metal-organic compounds
Bis(2-amino-6-methylpyridinium) trans-diaquabis(pyrazine-2,3-dicarboxylato)cuprate(II) hexahydrate
aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran, and bFaculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
*Correspondence e-mail: mirzaeesh@ferdowsi.um.ac.ir
The title compound, (C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O, was obtained by the reaction of CuCl2·2H2O with pyrazine-2,3-dicarboxylic acid (pyzdcH2) and 2-amino-6-methylpyridine (2a-6mpy) in aqueous solution. The CuII atom is located on an inversion centre and has an overall octahedral coordination environment. Two N and two O atoms from (pyzdc)2− ligands define the equatorial plane and two water molecules are in axial positions, resulting in a typical tetragonally Jahn–Teller-distorted environment. Extensive classical O—H⋯O, O—H⋯N and N—H⋯O and non-classical C—H⋯O hydrogen bonds, as well as π–π stacking interactions between aromatic rings of the cations [centroid–centroid distance = 3.58 (9) Å], lead to the formation of a three-dimensional supramolecular structure.
Related literature
For background to this class of compounds, see: Aghabozorg et al. (2008, 2010). For related structures, see: Eshtiagh-Hosseini et al. (2010a,b,c, 2011); Che et al. (2009).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811008981/wm2462sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811008981/wm2462Isup2.hkl
A solution of pyzdcH2 (0.6 mmol, 0.1 g) and 2a-6mpy (1.2 mmol, 0.13 g) in water (10 ml) was refluxed for 1 h, then a solution of CuCl2.2H2O (0.2 mmol, 0.01 g) was added dropwise and refluxing was continued for 6 h at 343 K. The obtained blue solution yielded blue block-like crystals of the title compound after slow evaporation of the solvent at room temperature.
The H atoms were generated geometrically and refined using a riding model, with C—H = 0.95–0.98 Å and Uiso(H) = 1.2, 1.5 Ueq(C). H atoms bonded to water molecules and nitrogen atoms were found from difference maps and than fixed. They were finally refined in the riding model approximation with riding model, with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell
CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code a): -x, -y+2, -z+1.] | |
Fig. 2. The packing diagram of the title compound, showing the supramolecular structure. The intermolecular C—H···O, N—H···O, O—H···O, and O—H···N hydrogen bonds are shown as dashed lines. |
(C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O | Z = 1 |
Mr = 758.16 | F(000) = 395 |
Triclinic, P1 | Dx = 1.571 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.7353 (3) Å | Cell parameters from 3230 reflections |
b = 8.0757 (4) Å | θ = 3.0–28.6° |
c = 15.0170 (6) Å | µ = 0.77 mm−1 |
α = 79.450 (4)° | T = 100 K |
β = 86.320 (4)° | Block, blue |
γ = 89.828 (4)° | 0.20 × 0.18 × 0.18 mm |
V = 801.31 (6) Å3 |
Oxford Diffraction KM-4-CCD diffractometer | 3758 independent reflections |
Radiation source: fine-focus sealed tube | 3230 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
ω scans | θmax = 28.6°, θmin = 3.0° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2010) | h = −8→8 |
Tmin = 0.845, Tmax = 0.910 | k = −10→10 |
7090 measured reflections | l = −18→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0454P)2 + 0.2055P] where P = (Fo2 + 2Fc2)/3 |
3758 reflections | (Δ/σ)max < 0.001 |
224 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
(C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O | γ = 89.828 (4)° |
Mr = 758.16 | V = 801.31 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.7353 (3) Å | Mo Kα radiation |
b = 8.0757 (4) Å | µ = 0.77 mm−1 |
c = 15.0170 (6) Å | T = 100 K |
α = 79.450 (4)° | 0.20 × 0.18 × 0.18 mm |
β = 86.320 (4)° |
Oxford Diffraction KM-4-CCD diffractometer | 3758 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2010) | 3230 reflections with I > 2σ(I) |
Tmin = 0.845, Tmax = 0.910 | Rint = 0.015 |
7090 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.55 e Å−3 |
3758 reflections | Δρmin = −0.21 e Å−3 |
224 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The X-ray data were collected at 100 K using a KM4-CCD diffractometer and graphite-monochromated MoKalpha radiation generated from Oxford Diffraction X-ray tube operated at 50 kV and 25 mA. The obtained images were indexed, integrated, and scaled using the Oxford Diffraction data reduction package. The structure was solved by direct methods using SHELXS97 and refined by the full?matrix least-squares method on all F2 data. The data were corrected for absorption [CrysAlis], min/max absorption coefficients for 1 are (0.845/0.910). |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 1.0000 | 0.5000 | 0.01475 (9) | |
O1 | −0.13388 (16) | 0.97838 (14) | 0.39113 (7) | 0.0154 (2) | |
O2 | −0.10153 (16) | 0.85683 (14) | 0.26828 (7) | 0.0142 (2) | |
O3 | 0.32384 (16) | 0.80385 (14) | 0.16138 (7) | 0.0153 (2) | |
O4 | 0.16155 (16) | 0.56417 (14) | 0.22248 (7) | 0.0149 (2) | |
N1 | 0.20923 (19) | 0.86576 (16) | 0.44718 (8) | 0.0128 (3) | |
N2 | 0.46299 (19) | 0.67808 (16) | 0.35325 (9) | 0.0139 (3) | |
C1 | −0.0421 (2) | 0.89169 (18) | 0.33887 (10) | 0.0116 (3) | |
C2 | 0.1593 (2) | 0.82665 (18) | 0.36827 (10) | 0.0115 (3) | |
C3 | 0.2884 (2) | 0.73410 (18) | 0.32044 (10) | 0.0119 (3) | |
C4 | 0.2508 (2) | 0.69782 (19) | 0.22677 (10) | 0.0127 (3) | |
C5 | 0.5068 (2) | 0.7161 (2) | 0.43260 (10) | 0.0155 (3) | |
H5 | 0.6278 | 0.6762 | 0.4577 | 0.019* | |
C6 | 0.3820 (2) | 0.8123 (2) | 0.48003 (10) | 0.0150 (3) | |
H6 | 0.4197 | 0.8396 | 0.5355 | 0.018* | |
O1W | −0.14082 (18) | 0.72777 (16) | 0.57622 (8) | 0.0229 (3) | |
H1W | −0.2300 | 0.7321 | 0.6166 | 0.034* | |
H2W | −0.0443 | 0.6716 | 0.5995 | 0.034* | |
N11 | 0.21766 (18) | 0.46151 (16) | 0.05780 (8) | 0.0118 (2) | |
H11 | 0.2053 | 0.4960 | 0.1047 | 0.014* | |
C11 | 0.2788 (2) | 0.56690 (19) | −0.02005 (10) | 0.0123 (3) | |
C12 | 0.2921 (2) | 0.5011 (2) | −0.10119 (10) | 0.0151 (3) | |
H12A | 0.3349 | 0.5709 | −0.1571 | 0.018* | |
C13 | 0.2428 (2) | 0.3360 (2) | −0.09838 (11) | 0.0179 (3) | |
H13 | 0.2489 | 0.2921 | −0.1530 | 0.021* | |
C14 | 0.1833 (2) | 0.2305 (2) | −0.01580 (11) | 0.0173 (3) | |
H14 | 0.1516 | 0.1154 | −0.0143 | 0.021* | |
C15 | 0.1715 (2) | 0.29512 (19) | 0.06241 (11) | 0.0143 (3) | |
C16 | 0.1078 (2) | 0.1984 (2) | 0.15434 (11) | 0.0175 (3) | |
H16A | 0.2040 | 0.2170 | 0.1978 | 0.026* | |
H16B | 0.1013 | 0.0780 | 0.1520 | 0.026* | |
H16C | −0.0237 | 0.2365 | 0.1735 | 0.026* | |
N12 | 0.32229 (19) | 0.72626 (16) | −0.01707 (9) | 0.0145 (3) | |
H12B | 0.3187 | 0.7575 | 0.0309 | 0.017* | |
H12C | 0.3504 | 0.7944 | −0.0665 | 0.017* | |
O5W | 0.48141 (18) | 0.24042 (15) | 0.31316 (8) | 0.0221 (3) | |
H5W | 0.5811 | 0.2966 | 0.3151 | 0.033* | |
H6W | 0.5090 | 0.1774 | 0.2771 | 0.033* | |
O6W | 0.80815 (17) | 0.46006 (14) | 0.32461 (8) | 0.0193 (2) | |
H7W | 0.7333 | 0.5356 | 0.3298 | 0.029* | |
H8W | 0.9046 | 0.5041 | 0.2935 | 0.029* | |
O7W | 0.59226 (16) | 1.03986 (14) | 0.18630 (7) | 0.0168 (2) | |
H9W | 0.6793 | 0.9904 | 0.2109 | 0.025* | |
H10W | 0.5095 | 0.9622 | 0.1811 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01330 (14) | 0.02161 (16) | 0.01211 (14) | 0.00441 (10) | −0.00247 (10) | −0.00986 (10) |
O1 | 0.0136 (5) | 0.0207 (6) | 0.0143 (5) | 0.0036 (4) | −0.0020 (4) | −0.0092 (4) |
O2 | 0.0148 (5) | 0.0174 (5) | 0.0123 (5) | 0.0007 (4) | −0.0031 (4) | −0.0066 (4) |
O3 | 0.0180 (5) | 0.0170 (5) | 0.0116 (5) | −0.0023 (4) | 0.0010 (4) | −0.0051 (4) |
O4 | 0.0158 (5) | 0.0153 (5) | 0.0150 (5) | −0.0024 (4) | 0.0004 (4) | −0.0070 (4) |
N1 | 0.0137 (6) | 0.0145 (6) | 0.0108 (6) | −0.0004 (5) | −0.0001 (5) | −0.0041 (5) |
N2 | 0.0119 (6) | 0.0156 (6) | 0.0147 (6) | −0.0005 (5) | −0.0002 (5) | −0.0042 (5) |
C1 | 0.0114 (7) | 0.0117 (7) | 0.0118 (7) | −0.0008 (5) | 0.0000 (5) | −0.0023 (5) |
C2 | 0.0123 (7) | 0.0128 (7) | 0.0098 (6) | −0.0018 (6) | −0.0007 (5) | −0.0032 (5) |
C3 | 0.0121 (7) | 0.0119 (7) | 0.0118 (7) | −0.0028 (5) | 0.0004 (5) | −0.0028 (5) |
C4 | 0.0090 (6) | 0.0169 (7) | 0.0138 (7) | 0.0031 (6) | −0.0004 (5) | −0.0073 (6) |
C5 | 0.0129 (7) | 0.0177 (7) | 0.0159 (7) | −0.0008 (6) | −0.0026 (6) | −0.0030 (6) |
C6 | 0.0152 (7) | 0.0183 (8) | 0.0124 (7) | −0.0014 (6) | −0.0032 (6) | −0.0040 (6) |
O1W | 0.0195 (6) | 0.0287 (7) | 0.0193 (6) | −0.0008 (5) | −0.0010 (5) | −0.0013 (5) |
N11 | 0.0120 (6) | 0.0141 (6) | 0.0105 (6) | −0.0002 (5) | −0.0007 (5) | −0.0054 (5) |
C11 | 0.0080 (6) | 0.0157 (7) | 0.0140 (7) | 0.0014 (5) | −0.0022 (5) | −0.0044 (6) |
C12 | 0.0130 (7) | 0.0216 (8) | 0.0116 (7) | 0.0028 (6) | −0.0008 (5) | −0.0049 (6) |
C13 | 0.0145 (7) | 0.0238 (8) | 0.0186 (8) | 0.0045 (6) | −0.0039 (6) | −0.0116 (6) |
C14 | 0.0149 (7) | 0.0145 (7) | 0.0248 (8) | 0.0008 (6) | −0.0029 (6) | −0.0090 (6) |
C15 | 0.0090 (6) | 0.0146 (7) | 0.0197 (7) | 0.0010 (5) | −0.0020 (6) | −0.0040 (6) |
C16 | 0.0169 (7) | 0.0153 (7) | 0.0196 (8) | −0.0002 (6) | −0.0004 (6) | −0.0010 (6) |
N12 | 0.0174 (6) | 0.0156 (6) | 0.0108 (6) | −0.0014 (5) | −0.0007 (5) | −0.0036 (5) |
O5W | 0.0189 (6) | 0.0273 (6) | 0.0227 (6) | −0.0005 (5) | −0.0024 (5) | −0.0110 (5) |
O6W | 0.0181 (6) | 0.0179 (6) | 0.0211 (6) | 0.0005 (5) | 0.0031 (5) | −0.0031 (5) |
O7W | 0.0151 (5) | 0.0160 (5) | 0.0196 (6) | −0.0008 (4) | −0.0055 (4) | −0.0024 (4) |
Cu1—O1i | 1.9522 (10) | N11—C11 | 1.3553 (19) |
Cu1—O1 | 1.9522 (10) | N11—C15 | 1.3685 (19) |
Cu1—N1i | 1.9881 (13) | N11—H11 | 0.8021 |
Cu1—N1 | 1.9882 (13) | C11—N12 | 1.3301 (19) |
Cu1—O1W | 2.4484 (13) | C11—C12 | 1.413 (2) |
Cu1—O1W | 2.4483 (12) | C12—C13 | 1.367 (2) |
Cu1—O1Wi | 2.4483 (12) | C12—H12A | 0.9500 |
O1—C1 | 1.2745 (18) | C13—C14 | 1.406 (2) |
O2—C1 | 1.2360 (17) | C13—H13 | 0.9500 |
O3—C4 | 1.2540 (19) | C14—C15 | 1.367 (2) |
O4—C4 | 1.2508 (18) | C14—H14 | 0.9500 |
N1—C6 | 1.333 (2) | C15—C16 | 1.494 (2) |
N1—C2 | 1.3438 (18) | C16—H16A | 0.9800 |
N2—C5 | 1.3347 (19) | C16—H16B | 0.9800 |
N2—C3 | 1.349 (2) | C16—H16C | 0.9800 |
C1—C2 | 1.516 (2) | N12—H12B | 0.8045 |
C2—C3 | 1.394 (2) | N12—H12C | 0.8505 |
C3—C4 | 1.525 (2) | O5W—H5W | 0.8163 |
C5—C6 | 1.392 (2) | O5W—H6W | 0.8210 |
C5—H5 | 0.9500 | O6W—H7W | 0.8018 |
C6—H6 | 0.9500 | O6W—H8W | 0.8180 |
O1W—H1W | 0.8314 | O7W—H9W | 0.7824 |
O1W—H2W | 0.8488 | O7W—H10W | 0.8577 |
O1i—Cu1—O1 | 179.999 (1) | N1—C6—C5 | 119.66 (14) |
O1i—Cu1—N1i | 83.11 (5) | N1—C6—H6 | 120.2 |
O1—Cu1—N1i | 96.89 (5) | C5—C6—H6 | 120.2 |
O1i—Cu1—N1 | 96.89 (5) | H1W—O1W—H2W | 109.0 |
O1—Cu1—N1 | 83.11 (5) | C11—N11—C15 | 123.79 (13) |
N1i—Cu1—N1 | 180.000 (2) | C11—N11—H11 | 120.1 |
O1i—Cu1—O1W | 90.35 (4) | C15—N11—H11 | 116.1 |
O1—Cu1—O1W | 89.65 (4) | N12—C11—N11 | 119.09 (13) |
N1i—Cu1—O1W | 94.44 (5) | N12—C11—C12 | 123.08 (14) |
N1—Cu1—O1W | 85.56 (5) | N11—C11—C12 | 117.82 (13) |
O1i—Cu1—O1Wi | 89.65 (4) | C13—C12—C11 | 119.33 (14) |
O1—Cu1—O1Wi | 90.35 (4) | C13—C12—H12A | 120.3 |
N1i—Cu1—O1Wi | 85.56 (5) | C11—C12—H12A | 120.3 |
N1—Cu1—O1Wi | 94.44 (5) | C12—C13—C14 | 120.91 (15) |
O1W—Cu1—O1Wi | 180.0 | C12—C13—H13 | 119.5 |
C1—O1—Cu1 | 115.34 (9) | C14—C13—H13 | 119.5 |
C6—N1—C2 | 119.22 (13) | C15—C14—C13 | 119.33 (14) |
C6—N1—Cu1 | 128.82 (10) | C15—C14—H14 | 120.3 |
C2—N1—Cu1 | 111.95 (10) | C13—C14—H14 | 120.3 |
C5—N2—C3 | 117.26 (13) | C14—C15—N11 | 118.80 (14) |
O2—C1—O1 | 126.48 (14) | C14—C15—C16 | 125.00 (14) |
O2—C1—C2 | 118.29 (13) | N11—C15—C16 | 116.19 (13) |
O1—C1—C2 | 115.23 (12) | C15—C16—H16A | 109.5 |
N1—C2—C3 | 120.38 (14) | C15—C16—H16B | 109.5 |
N1—C2—C1 | 114.31 (13) | H16A—C16—H16B | 109.5 |
C3—C2—C1 | 125.31 (13) | C15—C16—H16C | 109.5 |
N2—C3—C2 | 121.00 (13) | H16A—C16—H16C | 109.5 |
N2—C3—C4 | 115.44 (13) | H16B—C16—H16C | 109.5 |
C2—C3—C4 | 123.47 (13) | C11—N12—H12B | 120.0 |
O4—C4—O3 | 126.82 (14) | C11—N12—H12C | 119.0 |
O4—C4—C3 | 118.06 (13) | H12B—N12—H12C | 121.0 |
O3—C4—C3 | 115.00 (13) | H5W—O5W—H6W | 106.8 |
N2—C5—C6 | 122.45 (14) | H7W—O6W—H8W | 105.5 |
N2—C5—H5 | 118.8 | H9W—O7W—H10W | 103.7 |
C6—C5—H5 | 118.8 | ||
N1i—Cu1—O1—C1 | −178.18 (10) | N1—C2—C3—C4 | −174.52 (13) |
N1—Cu1—O1—C1 | 1.82 (10) | C1—C2—C3—C4 | 5.3 (2) |
O1i—Cu1—N1—C6 | 0.11 (14) | N2—C3—C4—O4 | 91.19 (16) |
O1—Cu1—N1—C6 | −179.90 (14) | C2—C3—C4—O4 | −92.28 (18) |
O1i—Cu1—N1—C2 | 179.37 (10) | N2—C3—C4—O3 | −85.16 (17) |
O1—Cu1—N1—C2 | −0.63 (10) | C2—C3—C4—O3 | 91.36 (17) |
Cu1—O1—C1—O2 | 177.40 (12) | C3—N2—C5—C6 | −1.2 (2) |
Cu1—O1—C1—C2 | −2.51 (16) | C2—N1—C6—C5 | −0.4 (2) |
C6—N1—C2—C3 | −1.3 (2) | Cu1—N1—C6—C5 | 178.80 (11) |
Cu1—N1—C2—C3 | 179.36 (11) | N2—C5—C6—N1 | 1.8 (2) |
C6—N1—C2—C1 | 178.89 (13) | C15—N11—C11—N12 | −179.23 (13) |
Cu1—N1—C2—C1 | −0.45 (15) | C15—N11—C11—C12 | 1.1 (2) |
O2—C1—C2—N1 | −177.94 (13) | N12—C11—C12—C13 | −179.40 (15) |
O1—C1—C2—N1 | 1.98 (19) | N11—C11—C12—C13 | 0.2 (2) |
O2—C1—C2—C3 | 2.3 (2) | C11—C12—C13—C14 | −1.3 (2) |
O1—C1—C2—C3 | −177.83 (13) | C12—C13—C14—C15 | 1.1 (2) |
C5—N2—C3—C2 | −0.5 (2) | C13—C14—C15—N11 | 0.2 (2) |
C5—N2—C3—C4 | 176.09 (13) | C13—C14—C15—C16 | 179.08 (14) |
N1—C2—C3—N2 | 1.8 (2) | C11—N11—C15—C14 | −1.3 (2) |
C1—C2—C3—N2 | −178.38 (13) | C11—N11—C15—C16 | 179.68 (13) |
Symmetry code: (i) −x, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O5Wii | 0.83 | 1.97 | 2.7841 (17) | 166 |
O1W—H2W···O6Wiii | 0.85 | 2.18 | 3.0199 (17) | 172 |
O5W—H5W···O6W | 0.82 | 2.05 | 2.8640 (17) | 173 |
O5W—H6W···O7Wiv | 0.82 | 1.96 | 2.7839 (16) | 175 |
O6W—H7W···N2 | 0.80 | 2.19 | 2.9688 (17) | 162 |
O6W—H8W···O4v | 0.82 | 1.99 | 2.7921 (16) | 168 |
O7W—H9W···O2v | 0.78 | 1.97 | 2.7559 (15) | 177 |
O7W—H10W···O3 | 0.86 | 1.87 | 2.7221 (16) | 176 |
N11—H11···O4 | 0.80 | 1.95 | 2.7522 (16) | 175 |
N12—H12B···O3 | 0.80 | 2.06 | 2.8623 (17) | 172 |
N12—H12C···O7Wvi | 0.85 | 2.05 | 2.9014 (17) | 178 |
C5—H5···O1Wv | 0.95 | 2.53 | 3.3206 (19) | 141 |
C6—H6···O5Wiii | 0.95 | 2.38 | 3.2485 (19) | 151 |
C13—H13···O2vii | 0.95 | 2.53 | 3.4081 (19) | 153 |
C16—H16B···O2iv | 0.98 | 2.58 | 3.2419 (19) | 125 |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) x+1, y, z; (vi) −x+1, −y+2, −z; (vii) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | (C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O |
Mr | 758.16 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 6.7353 (3), 8.0757 (4), 15.0170 (6) |
α, β, γ (°) | 79.450 (4), 86.320 (4), 89.828 (4) |
V (Å3) | 801.31 (6) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.77 |
Crystal size (mm) | 0.20 × 0.18 × 0.18 |
Data collection | |
Diffractometer | Oxford Diffraction KM-4-CCD diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.845, 0.910 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7090, 3758, 3230 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.674 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.082, 1.09 |
No. of reflections | 3758 |
No. of parameters | 224 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.21 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O5Wi | 0.83 | 1.97 | 2.7841 (17) | 166 |
O1W—H2W···O6Wii | 0.85 | 2.18 | 3.0199 (17) | 172 |
O5W—H5W···O6W | 0.82 | 2.05 | 2.8640 (17) | 173 |
O5W—H6W···O7Wiii | 0.82 | 1.96 | 2.7839 (16) | 175 |
O6W—H7W···N2 | 0.80 | 2.19 | 2.9688 (17) | 162 |
O6W—H8W···O4iv | 0.82 | 1.99 | 2.7921 (16) | 168 |
O7W—H9W···O2iv | 0.78 | 1.97 | 2.7559 (15) | 177 |
O7W—H10W···O3 | 0.86 | 1.87 | 2.7221 (16) | 176 |
N11—H11···O4 | 0.80 | 1.95 | 2.7522 (16) | 175 |
N12—H12B···O3 | 0.80 | 2.06 | 2.8623 (17) | 172 |
N12—H12C···O7Wv | 0.85 | 2.05 | 2.9014 (17) | 178 |
C5—H5···O1Wiv | 0.95 | 2.53 | 3.3206 (19) | 141 |
C6—H6···O5Wii | 0.95 | 2.38 | 3.2485 (19) | 151 |
C13—H13···O2vi | 0.95 | 2.53 | 3.4081 (19) | 153 |
C16—H16B···O2iii | 0.98 | 2.58 | 3.2419 (19) | 125 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z; (iv) x+1, y, z; (v) −x+1, −y+2, −z; (vi) −x, −y+1, −z. |
Acknowledgements
The Ferdowsi University of Mashhad is gratefully acknowledged for financial support.
References
Aghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. R. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289–300. CrossRef CAS Google Scholar
Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227. CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Che, T. L., Gao, Q. C., Zhang, W. P., Nan, Z. X., Li, H. X., Cai, Y. G. & Zhao, J. S. (2009). Russ. J. Coord. Chem.35, 723–730. Google Scholar
Eshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010a). Acta Cryst. E66, m882. Web of Science CSD CrossRef IUCr Journals Google Scholar
Eshtiagh-Hosseini, H., Alfi, N., Mirzaei, M. & Fanwick, P. E. (2011). Acta Cryst. E67, m266–m267. Web of Science CSD CrossRef IUCr Journals Google Scholar
Eshtiagh-Hosseini, H., Gschwind, F., Alfi, N. & Mirzaei, M. (2010b). Acta Cryst. E66, m826–m827. Web of Science CSD CrossRef IUCr Journals Google Scholar
Eshtiagh-Hosseini, H., Necas, M., Alfi, N. & Mirzaei, M. (2010c). Acta Cryst. E66, m1320–m1321. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, supramolecular complexes have attracted extensive attention owing to their potential applications. In this context, our research group has made several attempts to prepare supramolecular crystalline coordination compounds based on proton–transfer mechanism between dicarboxylic acids and amines (Eshtiagh-Hosseini, et al., 2010a, 2010b, 2010c, 2011). Proton transfer mechanisms play a basic role in construction of supramolecular coordination compounds and water clusters (Aghabozorg et al., 2008, 2010). In particular, pyrazine-2,3-dicarboxylic acid provides different modes of coordination to the metal ions (Che et al., 2009). Therefore, the anion of this acid is well-know to act as a suitable ligand, especially in the design and construction of supramolecular networks. Herein, we describe the molecular and supramolecular crystal structure of a new compound, 1, with chemical formula (2a-6mpyH)2[Cu(pyzdc)2(H2O)2].6H2O, where pyzdcH2= pyrazine-2,3-dicarboxylic acid and 2a-6mpy = 2-amino-6-methylpyridine.
Fig. 1 shows the coordination environment of the CuII ion (site symmetry 1). The coordination sphere can be described as distorted octahedral, with two N and two O atoms from (pyzdc)2- ligands defining the equatorial plane and two water molecules in axial positions. The Jahn-Teller effect, as observed for numerous CuII complexes, results in the elongation of the two axial Cu—O bonds towards a strong tetragonal distortion. The molecular entities of 1 consist of a [Cu(pyzdc)2(H2O)2]2- anion, a (2a-6mpyH)+ cation and uncoordinated water molecules in a 1:2:6 molar ratio.
For the three–dimensional supramolecular structural set-up, extensive X—H···O (X = O, N, and C) and O—H···N hydrogen bonding interactions as well as π—π stacking interactions between aromatic rings of the cations with a centroid—centroid distance of 3.589 Å are responsible (Fig. 2).