metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m444-m445

(5-Amino­isophthalato-κN)tri­aqua­(1,10-phenanthroline-κ2N,N′)nickel(II) trihydrate

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 28 February 2011; accepted 9 March 2011; online 15 March 2011)

The NiII atom in the title compound, [Ni(C8H5NO4)(C12H8N2)(H2O)3]·3H2O, is six-coordinated in an NiN3O3 octa­hedral geometry. The triply water-coordinated NiII atom is chelated by the phenantroline ligand and is additionally coordinated by the amino group of the 5-amino­isophtalate anion. The anion, the coordinated and the uncoordinated water mol­ecules inter­act through an extensive O—H⋯O and N—H⋯O hydrogen-bonding network, generating a three-dimensional cage-like network.

Related literature

For the isotypic CoII analog, see: Zhang et al. (2010[Zhang, K.-L., Diao, G.-W. & Ng, S. W. (2010). Acta Cryst. E66, m1421.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H5NO4)(C12H8N2)(H2O)3]·3H2O

  • Mr = 526.14

  • Monoclinic, P 21 /n

  • a = 10.1039 (10) Å

  • b = 13.9448 (14) Å

  • c = 16.4237 (16) Å

  • β = 95.522 (1)°

  • V = 2303.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 295 K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.892, Tmax = 0.915

  • 20080 measured reflections

  • 5258 independent reflections

  • 3702 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.081

  • S = 0.89

  • 5258 reflections

  • 363 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1w 2.0408 (16)
Ni1—N2 2.0800 (16)
Ni1—O2w 2.0797 (14)
Ni1—N3 2.0883 (16)
Ni1—O3w 2.0965 (15)
Ni1—N1 2.1409 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w1⋯O6wi 0.84 (1) 1.91 (1) 2.747 (2) 177 (3)
O1w—H1w2⋯O2ii 0.84 (1) 1.82 (1) 2.654 (2) 180 (2)
O2w—H2w1⋯O5wi 0.85 (1) 1.94 (1) 2.781 (2) 173 (3)
O2w—H2w2⋯O4iii 0.85 (1) 1.98 (1) 2.832 (2) 178 (3)
O3w—H3w1⋯O5wiv 0.84 (1) 2.16 (2) 2.914 (3) 148 (3)
O3w—H3w2⋯O3ii 0.85 (1) 1.88 (1) 2.721 (2) 173 (3)
O4w—H4w1⋯O6wv 0.85 (1) 1.97 (1) 2.817 (3) 171 (3)
O4w—H4w2⋯O2iv 0.85 (1) 2.16 (2) 2.915 (3) 149 (3)
O5w—H5w1⋯O1 0.85 (1) 1.90 (1) 2.726 (3) 163 (3)
O5w—H5w2⋯O3vi 0.84 (1) 1.91 (1) 2.716 (2) 159 (3)
O6w—H6w1⋯O1 0.85 (1) 1.83 (1) 2.678 (2) 177 (3)
O6w—H6w2⋯O4iii 0.85 (1) 1.95 (1) 2.791 (2) 176 (3)
N1—H1⋯O4w 0.85 (1) 2.08 (1) 2.928 (3) 173 (2)
N1—H2⋯O4iii 0.85 (1) 2.30 (1) 3.116 (2) 162 (2)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; method used to solve structure: atomic coordinates taken from an isotypic structure (Zhang et al., 2010[Zhang, K.-L., Diao, G.-W. & Ng, S. W. (2010). Acta Cryst. E66, m1421.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We reported the structure of [Co(C8H5NO4)(C12H8N2)(H2O)3].3H2O], whose 5-aminoisophthlate dianion binds only through the neutral amino donor site. The coordinated water molecules comprise the fac points of the NiN3O3 octahedron (Zhang et al., 2010). The nickel analog (Scheme I) is isotypic. The dianion, the coordinated and the lattice water molecules interact through hydrogen bonds (Table 1) to furnish a tightly-held, three-dimensional network. Pairs of phenanthroline units show π···π interactions about a center-of-inversion at a distance of ca 3.5 Å.

Related literature top

For the isotypic CoII analog, see: Zhang et al. (2010).

Experimental top

Nickel nitrate hexahydrate (0.048 g, 0.165 mmol) dissolved in water (5 ml) was added to a mixture of 5-aminoisophthalic acid (0.030 g, 0.165 mmol) and sodium hydroxide (0.013 g, 0.330 mmol) dissolved in water (5 ml). To this solution was added 1,10-phenanthroline (0.033 g, 0.165 mmol) dissolved in methanol (10 ml). The mixture was filtered and set aside for the growth of green crystals.

Refinement top

Hydrogen atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The amino and water bound H-atoms were located in difference Fourier maps, and were refined with a distance restraint of N–H = O–H = 0.85 (1) Å. Their temperature factors were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: atomic coordinates taken from an isotypic structure (Zhang et al., 2010); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular entities of (I) with atom labelling and displacement parameters at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radius.
(5-Aminoisophthalato-κN)triaqua(1,10-phenanthroline- κ2N,N')nickel(II) trihydrate top
Crystal data top
[Ni(C8H5NO4)(C12H8N2)(H2O)3]·3H2OF(000) = 1096
Mr = 526.14Dx = 1.517 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5121 reflections
a = 10.1039 (10) Åθ = 2.3–26.3°
b = 13.9448 (14) ŵ = 0.90 mm1
c = 16.4237 (16) ÅT = 295 K
β = 95.522 (1)°Block, green
V = 2303.3 (4) Å30.13 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
5258 independent reflections
Radiation source: fine-focus sealed tube3702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.892, Tmax = 0.915k = 1818
20080 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0347P)2]
where P = (Fo2 + 2Fc2)/3
5258 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.35 e Å3
14 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Ni(C8H5NO4)(C12H8N2)(H2O)3]·3H2OV = 2303.3 (4) Å3
Mr = 526.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1039 (10) ŵ = 0.90 mm1
b = 13.9448 (14) ÅT = 295 K
c = 16.4237 (16) Å0.13 × 0.12 × 0.10 mm
β = 95.522 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
5258 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3702 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.915Rint = 0.092
20080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03714 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.35 e Å3
5258 reflectionsΔρmin = 0.55 e Å3
363 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.74294 (2)0.686043 (16)0.465623 (15)0.02405 (8)
O11.15737 (15)0.53335 (11)0.26472 (11)0.0506 (5)
O21.22244 (15)0.64153 (11)0.18022 (11)0.0484 (4)
O30.91901 (14)0.91569 (10)0.09761 (9)0.0368 (4)
O40.72199 (14)0.92528 (10)0.14342 (10)0.0413 (4)
O1w0.76412 (16)0.70612 (11)0.58928 (10)0.0360 (4)
H1w10.8275 (18)0.6793 (16)0.6169 (14)0.054 (8)*
H1w20.751 (2)0.7541 (11)0.6177 (12)0.044 (7)*
O2w0.79265 (16)0.54505 (10)0.49643 (10)0.0331 (3)
H2w10.743 (2)0.5271 (18)0.5323 (12)0.059 (9)*
H2w20.787 (3)0.5091 (17)0.4543 (11)0.074 (10)*
O3w0.53887 (15)0.66633 (12)0.47353 (11)0.0370 (4)
H3w10.493 (3)0.642 (2)0.4334 (14)0.097 (12)*
H3w20.507 (3)0.6419 (18)0.5148 (11)0.071 (9)*
O4w0.4426 (2)0.71882 (19)0.28820 (16)0.0763 (7)
H4w10.449 (3)0.7708 (14)0.2618 (18)0.090 (12)*
H4w20.403 (3)0.681 (2)0.2532 (18)0.111 (16)*
O5w1.36084 (19)0.52842 (12)0.38634 (12)0.0482 (4)
H5w11.309 (2)0.5233 (18)0.3428 (10)0.055 (9)*
H5w21.4241 (18)0.4915 (16)0.3787 (16)0.061 (9)*
O6w1.03103 (17)0.37826 (11)0.31434 (11)0.0426 (4)
H6w11.069 (3)0.4278 (14)0.2974 (18)0.088 (11)*
H6w20.9539 (14)0.3894 (18)0.3281 (16)0.062 (9)*
N10.70709 (18)0.64237 (12)0.34047 (11)0.0268 (4)
H10.6280 (12)0.6600 (15)0.3259 (14)0.042 (7)*
H20.708 (2)0.5815 (7)0.3415 (14)0.044 (7)*
N20.71486 (16)0.83087 (11)0.43901 (11)0.0306 (4)
N30.93864 (16)0.72811 (11)0.45417 (11)0.0282 (4)
C10.79789 (19)0.67558 (13)0.28500 (12)0.0247 (4)
C20.91676 (19)0.62745 (13)0.27875 (12)0.0266 (4)
H2A0.93480.57160.30870.032*
C31.00920 (19)0.66171 (13)0.22835 (12)0.0257 (4)
C40.98077 (19)0.74537 (13)0.18383 (13)0.0265 (4)
H41.04200.76890.15010.032*
C50.86192 (19)0.79422 (13)0.18922 (12)0.0248 (4)
C60.77066 (19)0.75923 (13)0.24048 (12)0.0263 (4)
H60.69150.79190.24490.032*
C71.1392 (2)0.60854 (14)0.22376 (14)0.0301 (5)
C80.83267 (19)0.88458 (13)0.14050 (13)0.0260 (4)
C90.6034 (2)0.88175 (16)0.43450 (14)0.0418 (6)
H90.52500.85120.44500.050*
C100.5988 (3)0.97908 (17)0.41470 (16)0.0499 (7)
H100.51901.01250.41300.060*
C110.7119 (3)1.02457 (16)0.39797 (15)0.0501 (7)
H110.70971.08950.38520.060*
C120.8322 (2)0.97357 (15)0.40000 (15)0.0415 (6)
C130.8284 (2)0.87628 (14)0.42274 (13)0.0302 (5)
C140.9557 (3)1.01401 (18)0.38102 (17)0.0592 (8)
H140.95871.07810.36570.071*
C151.0675 (3)0.96117 (19)0.38490 (18)0.0606 (8)
H151.14590.98890.37080.073*
C161.0679 (2)0.86237 (17)0.41062 (16)0.0447 (6)
C170.9485 (2)0.82052 (14)0.42931 (13)0.0309 (5)
C181.1817 (2)0.80332 (19)0.41870 (18)0.0561 (7)
H181.26310.82690.40550.067*
C191.1720 (2)0.71140 (19)0.44591 (17)0.0518 (7)
H191.24720.67270.45300.062*
C201.0490 (2)0.67576 (16)0.46297 (14)0.0376 (5)
H201.04380.61290.48120.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02322 (14)0.02102 (12)0.02825 (15)0.00025 (10)0.00421 (10)0.00008 (11)
O10.0315 (9)0.0409 (9)0.0806 (13)0.0094 (7)0.0107 (9)0.0334 (9)
O20.0349 (9)0.0411 (9)0.0730 (12)0.0125 (7)0.0248 (8)0.0254 (9)
O30.0359 (8)0.0326 (8)0.0437 (10)0.0020 (6)0.0139 (7)0.0150 (7)
O40.0363 (9)0.0308 (8)0.0594 (11)0.0116 (7)0.0170 (8)0.0170 (7)
O1w0.0397 (9)0.0367 (9)0.0307 (9)0.0105 (7)0.0013 (8)0.0102 (7)
O2w0.0453 (10)0.0239 (7)0.0302 (9)0.0001 (7)0.0043 (8)0.0023 (7)
O3w0.0277 (8)0.0503 (10)0.0339 (10)0.0067 (7)0.0073 (8)0.0004 (8)
O4w0.0468 (12)0.0806 (16)0.0972 (19)0.0116 (12)0.0149 (12)0.0407 (15)
O5w0.0492 (12)0.0439 (10)0.0510 (12)0.0107 (9)0.0022 (10)0.0044 (9)
O6w0.0340 (9)0.0325 (8)0.0620 (12)0.0006 (7)0.0077 (9)0.0046 (8)
N10.0275 (10)0.0246 (9)0.0289 (10)0.0008 (7)0.0050 (8)0.0054 (8)
N20.0292 (9)0.0276 (9)0.0351 (10)0.0039 (7)0.0040 (8)0.0003 (7)
N30.0255 (9)0.0250 (8)0.0339 (10)0.0011 (7)0.0026 (8)0.0019 (7)
C10.0277 (10)0.0246 (10)0.0220 (10)0.0023 (8)0.0035 (8)0.0005 (8)
C20.0298 (11)0.0225 (9)0.0272 (12)0.0005 (8)0.0020 (9)0.0038 (8)
C30.0247 (11)0.0233 (9)0.0291 (12)0.0007 (8)0.0023 (9)0.0010 (8)
C40.0255 (10)0.0250 (9)0.0297 (11)0.0002 (8)0.0062 (9)0.0047 (8)
C50.0254 (10)0.0220 (9)0.0273 (11)0.0002 (7)0.0036 (9)0.0016 (8)
C60.0251 (10)0.0251 (10)0.0294 (12)0.0047 (8)0.0069 (9)0.0023 (8)
C70.0251 (11)0.0248 (10)0.0400 (13)0.0003 (8)0.0013 (10)0.0046 (9)
C80.0274 (11)0.0218 (9)0.0293 (12)0.0009 (8)0.0052 (9)0.0020 (8)
C90.0379 (13)0.0374 (12)0.0502 (16)0.0104 (10)0.0054 (11)0.0036 (11)
C100.0548 (16)0.0411 (13)0.0532 (17)0.0242 (12)0.0026 (13)0.0047 (12)
C110.0728 (19)0.0283 (12)0.0472 (16)0.0087 (12)0.0040 (14)0.0060 (11)
C120.0558 (15)0.0263 (11)0.0416 (15)0.0030 (10)0.0001 (12)0.0076 (10)
C130.0370 (12)0.0245 (10)0.0287 (12)0.0019 (9)0.0005 (10)0.0008 (9)
C140.070 (2)0.0360 (13)0.070 (2)0.0163 (13)0.0022 (16)0.0167 (13)
C150.0546 (17)0.0536 (16)0.074 (2)0.0244 (14)0.0083 (15)0.0153 (15)
C160.0361 (13)0.0468 (14)0.0511 (16)0.0122 (11)0.0034 (12)0.0046 (12)
C170.0296 (11)0.0293 (10)0.0336 (12)0.0043 (9)0.0023 (9)0.0005 (9)
C180.0264 (13)0.0691 (18)0.074 (2)0.0113 (12)0.0101 (13)0.0005 (15)
C190.0266 (13)0.0561 (16)0.072 (2)0.0056 (11)0.0036 (13)0.0040 (14)
C200.0308 (12)0.0355 (11)0.0457 (14)0.0054 (9)0.0000 (11)0.0018 (10)
Geometric parameters (Å, º) top
Ni1—O1w2.0408 (16)C1—C21.388 (3)
Ni1—N22.0800 (16)C2—C31.391 (3)
Ni1—O2w2.0797 (14)C2—H2A0.9300
Ni1—N32.0883 (16)C3—C41.392 (3)
Ni1—O3w2.0965 (15)C3—C71.516 (3)
Ni1—N12.1409 (18)C4—C51.391 (3)
O1—C71.250 (2)C4—H40.9300
O2—C71.244 (2)C5—C61.395 (3)
O3—C81.250 (2)C5—C81.507 (3)
O4—C81.259 (2)C6—H60.9300
O1w—H1w10.84 (1)C9—C101.395 (3)
O1w—H1w20.84 (1)C9—H90.9300
O2w—H2w10.85 (1)C10—C111.357 (3)
O2w—H2w20.85 (1)C10—H100.9300
O3w—H3w10.84 (1)C11—C121.406 (3)
O3w—H3w20.85 (1)C11—H110.9300
O4w—H4w10.85 (1)C12—C131.409 (3)
O4w—H4w20.85 (1)C12—C141.431 (3)
O5w—H5w10.85 (1)C13—C171.437 (3)
O5w—H5w20.84 (1)C14—C151.346 (4)
O6w—H6w10.85 (1)C14—H140.9300
O6w—H6w20.85 (1)C15—C161.441 (3)
N1—C11.431 (2)C15—H150.9300
N1—H10.85 (1)C16—C171.401 (3)
N1—H20.85 (1)C16—C181.410 (3)
N2—C91.327 (3)C18—C191.364 (4)
N2—C131.359 (3)C18—H180.9300
N3—C201.329 (2)C19—C201.392 (3)
N3—C171.358 (2)C19—H190.9300
C1—C61.390 (3)C20—H200.9300
O1w—Ni1—N294.30 (7)C5—C4—H4119.6
O1w—Ni1—O2w83.56 (6)C4—C5—C6119.46 (17)
N2—Ni1—O2w173.68 (7)C4—C5—C8120.15 (17)
O1w—Ni1—N392.38 (7)C6—C5—C8120.39 (17)
N2—Ni1—N379.60 (6)C1—C6—C5120.14 (18)
O2w—Ni1—N394.52 (6)C1—C6—H6119.9
O1w—Ni1—O3w88.05 (7)C5—C6—H6119.9
N2—Ni1—O3w91.45 (6)O2—C7—O1123.19 (19)
O2w—Ni1—O3w94.41 (6)O2—C7—C3118.99 (17)
N3—Ni1—O3w171.05 (6)O1—C7—C3117.82 (19)
O1w—Ni1—N1170.49 (6)O3—C8—O4122.37 (18)
N2—Ni1—N193.87 (7)O3—C8—C5118.53 (17)
O2w—Ni1—N188.81 (6)O4—C8—C5119.09 (17)
N3—Ni1—N193.88 (7)N2—C9—C10122.8 (2)
O3w—Ni1—N186.89 (7)N2—C9—H9118.6
Ni1—O1w—H1w1118.7 (18)C10—C9—H9118.6
Ni1—O1w—H1w2131.3 (16)C11—C10—C9119.5 (2)
H1w1—O1w—H1w2102 (2)C11—C10—H10120.3
Ni1—O2w—H2w1107.6 (18)C9—C10—H10120.3
Ni1—O2w—H2w2111.2 (19)C10—C11—C12120.1 (2)
H2w1—O2w—H2w2113 (3)C10—C11—H11120.0
Ni1—O3w—H3w1119 (2)C12—C11—H11120.0
Ni1—O3w—H3w2123.6 (19)C11—C12—C13116.6 (2)
H3w1—O3w—H3w2104 (3)C11—C12—C14124.4 (2)
H4w1—O4w—H4w2104 (3)C13—C12—C14118.9 (2)
H5w1—O5w—H5w2104 (3)N2—C13—C12123.1 (2)
H6w1—O6w—H6w2113 (3)N2—C13—C17117.12 (17)
C1—N1—Ni1117.36 (13)C12—C13—C17119.8 (2)
C1—N1—H1111.8 (16)C15—C14—C12121.3 (2)
Ni1—N1—H1104.8 (16)C15—C14—H14119.3
C1—N1—H2109.2 (16)C12—C14—H14119.3
Ni1—N1—H2105.4 (16)C14—C15—C16121.1 (2)
H1—N1—H2108 (2)C14—C15—H15119.5
C9—N2—C13117.89 (18)C16—C15—H15119.5
C9—N2—Ni1128.95 (15)C17—C16—C18116.6 (2)
C13—N2—Ni1113.14 (13)C17—C16—C15119.0 (2)
C20—N3—C17117.96 (18)C18—C16—C15124.4 (2)
C20—N3—Ni1128.87 (14)N3—C17—C16123.43 (19)
C17—N3—Ni1113.03 (13)N3—C17—C13116.75 (18)
C6—C1—C2119.71 (18)C16—C17—C13119.82 (19)
C6—C1—N1120.00 (17)C19—C18—C16119.7 (2)
C2—C1—N1120.20 (17)C19—C18—H18120.1
C1—C2—C3120.88 (18)C16—C18—H18120.1
C1—C2—H2A119.6C18—C19—C20119.7 (2)
C3—C2—H2A119.6C18—C19—H19120.1
C4—C3—C2118.95 (18)C20—C19—H19120.1
C4—C3—C7121.31 (18)N3—C20—C19122.5 (2)
C2—C3—C7119.74 (17)N3—C20—H20118.7
C3—C4—C5120.86 (18)C19—C20—H20118.7
C3—C4—H4119.6
N2—Ni1—N1—C163.44 (14)C4—C5—C8—O4176.82 (19)
O2w—Ni1—N1—C1110.83 (14)C6—C5—C8—O43.6 (3)
N3—Ni1—N1—C116.38 (14)C13—N2—C9—C100.6 (3)
O3w—Ni1—N1—C1154.68 (14)Ni1—N2—C9—C10179.05 (18)
O1w—Ni1—N2—C985.7 (2)N2—C9—C10—C111.0 (4)
N3—Ni1—N2—C9177.4 (2)C9—C10—C11—C120.5 (4)
O3w—Ni1—N2—C92.4 (2)C10—C11—C12—C132.2 (4)
N1—Ni1—N2—C989.4 (2)C10—C11—C12—C14178.1 (2)
O1w—Ni1—N2—C1395.80 (15)C9—N2—C13—C121.2 (3)
N3—Ni1—N2—C134.16 (14)Ni1—N2—C13—C12177.41 (17)
O3w—Ni1—N2—C13176.05 (15)C9—N2—C13—C17178.95 (19)
N1—Ni1—N2—C1389.08 (15)Ni1—N2—C13—C172.4 (2)
O1w—Ni1—N3—C2085.17 (19)C11—C12—C13—N22.6 (3)
N2—Ni1—N3—C20179.1 (2)C14—C12—C13—N2177.6 (2)
O2w—Ni1—N3—C201.45 (19)C11—C12—C13—C17177.6 (2)
N1—Ni1—N3—C2087.66 (19)C14—C12—C13—C172.2 (3)
O1w—Ni1—N3—C1799.33 (15)C11—C12—C14—C15179.4 (3)
N2—Ni1—N3—C175.39 (14)C13—C12—C14—C150.3 (4)
O2w—Ni1—N3—C17176.95 (15)C12—C14—C15—C161.8 (5)
N1—Ni1—N3—C1787.83 (15)C14—C15—C16—C172.0 (4)
Ni1—N1—C1—C693.21 (19)C14—C15—C16—C18177.9 (3)
Ni1—N1—C1—C283.2 (2)C20—N3—C17—C161.7 (3)
C6—C1—C2—C30.1 (3)Ni1—N3—C17—C16174.38 (18)
N1—C1—C2—C3176.57 (17)C20—N3—C17—C13178.14 (19)
C1—C2—C3—C40.1 (3)Ni1—N3—C17—C135.8 (2)
C1—C2—C3—C7179.01 (18)C18—C16—C17—N30.0 (4)
C2—C3—C4—C50.1 (3)C15—C16—C17—N3179.9 (2)
C7—C3—C4—C5179.23 (18)C18—C16—C17—C13179.8 (2)
C3—C4—C5—C60.6 (3)C15—C16—C17—C130.1 (4)
C3—C4—C5—C8179.89 (18)N2—C13—C17—N32.3 (3)
C2—C1—C6—C50.5 (3)C12—C13—C17—N3177.8 (2)
N1—C1—C6—C5177.01 (17)N2—C13—C17—C16177.8 (2)
C4—C5—C6—C10.8 (3)C12—C13—C17—C162.0 (3)
C8—C5—C6—C1179.70 (18)C17—C16—C18—C191.9 (4)
C4—C3—C7—O21.1 (3)C15—C16—C18—C19178.0 (3)
C2—C3—C7—O2177.98 (19)C16—C18—C19—C202.0 (4)
C4—C3—C7—O1179.3 (2)C17—N3—C20—C191.5 (3)
C2—C3—C7—O11.7 (3)Ni1—N3—C20—C19173.77 (18)
C4—C5—C8—O32.2 (3)C18—C19—C20—N30.3 (4)
C6—C5—C8—O3177.34 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O6wi0.84 (1)1.91 (1)2.747 (2)177 (3)
O1w—H1w2···O2ii0.84 (1)1.82 (1)2.654 (2)180 (2)
O2w—H2w1···O5wi0.85 (1)1.94 (1)2.781 (2)173 (3)
O2w—H2w2···O4iii0.85 (1)1.98 (1)2.832 (2)178 (3)
O3w—H3w1···O5wiv0.84 (1)2.16 (2)2.914 (3)148 (3)
O3w—H3w2···O3ii0.85 (1)1.88 (1)2.721 (2)173 (3)
O4w—H4w1···O6wv0.85 (1)1.97 (1)2.817 (3)171 (3)
O4w—H4w2···O2iv0.85 (1)2.16 (2)2.915 (3)149 (3)
O5w—H5w1···O10.85 (1)1.90 (1)2.726 (3)163 (3)
O5w—H5w2···O3vi0.84 (1)1.91 (1)2.716 (2)159 (3)
O6w—H6w1···O10.85 (1)1.83 (1)2.678 (2)177 (3)
O6w—H6w2···O4iii0.85 (1)1.95 (1)2.791 (2)176 (3)
N1—H1···O4w0.85 (1)2.08 (1)2.928 (3)173 (2)
N1—H2···O4iii0.85 (1)2.30 (1)3.116 (2)162 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1/2, y+3/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x1, y, z; (v) x+3/2, y+1/2, z+1/2; (vi) x+5/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C8H5NO4)(C12H8N2)(H2O)3]·3H2O
Mr526.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.1039 (10), 13.9448 (14), 16.4237 (16)
β (°) 95.522 (1)
V3)2303.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.892, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
20080, 5258, 3702
Rint0.092
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.081, 0.89
No. of reflections5258
No. of parameters363
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.55

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), atomic coordinates taken from an isotypic structure (Zhang et al., 2010), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni1—O1w2.0408 (16)Ni1—N32.0883 (16)
Ni1—N22.0800 (16)Ni1—O3w2.0965 (15)
Ni1—O2w2.0797 (14)Ni1—N12.1409 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O6wi0.84 (1)1.91 (1)2.747 (2)177 (3)
O1w—H1w2···O2ii0.84 (1)1.82 (1)2.654 (2)180 (2)
O2w—H2w1···O5wi0.85 (1)1.94 (1)2.781 (2)173 (3)
O2w—H2w2···O4iii0.85 (1)1.98 (1)2.832 (2)178 (3)
O3w—H3w1···O5wiv0.84 (1)2.16 (2)2.914 (3)148 (3)
O3w—H3w2···O3ii0.85 (1)1.88 (1)2.721 (2)173 (3)
O4w—H4w1···O6wv0.85 (1)1.97 (1)2.817 (3)171 (3)
O4w—H4w2···O2iv0.85 (1)2.16 (2)2.915 (3)149 (3)
O5w—H5w1···O10.85 (1)1.90 (1)2.726 (3)163 (3)
O5w—H5w2···O3vi0.84 (1)1.91 (1)2.716 (2)159 (3)
O6w—H6w1···O10.85 (1)1.83 (1)2.678 (2)177 (3)
O6w—H6w2···O4iii0.85 (1)1.95 (1)2.791 (2)176 (3)
N1—H1···O4w0.85 (1)2.08 (1)2.928 (3)173 (2)
N1—H2···O4iii0.85 (1)2.30 (1)3.116 (2)162 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1/2, y+3/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x1, y, z; (v) x+3/2, y+1/2, z+1/2; (vi) x+5/2, y1/2, z+1/2.
 

Acknowledgements

We thank the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, Yangzhou University, and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, K.-L., Diao, G.-W. & Ng, S. W. (2010). Acta Cryst. E66, m1421.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m444-m445
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds