organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Benz­yl­oxy)phenyl 4-hexa­dec­yl­oxy-3-meth­­oxy­benzoate

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and bRaman Research Institute, C.V. Raman Avenue, Sadashivanagar, Bangalore 560 080, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 26 February 2011; accepted 5 March 2011; online 12 March 2011)

In the title compound, C37H50O5, the central benzene ring makes dihedral angles of 39.72 (14) and 64.43 (13)° with the benzyl and 3-meth­oxy­benzoate rings, respectively. The crystal structure is stabilized by inter­molecular C—H⋯π inter­actions involving the central benzene ring and the benzene ring closest to the aliphatic chain.

Related literature

For general background to 4-(hexa­dec­yloxy)-3-meth­oxy­benzoate, see: Parker et al. (1977[Parker, R. A., Kariya, T., Grisar, J. M. & Petrow, V. (1977). J. Med. Chem. 20, 781-791.]); Nessim (2011[Nessim, R. I. (2011). SRX Chemistry, doi:10.3814/2010/534608.]); Sadashiva & Subba (1975[Sadashiva, B. K. & Subba, G. S. R. (1975). Curr. Sci. 44, 222-224.]); Castellano et al. (1971[Castellano, J. A., McCaffrey, M. T. & Goldmacher, J. E. (1971). Mol. Cryst. Liq. Cryst. 2, 345-366.]). In a three-ring system, when two rings are linked by a unit which preserves conjugative inter­action and mol­ecular rigidity, the second linking unit can be more flexible, see: Gray (1976[Gray, G. W. (1976). Advances in Liquid Crystals, Vol. 2, edited by G. H. Brown, p. 1. New York: Academic Press.]).

[Scheme 1]

Experimental

Crystal data
  • C37H50O5

  • Mr = 574.77

  • Triclinic, [P \overline 1]

  • a = 5.4507 (2) Å

  • b = 9.7352 (4) Å

  • c = 31.3738 (14) Å

  • α = 94.155 (4)°

  • β = 94.261 (4)°

  • γ = 95.576 (4)°

  • V = 1647.02 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.664, Tmax = 1.000

  • 30991 measured reflections

  • 5841 independent reflections

  • 2558 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.131

  • S = 0.91

  • 5841 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C8–C13 and C14–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg2i 0.93 2.97 3.576 (3) 124
C22—H22BCg3ii 0.96 2.94 3.793 (2) 148
Symmetry codes: (i) x-2, y, z+1; (ii) x+1, y, z.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Many organic compounds exhibiting liquid crystalline properties contain two phenyl rings with substituents in the para positions. On moving from two-ring mesogens with one linking unit to three-ring mesogens with two linking units, mesophase thermal stabilities are greatly enhanced. In a three-ring system, when two rings are linked by a unit which preserves conjugative interaction and molecular rigidity, the second linking unit can be more flexible (Gray, 1976).

The electron-rich title compound,4-(benzyloxy)phenyl 4-(hexadecyloxy)-3-methoxybenzoate has a long flexible aliphatic chain with a bulky, laterally substituted methoxy group at one end and the other end having a hydrophobic benzyl group. Lateral and terminal substitution lead to a significant change in some of the properties of compounds having medical importance and also in obtaining desired properties in mesogenic materials (Parker et al.,1977; Nessim, 2010; Sadashiva et al.,1975). With this background, we have synthesized (Castellano et al., 1971) the title compound, 4-(benzyloxy)phenyl 4-(hexadecyloxy)-3-methoxybenzoate, and here we report its crystal structure.

The crystal structure of the title compound contains one molecule in the asymmetric unit (Fig. 1).The dihedral angle between the aromatic rings are: A/B, B/C and A/C 39.72 (14)°, 64.43 (13)° and 24.72 (13)°, respectively. The alkyl chain and aromatic ring C make a dihedral angle of 5.71 (10)°. The packing of the molecules is stabilized by intermolecular C6—H6···Cg2 and C22—H22B···Cg3 interactions, where Cg2 and Cg3 are the centroids of rings B and C, respectively (Table 1). The packing of the molecules in the title structure is depicted in Fig. 2.

Related literature top

For general background to 4-(hexadecyloxy)-3-methoxybenzoate, see: Parker et al. (1977); Nessim (2010); Sadashiva et al. (1975); Castellano et al. (1971). In a three-ring system, when two rings are linked by a unit which preserves conjugative interaction and molecular rigidity, the second linking unit can be more flexible, see: Gray (1976).

Experimental top

A mixture of 4-(hexadecyloxy)-3-methoxybenzoyl chloride (5 mmol) was added to 4-(benzyloxy)phenol (5 ml) in 5 mol of dry dichloromethane. The resultant mixture was stirred at room temperature for 30 min and heated for 10 min at 338 K, then poured into ice-cold hydrochloric acid and extracted with dichloromethane. The combined organic layers were washed with water and dried. Evaporation of the solvent under vacuum yielded a white solid material which was recrystallized from pure dichloromethane at room temperature. The yield was about 92%. M.p. 358 K. Elemental analysis for C37H50O5 requires C 77.31%, H 8.77%. Found C 76.98%, H 8.35%.

Refinement top

All H atoms were placed at calculated positions with C—H = 0.93 Å for aromatic H, 0.97 Å for methylene H and 0.96 Å for methyl H. They were refined using a riding model with Uiso(H) =1.5Ueq(C) for methyl H and 1.2Ueq(C) for all other H.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the crystal structure down the a axis.
4-(Benzyloxy)phenyl 4-hexadecyloxy-3-methoxybenzoate top
Crystal data top
C37H50O5Z = 2
Mr = 574.77F(000) = 624
Triclinic, P1Dx = 1.159 Mg m3
Hall symbol: -P 1Melting point: 358 K
a = 5.4507 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7352 (4) ÅCell parameters from 5841 reflections
c = 31.3738 (14) Åθ = 2.1–25.0°
α = 94.155 (4)°µ = 0.08 mm1
β = 94.261 (4)°T = 293 K
γ = 95.576 (4)°Prism, colourless
V = 1647.02 (12) Å30.22 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
5841 independent reflections
Radiation source: Enhance (Mo) X-ray Source2558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 29.3621 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.664, Tmax = 1.000l = 3737
30991 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0564P)2]
where P = (Fo2 + 2Fc2)/3
5841 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C37H50O5γ = 95.576 (4)°
Mr = 574.77V = 1647.02 (12) Å3
Triclinic, P1Z = 2
a = 5.4507 (2) ÅMo Kα radiation
b = 9.7352 (4) ŵ = 0.08 mm1
c = 31.3738 (14) ÅT = 293 K
α = 94.155 (4)°0.22 × 0.15 × 0.12 mm
β = 94.261 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
5841 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
2558 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 1.000Rint = 0.063
30991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 0.91Δρmax = 0.13 e Å3
5841 reflectionsΔρmin = 0.16 e Å3
379 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Experimental data is IR (KBr) cm-1; 2912(C—H aromatic stretch), 2870 (C—H aliphatic stretch), 1730 (C=O stretch),1597 (C=C stretch).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O12.0141 (3)0.22569 (17)0.48377 (5)0.0715 (5)
O21.4349 (3)0.40474 (17)0.35750 (5)0.0774 (6)
O31.3847 (3)0.19547 (19)0.32625 (5)0.0790 (6)
O40.6971 (3)0.60994 (15)0.22712 (5)0.0608 (5)
O50.9578 (3)0.74931 (17)0.27583 (5)0.0829 (6)
C12.4908 (6)0.1166 (4)0.60729 (10)0.0955 (10)
H12.60390.08180.62560.115*
C22.3740 (6)0.2458 (4)0.61544 (9)0.1069 (11)
H22.40860.30070.63930.128*
C32.2046 (5)0.2967 (3)0.58876 (8)0.0859 (9)
H32.12640.38590.59480.103*
C42.1492 (4)0.2191 (3)0.55382 (7)0.0583 (7)
C52.2705 (5)0.0905 (3)0.54574 (9)0.0948 (10)
H52.23750.03570.52170.114*
C62.4411 (6)0.0389 (3)0.57221 (10)0.1091 (12)
H62.52220.04960.56590.131*
C71.9532 (5)0.2735 (3)0.52682 (7)0.0771 (8)
H7A1.93710.37390.52960.092*
H7B1.79580.24320.53660.092*
C81.8580 (5)0.2699 (3)0.45418 (8)0.0590 (7)
C91.6344 (5)0.3459 (3)0.46385 (8)0.0733 (8)
H91.57690.37100.49230.088*
C101.4936 (5)0.3853 (3)0.43083 (9)0.0793 (9)
H101.34120.43720.43720.095*
C111.5760 (5)0.3489 (3)0.38936 (8)0.0630 (7)
C121.7929 (5)0.2679 (3)0.37930 (7)0.0756 (8)
H121.84490.23880.35090.091*
C131.9343 (5)0.2295 (3)0.41190 (8)0.0780 (9)
H132.08410.17520.40520.094*
C141.3455 (5)0.3188 (3)0.32803 (8)0.0597 (7)
C151.1821 (4)0.3971 (3)0.30030 (7)0.0508 (6)
C161.1560 (4)0.5408 (2)0.30206 (7)0.0586 (7)
H161.24790.59100.32020.070*
C170.9947 (4)0.6095 (2)0.27701 (7)0.0557 (7)
C180.8549 (4)0.5336 (2)0.25018 (6)0.0488 (6)
C190.8828 (4)0.3917 (2)0.24854 (6)0.0545 (6)
H190.79000.34090.23070.065*
C201.0477 (4)0.3241 (2)0.27319 (7)0.0560 (7)
H201.06770.22780.27140.067*
C211.1092 (6)0.8323 (3)0.30046 (9)0.1038 (11)
H21A1.06530.92840.29680.156*
H21B1.08330.81640.33020.156*
H21C1.28010.80760.29080.156*
C220.5539 (4)0.5369 (2)0.19813 (7)0.0530 (6)
H22A0.66230.47750.17710.064*
H22B0.44800.47990.21370.064*
C230.4008 (4)0.6428 (2)0.17643 (6)0.0509 (6)
H23A0.28820.69830.19780.061*
H23B0.50880.70400.16320.061*
C240.2528 (4)0.5794 (2)0.14255 (6)0.0492 (6)
H24A0.36560.52350.12130.059*
H24B0.14460.51850.15590.059*
C250.0981 (4)0.6856 (2)0.12022 (6)0.0513 (6)
H25A0.20630.74870.10810.062*
H25B0.01820.73900.14150.062*
C260.0445 (4)0.6264 (2)0.08497 (6)0.0480 (6)
H26A0.07100.57250.06370.058*
H26B0.15460.56410.09700.058*
C270.1956 (4)0.7352 (2)0.06299 (6)0.0481 (6)
H27A0.08500.79740.05110.058*
H27B0.31030.78920.08440.058*
C280.3407 (4)0.6787 (2)0.02756 (6)0.0490 (6)
H28A0.22610.62590.00590.059*
H28B0.45010.61560.03930.059*
C290.4934 (4)0.7886 (2)0.00630 (6)0.0495 (6)
H29A0.38380.85160.00550.059*
H29B0.60760.84150.02800.059*
C300.6396 (4)0.7329 (2)0.02914 (6)0.0489 (6)
H30A0.74810.66920.01750.059*
H30B0.52530.68090.05100.059*
C310.7935 (4)0.8430 (2)0.04990 (7)0.0503 (6)
H31A0.90700.89540.02800.060*
H31B0.68480.90630.06170.060*
C320.9411 (4)0.7875 (2)0.08517 (6)0.0487 (6)
H32A1.05070.72470.07330.058*
H32B0.82770.73440.10700.058*
C331.0935 (4)0.8972 (2)0.10622 (7)0.0509 (6)
H33A1.20590.95070.08440.061*
H33B0.98370.95960.11830.061*
C341.2422 (4)0.8422 (2)0.14120 (6)0.0507 (6)
H34A1.13010.78570.16240.061*
H34B1.35600.78250.12890.061*
C351.3882 (4)0.9510 (2)0.16365 (7)0.0558 (6)
H35A1.27411.00810.17730.067*
H35B1.49531.01030.14230.067*
C361.5435 (4)0.8939 (2)0.19683 (7)0.0631 (7)
H36A1.43710.83130.21740.076*
H36B1.66200.84000.18290.076*
C371.6829 (5)1.0013 (3)0.22100 (8)0.0932 (9)
H37A1.77880.95600.24120.140*
H37B1.79101.06320.20110.140*
H37C1.56741.05280.23600.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0717 (12)0.0933 (14)0.0471 (10)0.0190 (10)0.0214 (9)0.0101 (9)
O20.1010 (15)0.0651 (12)0.0736 (12)0.0027 (10)0.0536 (11)0.0179 (10)
O30.0947 (14)0.0650 (13)0.0781 (12)0.0125 (11)0.0359 (10)0.0087 (10)
O40.0723 (12)0.0557 (11)0.0594 (10)0.0054 (9)0.0386 (9)0.0064 (8)
O50.1192 (15)0.0517 (12)0.0887 (13)0.0117 (11)0.0694 (11)0.0117 (10)
C10.107 (3)0.103 (3)0.086 (2)0.009 (2)0.060 (2)0.0217 (19)
C20.115 (3)0.121 (3)0.084 (2)0.003 (2)0.054 (2)0.023 (2)
C30.094 (2)0.089 (2)0.0725 (19)0.0078 (18)0.0354 (18)0.0121 (16)
C40.0689 (18)0.0592 (17)0.0485 (15)0.0009 (14)0.0225 (13)0.0065 (13)
C50.124 (3)0.068 (2)0.095 (2)0.0101 (19)0.072 (2)0.0079 (16)
C60.137 (3)0.072 (2)0.125 (3)0.010 (2)0.087 (2)0.005 (2)
C70.091 (2)0.085 (2)0.0518 (17)0.0193 (16)0.0256 (15)0.0008 (14)
C80.0557 (17)0.0704 (18)0.0519 (17)0.0068 (14)0.0208 (14)0.0136 (13)
C90.084 (2)0.079 (2)0.0523 (16)0.0247 (17)0.0274 (15)0.0056 (13)
C100.086 (2)0.0706 (19)0.077 (2)0.0273 (16)0.0371 (18)0.0089 (15)
C110.072 (2)0.0627 (18)0.0576 (18)0.0030 (15)0.0329 (16)0.0160 (14)
C120.0631 (19)0.120 (2)0.0447 (16)0.0001 (18)0.0124 (14)0.0197 (15)
C130.0581 (18)0.121 (2)0.0516 (17)0.0179 (17)0.0087 (15)0.0165 (16)
C140.0623 (18)0.0673 (19)0.0499 (16)0.0013 (16)0.0143 (14)0.0088 (15)
C150.0534 (16)0.0580 (17)0.0423 (14)0.0003 (13)0.0120 (12)0.0111 (12)
C160.0721 (18)0.0588 (17)0.0508 (15)0.0114 (14)0.0308 (13)0.0109 (12)
C170.0712 (18)0.0507 (16)0.0492 (14)0.0050 (14)0.0274 (14)0.0094 (12)
C180.0534 (16)0.0560 (17)0.0394 (13)0.0035 (13)0.0192 (12)0.0072 (12)
C190.0629 (17)0.0542 (17)0.0489 (14)0.0070 (14)0.0222 (13)0.0016 (12)
C200.0676 (18)0.0528 (16)0.0472 (14)0.0040 (14)0.0166 (14)0.0036 (12)
C210.151 (3)0.0630 (19)0.115 (2)0.0319 (19)0.088 (2)0.0190 (17)
C220.0544 (16)0.0575 (16)0.0498 (14)0.0072 (13)0.0201 (13)0.0060 (12)
C230.0556 (16)0.0503 (15)0.0500 (14)0.0074 (12)0.0190 (12)0.0074 (11)
C240.0491 (15)0.0520 (15)0.0493 (14)0.0067 (12)0.0173 (12)0.0076 (11)
C250.0521 (16)0.0518 (15)0.0521 (14)0.0040 (12)0.0190 (13)0.0061 (12)
C260.0486 (15)0.0483 (14)0.0487 (14)0.0038 (12)0.0144 (12)0.0064 (11)
C270.0493 (15)0.0478 (14)0.0485 (13)0.0040 (12)0.0149 (12)0.0035 (11)
C280.0498 (15)0.0484 (15)0.0504 (14)0.0036 (12)0.0141 (12)0.0060 (11)
C290.0524 (15)0.0472 (15)0.0502 (14)0.0033 (12)0.0153 (12)0.0042 (11)
C300.0499 (15)0.0515 (15)0.0465 (14)0.0029 (12)0.0140 (12)0.0045 (11)
C310.0509 (15)0.0492 (15)0.0520 (14)0.0024 (12)0.0152 (12)0.0041 (11)
C320.0510 (15)0.0474 (15)0.0488 (14)0.0037 (12)0.0137 (12)0.0036 (11)
C330.0535 (15)0.0478 (15)0.0529 (14)0.0032 (12)0.0170 (12)0.0042 (11)
C340.0505 (15)0.0524 (15)0.0500 (14)0.0031 (12)0.0135 (12)0.0020 (11)
C350.0557 (16)0.0552 (16)0.0586 (15)0.0049 (13)0.0200 (13)0.0044 (12)
C360.0640 (17)0.0678 (18)0.0587 (15)0.0028 (14)0.0225 (14)0.0002 (13)
C370.100 (2)0.097 (2)0.092 (2)0.0082 (18)0.0546 (18)0.0211 (17)
Geometric parameters (Å, º) top
O1—C81.369 (2)C22—H22A0.9700
O1—C71.401 (2)C22—H22B0.9700
O2—C141.352 (3)C23—C241.514 (3)
O2—C111.414 (2)C23—H23A0.9700
O3—C141.195 (3)C23—H23B0.9700
O4—C181.364 (2)C24—C251.514 (3)
O4—C221.436 (2)C24—H24A0.9700
O5—C171.360 (2)C24—H24B0.9700
O5—C211.437 (3)C25—C261.511 (3)
C1—C61.349 (4)C25—H25A0.9700
C1—C21.351 (4)C25—H25B0.9700
C1—H10.9300C26—C271.515 (3)
C2—C31.373 (3)C26—H26A0.9700
C2—H20.9300C26—H26B0.9700
C3—C41.355 (3)C27—C281.513 (3)
C3—H30.9300C27—H27A0.9700
C4—C51.356 (3)C27—H27B0.9700
C4—C71.493 (3)C28—C291.514 (3)
C5—C61.375 (3)C28—H28A0.9700
C5—H50.9300C28—H28B0.9700
C6—H60.9300C29—C301.514 (3)
C7—H7A0.9700C29—H29A0.9700
C7—H7B0.9700C29—H29B0.9700
C8—C91.365 (3)C30—C311.511 (3)
C8—C131.378 (3)C30—H30A0.9700
C9—C101.388 (3)C30—H30B0.9700
C9—H90.9300C31—C321.514 (3)
C10—C111.355 (3)C31—H31A0.9700
C10—H100.9300C31—H31B0.9700
C11—C121.359 (3)C32—C331.509 (3)
C12—C131.377 (3)C32—H32A0.9700
C12—H120.9300C32—H32B0.9700
C13—H130.9300C33—C341.509 (3)
C14—C151.487 (3)C33—H33A0.9700
C15—C201.368 (3)C33—H33B0.9700
C15—C161.390 (3)C34—C351.510 (3)
C16—C171.379 (3)C34—H34A0.9700
C16—H160.9300C34—H34B0.9700
C17—C181.396 (3)C35—C361.499 (3)
C18—C191.371 (3)C35—H35A0.9700
C19—C201.379 (3)C35—H35B0.9700
C19—H190.9300C36—C371.514 (3)
C20—H200.9300C36—H36A0.9700
C21—H21A0.9600C36—H36B0.9700
C21—H21B0.9600C37—H37A0.9600
C21—H21C0.9600C37—H37B0.9600
C22—C231.497 (3)C37—H37C0.9600
C8—O1—C7117.87 (18)C23—C24—C25113.47 (17)
C14—O2—C11119.68 (19)C23—C24—H24A108.9
C18—O4—C22117.86 (17)C25—C24—H24A108.9
C17—O5—C21117.79 (19)C23—C24—H24B108.9
C6—C1—C2119.1 (3)C25—C24—H24B108.9
C6—C1—H1120.5H24A—C24—H24B107.7
C2—C1—H1120.5C26—C25—C24115.03 (18)
C1—C2—C3120.5 (3)C26—C25—H25A108.5
C1—C2—H2119.7C24—C25—H25A108.5
C3—C2—H2119.7C26—C25—H25B108.5
C4—C3—C2121.2 (3)C24—C25—H25B108.5
C4—C3—H3119.4H25A—C25—H25B107.5
C2—C3—H3119.4C25—C26—C27113.78 (17)
C3—C4—C5117.6 (2)C25—C26—H26A108.8
C3—C4—C7120.2 (2)C27—C26—H26A108.8
C5—C4—C7122.2 (2)C25—C26—H26B108.8
C4—C5—C6121.6 (3)C27—C26—H26B108.8
C4—C5—H5119.2H26A—C26—H26B107.7
C6—C5—H5119.2C28—C27—C26114.88 (17)
C1—C6—C5120.0 (3)C28—C27—H27A108.5
C1—C6—H6120.0C26—C27—H27A108.5
C5—C6—H6120.0C28—C27—H27B108.5
O1—C7—C4110.1 (2)C26—C27—H27B108.5
O1—C7—H7A109.6H27A—C27—H27B107.5
C4—C7—H7A109.6C27—C28—C29114.26 (17)
O1—C7—H7B109.6C27—C28—H28A108.7
C4—C7—H7B109.6C29—C28—H28A108.7
H7A—C7—H7B108.2C27—C28—H28B108.7
C9—C8—O1124.8 (2)C29—C28—H28B108.7
C9—C8—C13119.1 (2)H28A—C28—H28B107.6
O1—C8—C13116.0 (2)C30—C29—C28114.61 (17)
C8—C9—C10119.3 (2)C30—C29—H29A108.6
C8—C9—H9120.3C28—C29—H29A108.6
C10—C9—H9120.3C30—C29—H29B108.6
C11—C10—C9120.7 (2)C28—C29—H29B108.6
C11—C10—H10119.7H29A—C29—H29B107.6
C9—C10—H10119.7C31—C30—C29114.33 (17)
C10—C11—C12120.7 (2)C31—C30—H30A108.7
C10—C11—O2117.3 (2)C29—C30—H30A108.7
C12—C11—O2121.9 (2)C31—C30—H30B108.7
C11—C12—C13118.8 (2)C29—C30—H30B108.7
C11—C12—H12120.6H30A—C30—H30B107.6
C13—C12—H12120.6C30—C31—C32114.43 (17)
C12—C13—C8121.3 (2)C30—C31—H31A108.7
C12—C13—H13119.4C32—C31—H31A108.7
C8—C13—H13119.4C30—C31—H31B108.7
O3—C14—O2123.7 (2)C32—C31—H31B108.7
O3—C14—C15125.0 (3)H31A—C31—H31B107.6
O2—C14—C15111.2 (2)C33—C32—C31114.58 (17)
C20—C15—C16119.4 (2)C33—C32—H32A108.6
C20—C15—C14118.3 (2)C31—C32—H32A108.6
C16—C15—C14122.3 (2)C33—C32—H32B108.6
C17—C16—C15120.4 (2)C31—C32—H32B108.6
C17—C16—H16119.8H32A—C32—H32B107.6
C15—C16—H16119.8C32—C33—C34114.73 (18)
O5—C17—C16125.1 (2)C32—C33—H33A108.6
O5—C17—C18115.3 (2)C34—C33—H33A108.6
C16—C17—C18119.5 (2)C32—C33—H33B108.6
O4—C18—C19124.8 (2)C34—C33—H33B108.6
O4—C18—C17115.6 (2)H33A—C33—H33B107.6
C19—C18—C17119.6 (2)C33—C34—C35115.30 (18)
C18—C19—C20120.4 (2)C33—C34—H34A108.4
C18—C19—H19119.8C35—C34—H34A108.4
C20—C19—H19119.8C33—C34—H34B108.4
C15—C20—C19120.7 (2)C35—C34—H34B108.4
C15—C20—H20119.7H34A—C34—H34B107.5
C19—C20—H20119.7C36—C35—C34114.29 (18)
O5—C21—H21A109.5C36—C35—H35A108.7
O5—C21—H21B109.5C34—C35—H35A108.7
H21A—C21—H21B109.5C36—C35—H35B108.7
O5—C21—H21C109.5C34—C35—H35B108.7
H21A—C21—H21C109.5H35A—C35—H35B107.6
H21B—C21—H21C109.5C35—C36—C37115.0 (2)
O4—C22—C23107.48 (17)C35—C36—H36A108.5
O4—C22—H22A110.2C37—C36—H36A108.5
C23—C22—H22A110.2C35—C36—H36B108.5
O4—C22—H22B110.2C37—C36—H36B108.5
C23—C22—H22B110.2H36A—C36—H36B107.5
H22A—C22—H22B108.5C36—C37—H37A109.5
C22—C23—C24112.98 (17)C36—C37—H37B109.5
C22—C23—H23A109.0H37A—C37—H37B109.5
C24—C23—H23A109.0C36—C37—H37C109.5
C22—C23—H23B109.0H37A—C37—H37C109.5
C24—C23—H23B109.0H37B—C37—H37C109.5
H23A—C23—H23B107.8
C6—C1—C2—C30.9 (5)C14—C15—C16—C17177.3 (2)
C1—C2—C3—C40.3 (5)C21—O5—C17—C164.1 (4)
C2—C3—C4—C51.2 (5)C21—O5—C17—C18175.7 (2)
C2—C3—C4—C7176.2 (3)C15—C16—C17—O5179.0 (2)
C3—C4—C5—C60.9 (5)C15—C16—C17—C180.8 (3)
C7—C4—C5—C6176.4 (3)C22—O4—C18—C191.7 (3)
C2—C1—C6—C51.1 (5)C22—O4—C18—C17178.31 (19)
C4—C5—C6—C10.2 (5)O5—C17—C18—O41.2 (3)
C8—O1—C7—C4177.7 (2)C16—C17—C18—O4178.90 (19)
C3—C4—C7—O1146.5 (2)O5—C17—C18—C19178.75 (19)
C5—C4—C7—O136.2 (4)C16—C17—C18—C191.1 (3)
C7—O1—C8—C97.1 (4)O4—C18—C19—C20180.0 (2)
C7—O1—C8—C13175.0 (2)C17—C18—C19—C200.0 (3)
O1—C8—C9—C10179.6 (2)C16—C15—C20—C191.6 (3)
C13—C8—C9—C102.6 (4)C14—C15—C20—C19176.3 (2)
C8—C9—C10—C110.1 (4)C18—C19—C20—C151.4 (3)
C9—C10—C11—C123.0 (4)C18—O4—C22—C23179.04 (17)
C9—C10—C11—O2173.6 (2)O4—C22—C23—C24176.06 (17)
C14—O2—C11—C10122.4 (3)C22—C23—C24—C25179.71 (18)
C14—O2—C11—C1261.0 (3)C23—C24—C25—C26177.71 (18)
C10—C11—C12—C133.5 (4)C24—C25—C26—C27179.49 (17)
O2—C11—C12—C13173.0 (2)C25—C26—C27—C28179.93 (18)
C11—C12—C13—C81.0 (4)C26—C27—C28—C29179.22 (17)
C9—C8—C13—C122.0 (4)C27—C28—C29—C30179.90 (18)
O1—C8—C13—C12179.9 (2)C28—C29—C30—C31179.40 (18)
C11—O2—C14—O32.3 (4)C29—C30—C31—C32179.64 (17)
C11—O2—C14—C15174.30 (19)C30—C31—C32—C33179.53 (18)
O3—C14—C15—C206.3 (4)C31—C32—C33—C34179.61 (18)
O2—C14—C15—C20170.3 (2)C32—C33—C34—C35177.86 (18)
O3—C14—C15—C16175.8 (2)C33—C34—C35—C36177.31 (19)
O2—C14—C15—C167.6 (3)C34—C35—C36—C37177.5 (2)
C20—C15—C16—C170.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C8–C13 and C14–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg2i0.932.973.576 (3)124
C22—H22B···Cg3ii0.962.943.793 (2)148
Symmetry codes: (i) x2, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC37H50O5
Mr574.77
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.4507 (2), 9.7352 (4), 31.3738 (14)
α, β, γ (°)94.155 (4), 94.261 (4), 95.576 (4)
V3)1647.02 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
Tmin, Tmax0.664, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
30991, 5841, 2558
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.131, 0.91
No. of reflections5841
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C8–C13 and C14–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg2i0.932.973.576 (3)124
C22—H22B···Cg3ii0.962.943.793 (2)148
Symmetry codes: (i) x2, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors thank Professor T. N. Guru Row and Mr Venkatesha R. Hathwar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.

References

First citationCastellano, J. A., McCaffrey, M. T. & Goldmacher, J. E. (1971). Mol. Cryst. Liq. Cryst. 2, 345–366.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGray, G. W. (1976). Advances in Liquid Crystals, Vol. 2, edited by G. H. Brown, p. 1. New York: Academic Press.  Google Scholar
First citationNessim, R. I. (2011). SRX Chemistry, doi:10.3814/2010/534608.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationParker, R. A., Kariya, T., Grisar, J. M. & Petrow, V. (1977). J. Med. Chem. 20, 781-791.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSadashiva, B. K. & Subba, G. S. R. (1975). Curr. Sci. 44, 222–224.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds