metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­[chloridobis(di­methyl sulfoxide-κO)tin(II)]

aFaculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Str. No. 11, RO-400028 Cluj-Napoca, Romania
*Correspondence e-mail: richy@chem.ubbcluj.ro

(Received 3 March 2011; accepted 16 March 2011; online 26 March 2011)

The structure of the title compound, [Sn2Cl4(C2H6OS)4], contains dimers formed through weak Sn⋯Cl [3.691 (2) Å] inter­actions, resulting in a planar Sn2Cl2 core with an inversion center at the centre of the four-membered ring. The SnII atoms are penta­coordinated and have a distorted octa­hedral Ψ-SnCl3O2 coordination geometry. The O atoms from the dimethyl sulfoxide mol­ecules occupy trans positions, while the Cl atoms exhibit a meridional arrangement.

Related literature

For related tin chlorides, see: Kisenyi et al. (1985[Kisenyi, J. M., Willey, G. R. & Drew, M. G. B. (1985). Acta Cryst. C41, 700-702.]); Kiriyama et al. (1973[Kiriyama, H., Kitahama, K., Nakamura, O. & Kiriyama, R. (1973). Bull. Chem. Soc. Jpn, 46, 1389-1395.]). For the structure of free DMSO, see: Viswamitra & Kannan (1966[Viswamitra, M. A. & Kannan, K. (1966). Nature (London), 209, 1016-1017.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2Cl4(C2H6OS)4]

  • Mr = 691.70

  • Monoclinic, P 21 /c

  • a = 11.1449 (17) Å

  • b = 13.349 (2) Å

  • c = 8.4394 (13) Å

  • β = 103.728 (2)°

  • V = 1219.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.84 mm−1

  • T = 297 K

  • 0.28 × 0.25 × 0.23 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.469, Tmax = 0.523

  • 8630 measured reflections

  • 2148 independent reflections

  • 1853 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.097

  • S = 1.18

  • 2148 reflections

  • 105 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cl1—Sn1 2.4767 (19)
Cl2—Sn1 2.4886 (19)
O1—Sn1 2.382 (5)
O2—Sn1 2.371 (5)
O2—Sn1—O1 166.36 (17)
O2—Sn1—Cl1 86.61 (13)
O1—Sn1—Cl1 85.99 (13)
O2—Sn1—Cl2 84.94 (14)
O1—Sn1—Cl2 84.15 (13)
Cl1—Sn1—Cl2 93.86 (7)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In an attempt to perform an oxidative addition of SnCl2 to an organic halide, the title compound was isolated as a by-product.

The tin(II) dichloride crystallizes with two dimethylsulfoxide molecules which coordinate to the metal center in a trans fashion through the oxygen atoms [O1—Sn1—O2 = 166.36 (17)°] (Figure 1). The molecular units are connected in dimers through weak Sn···Cl interactions [Sn1···Cl1i = 3.691 (2) Å; symmetry code (i): -x, -y + 2, -z] trans to a Sn1—Cl2 bond [Cl2— Sn1···Cl1i = 164.85 (6)°]. This results in a planar Sn2Cl2 core with an inversion centre in the middle of the four-membered ring (Figure 2). The chlorine bridges are asymmetric and the endocyclic angles around chlorine atoms [Sn1—Cl1—Sn1i = 101.11 (5)°] are larger than the endocyclic angles around tin [Cl1—Sn1—Cl1i = 78.90 (6)°].

In the dimer unit the tin atom is pentacoordinated in a distorted pseudo-octahedral coordination geometry, with the two chlorine atoms from the same molecular unit in cis positions [Cl1—Sn1—Cl2 = 93.86 (7)°] and a bridging chlorine atom trans to the free position. In contrast, in SnCl4.2DMSO (Kisenyi et al., 1985) the tin atom is hexacoordinated, with the oxygen atoms from the dimethylsulfoxide in cis position, while the structure of SnCl2.2H2O is described as pyramidal (Kiriyama et al., 1973) with only one water molecule bonded to the metal center.

The Sn—O bond lengths (Table 1) are similar to those found in SnCl2.2H2O [2.331 (5) Å], but larger than in SnCl4.2DMSO [2.110 (9) and 2.110 (8) Å]. The Sn—Cl bonds follow the same pattern; those in SnCl4.2DMSO [range: 2.369 (3) - 2.406 (3) Å] are larger than in the title compound [Sn1—Cl1 = 2.4767 (19) Å, Sn1—Cl2 = 2.4886 (19) Å] and SnCl2.2H2O [2.500 (2) and 2.562 (2) Å]. This is consistent with the fact that SnCl2 is a weaker Lewis acid than SnCl4.

The S—O bonds [S1—O1 = 1.531 (5) Å, S2—O2 = 1.519 (5) Å] show a decrease of multiplicity from the SO bond in the free ligand [SO = 1.471 Å], due to the oxygen-tin interaction. The S—C bond lengths vary between 1.727 (11) and 1.779 (8) Å, which are similar with those from the free DMSO molecule (Viswamitra & Kannan, 1966).

In the strucure the dimers are stacked along the a axis and form layers stacking along the b axis, with alternate arrangement of the dimeric units in consecutive layers (Figure 3).

Related literature top

For related tin chlorides, see: Kisenyi et al. (1985); Kiriyama et al. (1973). For the structure of free DMSO, see: Viswamitra & Kannan (1966).

Experimental top

The title compound was isolated as a by-product after the workup of the reaction between SnCl2 to an organic halide performed in hot dimethyl sulfoxide (DMSO).

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.96 Å and with Uiso= 1.5Ueq (C) for methyl H.

The data collection was done with 2 second irradiation time per frame over the complete sphere for a total data collection time of 2 hours. An earlier attempt to measure a crystal with a 10 second irradiation time per frame resulted in crystal decay after approximately 3 hours.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : View of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms as spheres of arbitrary radii.
[Figure 2] Fig. 2. : Intermolecular interactions (represented with dashed lines) showing the formation of dimers in crystal structure of the title compound. Symmetry codes as in Table 1.
[Figure 3] Fig. 3. : Crystal packing of the title compound. View down the a axis.
Di-µ-chlorido-bis[chloridobis(dimethyl sulfoxide-κO)tin(II)] top
Crystal data top
[Sn2Cl4(C2H6OS)4]F(000) = 672
Mr = 691.70Dx = 1.883 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3345 reflections
a = 11.1449 (17) Åθ = 2.4–26.6°
b = 13.349 (2) ŵ = 2.84 mm1
c = 8.4394 (13) ÅT = 297 K
β = 103.728 (2)°Block, colourless
V = 1219.7 (3) Å30.28 × 0.25 × 0.23 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2148 independent reflections
Radiation source: fine-focus sealed tube1853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.469, Tmax = 0.523k = 1515
8630 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0208P)2 + 2.685P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
2148 reflectionsΔρmax = 0.57 e Å3
105 parametersΔρmin = 0.72 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.128 (4)
Crystal data top
[Sn2Cl4(C2H6OS)4]V = 1219.7 (3) Å3
Mr = 691.70Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.1449 (17) ŵ = 2.84 mm1
b = 13.349 (2) ÅT = 297 K
c = 8.4394 (13) Å0.28 × 0.25 × 0.23 mm
β = 103.728 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2148 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1853 reflections with I > 2σ(I)
Tmin = 0.469, Tmax = 0.523Rint = 0.062
8630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.18Δρmax = 0.57 e Å3
2148 reflectionsΔρmin = 0.72 e Å3
105 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5033 (7)0.8276 (6)0.0501 (11)0.068 (2)
H1A0.52580.82920.06700.102*
H1B0.57030.85290.09180.102*
H1C0.48560.75980.08640.102*
C20.3399 (8)0.8695 (7)0.3317 (9)0.069 (2)
H2A0.33270.79800.34250.103*
H2B0.40600.89240.37750.103*
H2C0.26390.90020.38860.103*
C30.0141 (10)1.1657 (9)0.422 (2)0.140 (6)
H3A0.04741.15870.32200.211*
H3B0.01951.23460.45570.211*
H3C0.00831.12540.50510.211*
C40.2396 (11)1.1408 (8)0.5967 (12)0.101 (4)
H4A0.19941.10450.66770.152*
H4B0.24391.21050.62540.152*
H4C0.32161.11500.60770.152*
Cl10.1548 (2)1.07531 (15)0.0095 (3)0.0633 (5)
Cl20.40441 (17)0.95628 (17)0.2850 (2)0.0614 (6)
O10.2681 (4)0.8512 (4)0.0601 (6)0.0534 (13)
O20.1396 (5)1.0145 (4)0.3674 (6)0.0600 (14)
S10.37123 (18)0.90252 (13)0.1217 (2)0.0469 (5)
S20.1554 (2)1.12668 (15)0.3945 (3)0.0617 (6)
Sn10.18486 (4)0.91864 (3)0.15234 (6)0.0448 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (5)0.064 (5)0.090 (6)0.006 (4)0.025 (5)0.007 (5)
C20.079 (6)0.073 (6)0.055 (5)0.015 (5)0.018 (4)0.008 (4)
C30.074 (8)0.075 (7)0.267 (19)0.011 (6)0.029 (9)0.027 (9)
C40.139 (10)0.070 (7)0.080 (7)0.004 (6)0.003 (7)0.012 (5)
Cl10.0684 (13)0.0577 (12)0.0648 (12)0.0102 (10)0.0178 (10)0.0151 (10)
Cl20.0490 (11)0.0818 (14)0.0511 (11)0.0116 (10)0.0073 (9)0.0026 (10)
O10.056 (3)0.053 (3)0.059 (3)0.009 (2)0.028 (3)0.010 (2)
O20.079 (4)0.045 (3)0.062 (3)0.004 (3)0.030 (3)0.011 (2)
S10.0549 (11)0.0371 (10)0.0520 (11)0.0037 (8)0.0194 (9)0.0055 (8)
S20.0799 (15)0.0487 (12)0.0594 (13)0.0044 (10)0.0225 (11)0.0024 (9)
Sn10.0439 (4)0.0407 (3)0.0514 (4)0.0045 (2)0.0147 (2)0.0007 (2)
Geometric parameters (Å, º) top
C1—S11.764 (8)C3—H3C0.9600
C1—H1A0.9600C4—S21.751 (10)
C1—H1B0.9600C4—H4A0.9600
C1—H1C0.9600C4—H4B0.9600
C2—S11.779 (8)C4—H4C0.9600
C2—H2A0.9600Cl1—Sn12.4767 (19)
C2—H2B0.9600Cl2—Sn12.4886 (19)
C2—H2C0.9600O1—S11.531 (5)
C3—S21.727 (11)O1—Sn12.382 (5)
C3—H3A0.9600O2—S21.519 (5)
C3—H3B0.9600O2—Sn12.371 (5)
S1—C1—H1A109.5S2—C4—H4C109.5
S1—C1—H1B109.5H4A—C4—H4C109.5
H1A—C1—H1B109.5H4B—C4—H4C109.5
S1—C1—H1C109.5S1—O1—Sn1123.0 (3)
H1A—C1—H1C109.5S2—O2—Sn1127.5 (3)
H1B—C1—H1C109.5O1—S1—C1105.2 (4)
S1—C2—H2A109.5O1—S1—C2104.0 (3)
S1—C2—H2B109.5C1—S1—C298.7 (4)
H2A—C2—H2B109.5O2—S2—C3103.9 (5)
S1—C2—H2C109.5O2—S2—C4105.6 (4)
H2A—C2—H2C109.5C3—S2—C497.4 (7)
H2B—C2—H2C109.5O2—Sn1—O1166.36 (17)
S2—C3—H3A109.5O2—Sn1—Cl186.61 (13)
S2—C3—H3B109.5O1—Sn1—Cl185.99 (13)
H3A—C3—H3B109.5O2—Sn1—Cl284.94 (14)
S2—C3—H3C109.5O1—Sn1—Cl284.15 (13)
H3A—C3—H3C109.5Cl1—Sn1—Cl293.86 (7)
H3B—C3—H3C109.5Sn1—Cl1—Sn1i101.11 (5)
S2—C4—H4A109.5Cl1—Sn1—Cl1i78.90 (6)
S2—C4—H4B109.5Cl2—Sn1—Cl1i164.85 (6)
H4A—C4—H4B109.5
Sn1—O1—S1—C1108.4 (4)S2—O2—Sn1—Cl124.9 (4)
Sn1—O1—S1—C2148.3 (4)S2—O2—Sn1—Cl269.2 (4)
Sn1—O2—S2—C3129.3 (7)S1—O1—Sn1—O25.1 (10)
Sn1—O2—S2—C4128.7 (5)S1—O1—Sn1—Cl152.2 (3)
S2—O2—Sn1—O132.3 (10)S1—O1—Sn1—Cl242.1 (3)
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Sn2Cl4(C2H6OS)4]
Mr691.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)11.1449 (17), 13.349 (2), 8.4394 (13)
β (°) 103.728 (2)
V3)1219.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.84
Crystal size (mm)0.28 × 0.25 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.469, 0.523
No. of measured, independent and
observed [I > 2σ(I)] reflections
8630, 2148, 1853
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.097, 1.18
No. of reflections2148
No. of parameters105
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.72

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cl1—Sn12.4767 (19)O1—Sn12.382 (5)
Cl2—Sn12.4886 (19)O2—Sn12.371 (5)
O2—Sn1—O1166.36 (17)O2—Sn1—Cl284.94 (14)
O2—Sn1—Cl186.61 (13)O1—Sn1—Cl284.15 (13)
O1—Sn1—Cl185.99 (13)Cl1—Sn1—Cl293.86 (7)
 

Acknowledgements

We thank the National Centre for X-Ray Diffraction, Cluj-Napoca, for support of the X-ray structure determination.

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKiriyama, H., Kitahama, K., Nakamura, O. & Kiriyama, R. (1973). Bull. Chem. Soc. Jpn, 46, 1389–1395.  CrossRef CAS Google Scholar
First citationKisenyi, J. M., Willey, G. R. & Drew, M. G. B. (1985). Acta Cryst. C41, 700–702.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViswamitra, M. A. & Kannan, K. (1966). Nature (London), 209, 1016–1017.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds