (2)0.2967 (2)0.01512 (5)0.0165 (3)
H40.68970.30090.04610.020*
C50.7664 (2)0.1440 (2)0.00543 (5)0.0167 (3)
H50.74150.04600.01170.020*
C60.8351 (2)0.1302 (2)0.05048 (5)0.0132 (3)
C70.7193 (2)0.6104 (2)0.01244 (6)0.0181 (3)
H7A0.83790.66730.01710.027*
H7B0.64710.67730.00730.027*
H7C0.64480.59500.04140.027*
C80.8579 (2)0.0383 (2)0.07188 (6)0.0171 (3)
H8A0.95910.03450.09650.026*
H8B0.89030.11930.04940.026*
H8C0.73910.07090.08370.026*
C91.0911 (2)0.4117 (2)0.13428 (5)0.0138 (3)
H9A1.01780.51600.13490.017*
H9B1.18590.42480.11230.017*
C101.1903 (2)0.3783 (2)0.18030 (5)0.0134 (3)
H10A1.26820.27680.17930.016*
H10B1.27550.47190.18940.016*
C110.8135 (2)0.2553 (2)0.15357 (5)0.0123 (3)
H11A0.72640.16260.14480.015*
H11B0.73820.35860.15350.015*
C120.9092 (2)0.2244 (2)0.20022 (5)0.0136 (3)
H12A0.81230.22060.22200.016*
H12B0.97390.11560.20090.016*
Cl10.09333 (5)0.80876 (5)0.181490 (13)0.01515 (8)
Cl20.52791 (5)0.64529 (5)0.132584 (12)0.01449 (8)
Cl30.34586 (5)1.07346 (5)0.105858 (12)0.01456 (8)
Cl40.55737 (5)0.97161 (5)0.219958 (12)0.01489 (8)
N10.95988 (18)0.27010 (16)0.12030 (4)0.0100 (2)
H1A1.034 (3)0.180 (2)0.1220 (7)0.012*
N21.04987 (18)0.35667 (16)0.21386 (4)0.0115 (2)
H2A0.98740.45520.21710.017*
H2B1.11240.32970.24120.017*
O10.77955 (16)0.59834 (15)0.22753 (4)0.0141 (2)
H1C0.721 (3)0.632 (3)0.2039 (7)0.037 (7)*
H1B0.691 (3)0.564 (3)0.2421 (8)0.033 (7)*
Zn10.38078 (2)0.86992 (2)0.158284 (6)0.01076 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0112 (6)0.0153 (7)0.0071 (6)0.0005 (5)0.0002 (5)0.0015 (5)
C20.0120 (6)0.0152 (7)0.0118 (7)0.0001 (5)0.0007 (5)0.0004 (5)
C30.0101 (6)0.0200 (8)0.0125 (7)0.0021 (5)0.0017 (5)0.0024 (6)
C40.0137 (7)0.0264 (8)0.0094 (7)0.0002 (6)0.0001 (5)0.0008 (6)
C50.0168 (7)0.0205 (8)0.0123 (7)0.0009 (6)0.0010 (5)0.0051 (6)
C60.0122 (7)0.0153 (7)0.0119 (7)0.0006 (5)0.0006 (5)0.0023 (5)
C70.0152 (7)0.0236 (8)0.0156 (7)0.0042 (6)0.0011 (6)0.0058 (6)
C80.0211 (8)0.0133 (7)0.0166 (7)0.0024 (6)0.0002 (6)0.0032 (6)
C90.0160 (7)0.0142 (7)0.0106 (6)0.0057 (5)0.0021 (5)0.0001 (5)
C100.0121 (6)0.0174 (7)0.0104 (6)0.0028 (5)0.0003 (5)0.0005 (5)
C110.0114 (6)0.0163 (7)0.0092 (6)0.0015 (5)0.0013 (5)0.0012 (5)
C120.0167 (7)0.0137 (7)0.0101 (6)0.0043 (5)0.0005 (5)0.0002 (5)
Cl10.01373 (16)0.01711 (17)0.01506 (17)0.00208 (13)0.00366 (12)0.00155 (13)
Cl20.01657 (17)0.01327 (16)0.01348 (16)0.00368 (13)0.00053 (12)0.00140 (12)
Cl30.01723 (17)0.01358 (16)0.01277 (16)0.00171 (13)0.00079 (12)0.00279 (12)
Cl40.01381 (16)0.01768 (17)0.01260 (16)0.00089 (13)0.00196 (12)0.00211 (13)
N10.0111 (5)0.0108 (6)0.0078 (5)0.0000 (4)0.0004 (4)0.0009 (4)
N20.0139 (6)0.0122 (6)0.0083 (5)0.0003 (4)0.0003 (4)0.0007 (4)
O10.0130 (5)0.0165 (5)0.0126 (5)0.0005 (4)0.0006 (4)0.0012 (4)
Zn10.01151 (9)0.01048 (9)0.01017 (9)0.00058 (6)0.00039 (6)0.00003 (6)
Geometric parameters (Å, º) top
C1—C21.387 (2)C9—H9B0.9900
C1—C61.396 (2)C10—N21.490 (2)
C1—N11.4892 (18)C10—H10A0.9900
C2—C31.396 (2)C10—H10B0.9900
C2—H20.9500C11—N11.5096 (19)
C3—C41.395 (2)C11—C121.516 (2)
C3—C71.504 (2)C11—H11A0.9900
C4—C51.387 (2)C11—H11B0.9900
C4—H40.9500C12—N21.4923 (19)
C5—C61.395 (2)C12—H12A0.9900
C5—H50.9500C12—H12B0.9900
C6—C81.506 (2)Cl1—Zn12.2702 (5)
C7—H7A0.9800Cl2—Zn12.2619 (4)
C7—H7B0.9800Cl3—Zn12.2690 (4)
C7—H7C0.9800Cl4—Zn12.2857 (4)
C8—H8A0.9800N1—H1A0.901 (15)
C8—H8B0.9800N2—H2A0.9200
C8—H8C0.9800N2—H2B0.9200
C9—N11.5086 (19)O1—H1C0.832 (17)
C9—C101.512 (2)O1—H1B0.842 (16)
C9—H9A0.9900
C2—C1—C6123.19 (13)N2—C10—H10A109.5
C2—C1—N1119.34 (13)C9—C10—H10A109.5
C6—C1—N1117.47 (13)N2—C10—H10B109.5
C1—C2—C3119.92 (15)C9—C10—H10B109.5
C1—C2—H2120.0H10A—C10—H10B108.1
C3—C2—H2120.0N1—C11—C12110.09 (12)
C4—C3—C2117.78 (15)N1—C11—H11A109.6
C4—C3—C7121.85 (14)C12—C11—H11A109.6
C2—C3—C7120.37 (15)N1—C11—H11B109.6
C5—C4—C3121.21 (14)C12—C11—H11B109.6
C5—C4—H4119.4H11A—C11—H11B108.2
C3—C4—H4119.4N2—C12—C11111.49 (12)
C4—C5—C6121.95 (15)N2—C12—H12A109.3
C4—C5—H5119.0C11—C12—H12A109.3
C6—C5—H5119.0N2—C12—H12B109.3
C5—C6—C1115.80 (14)C11—C12—H12B109.3
C5—C6—C8119.83 (14)H12A—C12—H12B108.0
C1—C6—C8124.34 (14)C1—N1—C9114.53 (12)
C3—C7—H7A109.5C1—N1—C11112.33 (11)
C3—C7—H7B109.5C9—N1—C11108.80 (11)
H7A—C7—H7B109.5C1—N1—H1A106.4 (13)
C3—C7—H7C109.5C9—N1—H1A104.7 (13)
H7A—C7—H7C109.5C11—N1—H1A109.6 (13)
H7B—C7—H7C109.5C10—N2—C12111.83 (12)
C6—C8—H8A109.5C10—N2—H2A109.3
C6—C8—H8B109.5C12—N2—H2A109.3
H8A—C8—H8B109.5C10—N2—H2B109.3
C6—C8—H8C109.5C12—N2—H2B109.3
H8A—C8—H8C109.5H2A—N2—H2B107.9
H8B—C8—H8C109.5H1C—O1—H1B102 (2)
N1—C9—C10109.95 (12)Cl2—Zn1—Cl3111.651 (16)
N1—C9—H9A109.7Cl2—Zn1—Cl1112.737 (17)
C10—C9—H9A109.7Cl3—Zn1—Cl1108.974 (16)
N1—C9—H9B109.7Cl2—Zn1—Cl4109.040 (16)
C10—C9—H9B109.7Cl3—Zn1—Cl4108.388 (17)
H9A—C9—H9B108.2Cl1—Zn1—Cl4105.803 (16)
N2—C10—C9110.52 (12)
C6—C1—C2—C33.1 (2)N1—C9—C10—N258.83 (17)
N1—C1—C2—C3176.62 (13)N1—C11—C12—N256.18 (17)
C1—C2—C3—C40.4 (2)C2—C1—N1—C931.94 (19)
C1—C2—C3—C7179.62 (14)C6—C1—N1—C9147.82 (14)
C2—C3—C4—C52.8 (2)C2—C1—N1—C1192.83 (16)
C7—C3—C4—C5177.28 (15)C6—C1—N1—C1187.40 (16)
C3—C4—C5—C61.7 (3)C10—C9—N1—C1172.56 (12)
C4—C5—C6—C11.7 (2)C10—C9—N1—C1160.82 (16)
C4—C5—C6—C8176.45 (15)C12—C11—N1—C1172.87 (12)
C2—C1—C6—C54.1 (2)C12—C11—N1—C959.25 (16)
N1—C1—C6—C5175.63 (13)C9—C10—N2—C1255.24 (17)
C2—C1—C6—C8173.91 (15)C11—C12—N2—C1054.17 (17)
N1—C1—C6—C86.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl3i0.90 (2)2.46 (2)3.2300 (14)144 (2)
N2—H2A···O10.921.922.7925 (17)157
N2—H2B···O1ii0.922.192.9145 (17)135
N2—H2B···Cl4ii0.922.773.3965 (14)127
N2—H2B···Cl1iii0.922.853.4036 (14)120
O1—H1C···Cl20.83 (2)2.43 (2)3.2361 (12)164 (2)
O1—H1B···Cl4iii0.84 (2)2.31 (2)3.1518 (13)178 (3)
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C12H20N2)[ZnCl4]·H2O
Mr417.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.0999 (8), 8.0679 (8), 29.933 (3)
β (°) 95.314 (2)
V3)1707.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.45 × 0.39 × 0.31
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.589, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
10440, 4995, 4738
Rint0.016
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.064, 1.13
No. of reflections4995
No. of parameters194
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl3i0.901 (15)2.460 (17)3.2300 (14)143.6 (17)
N2—H2A···O10.921.922.7925 (17)157
N2—H2B···O1ii0.922.192.9145 (17)135
N2—H2B···Cl4ii0.922.773.3965 (14)127
N2—H2B···Cl1iii0.922.853.4036 (14)120
O1—H1C···Cl20.832 (17)2.429 (18)3.2361 (12)164 (2)
O1—H1B···Cl4iii0.842 (16)2.311 (16)3.1518 (13)178 (3)
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia. The diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491 and YSU.

References

First citationBen Gharbia, I., Kefi, R. & Ben Nasr, C. (2007). Anal. Sci. 23, 243–244.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Wu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sum, Q.-Q. (2002). Inorg. Chem. 41, 1391–1396.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarrison, W. T. A. (2005). Acta Cryst. E61, m1951–m1952.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, J., Yin, X., Jiang, Y.-B., Yang, L.-F., Huang, R.-B. & Zheng, L.-S. (2003). Eur. J. Inorg. Chem. pp. 2678–2682.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds