organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Chloro­phen­yl)(hy­dr­oxy)meth­yl]-5,5-di­methyl-1,3,2-dioxaphosphinan-2-one

aKey Laboratory of Pesticide and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
*Correspondence e-mail: he1208@mail.ccnu.edu.cn

(Received 4 March 2011; accepted 9 March 2011; online 19 March 2011)

In the title compound, C12H16ClO4P, the phospho­nate ring adopts a chair conformation. In the crystal, intermolecular O—H⋯O hydrogen bonds link the molecules into chains propagating along the b axis.

Related literature

For the synthesis of hy­droxy­phospho­nates, see: Zhou et al. (2008[Zhou, X., Liu, X. H., Yang, X., Shang, D. J., Xin, J. G. & Feng, X. M. (2008). Angew. Chem. Int. Ed. 47, 392-394.]). For the synthesis and biological activity of hy­droxy­phospho­nate derivatives, see: Peng et al. (2007[Peng, H., Wang, T., Xie, P., Chen, T., He, H. W. & Wan, J. (2007). J. Agric. Food Chem. 55, 1871-1880.]); Liu et al. (2006[Liu, H., Zhou, Y. G., Yu, Z. K., Xiao, W. J., Liu, S. H. & He, H. W. (2006). Tetrahedron Lett. 62, 11207-11217.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16ClO4P

  • Mr = 290.67

  • Monoclinic, P 21 /c

  • a = 12.8965 (11) Å

  • b = 9.4449 (8) Å

  • c = 11.6425 (10) Å

  • β = 98.630 (1)°

  • V = 1402.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 298 K

  • 0.23 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 10123 measured reflections

  • 3463 independent reflections

  • 3141 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.154

  • S = 1.15

  • 3463 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.82 1.89 2.705 (3) 172
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Acyclic alpha-hydroxyphosphonates and cyclic alpha-hydroxyphosphonates can be used as very convenient intermediates. They are also an attractive class of biologically active compounds (Peng et al., 2007; Liu et al., 2006). In our research work aimed at searching for novel agrochemicals, we have attempted to synthesize hydroxyphosphonate derivatives using literature procedures. Here we report the crystal structure of the title compound (Fig. 1). The bond lengths (Allen et al., 1987) and angles show normal values. The crystal structure is stabilized by intermolecular O—H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For the synthesis of hydroxyphosphonates, see: Zhou et al. (2008). For the synthesis and biological activity of hydroxyphosphonate derivatives, see: Peng et al. (2007); Liu et al. (2006). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to literature procedures (Zhou et al. 2008). 4-Chlorobenzaldehyde (10 mmol) was added to a solution of 5,5-dimethyl-1,3,2-dioxaphosphinane (10 mmol) in triethylamine (10 mmol). The mixture was stirred at room temperature for 20 h. Pure title compound was afforded by column chromatography on silica gel (acetone/petroleum ether 1:2). Recrystallization from ethyl acetate over a period of one week gave colourless crystals of the title compound.

Refinement top

C-bound H atoms and the O-bound H atom were geometrically positioned (C—H 0.93–0.97 Å, O—H = 0.82 Å) and refined as riding, with Uiso(H) =kUeq(C, O), where k = 1.5 for methyl H and OH and 1.2 for other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement parameters drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal packing, showing the intermolecular hydrogen bonds as dashed lines.
2-[(4-Chlorophenyl)(hydroxy)methyl]-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one top
Crystal data top
C12H16ClO4PF(000) = 608
Mr = 290.67Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.8965 (11) ÅCell parameters from 4935 reflections
b = 9.4449 (8) Åθ = 2.7–28.2°
c = 11.6425 (10) ŵ = 0.39 mm1
β = 98.630 (1)°T = 298 K
V = 1402.1 (2) Å3Block, colourless
Z = 40.23 × 0.16 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3141 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
Graphite monochromatorθmax = 28.3°, θmin = 2.7°
ϕ and ω scansh = 1317
10123 measured reflectionsk = 912
3463 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.7742P]
where P = (Fo2 + 2Fc2)/3
3463 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C12H16ClO4PV = 1402.1 (2) Å3
Mr = 290.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8965 (11) ŵ = 0.39 mm1
b = 9.4449 (8) ÅT = 298 K
c = 11.6425 (10) Å0.23 × 0.16 × 0.12 mm
β = 98.630 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3141 reflections with I > 2σ(I)
10123 measured reflectionsRint = 0.071
3463 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.15Δρmax = 0.72 e Å3
3463 reflectionsΔρmin = 0.28 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2944 (2)0.3005 (3)0.5354 (2)0.0543 (6)
H1A0.29230.32560.61500.081*
H1B0.35960.33120.51350.081*
H1C0.28830.19960.52670.081*
C20.2096 (3)0.5330 (3)0.4720 (3)0.0635 (8)
H2A0.15470.57650.41880.095*
H2B0.27640.56590.45610.095*
H2C0.20140.55770.55010.095*
C30.2035 (2)0.3720 (2)0.4576 (2)0.0407 (5)
C40.2059 (2)0.3377 (2)0.3303 (2)0.0430 (5)
H4A0.15190.39170.28230.052*
H4B0.27330.36550.30990.052*
C50.09896 (19)0.3251 (2)0.4897 (2)0.0429 (5)
H5A0.09710.34650.57080.052*
H5B0.04280.37730.44340.052*
C60.12155 (17)0.0698 (2)0.36460 (19)0.0359 (4)
H60.06320.11710.39390.043*
C70.21964 (16)0.09498 (19)0.44979 (18)0.0330 (4)
C80.31652 (19)0.1076 (3)0.4118 (2)0.0432 (5)
H80.32120.09780.33330.052*
C90.4058 (2)0.1346 (3)0.4902 (3)0.0550 (6)
H90.47050.14350.46470.066*
C100.3983 (2)0.1482 (3)0.6055 (3)0.0554 (7)
C110.3035 (2)0.1347 (3)0.6457 (2)0.0509 (6)
H110.29960.14300.72450.061*
C120.21483 (19)0.1088 (2)0.5673 (2)0.0422 (5)
H120.15050.10040.59360.051*
Cl10.51070 (8)0.18286 (16)0.70446 (9)0.1062 (4)
O10.18909 (13)0.18663 (16)0.30702 (13)0.0403 (4)
O20.08252 (12)0.17262 (17)0.46986 (13)0.0402 (4)
O30.00798 (14)0.1404 (2)0.26116 (16)0.0537 (5)
O40.12788 (16)0.12340 (19)0.25263 (15)0.0526 (5)
H40.09260.19570.24180.079*
P10.08858 (4)0.11632 (6)0.34372 (5)0.03362 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0489 (14)0.0561 (16)0.0541 (14)0.0019 (12)0.0045 (11)0.0008 (12)
C20.088 (2)0.0332 (12)0.0674 (17)0.0063 (13)0.0042 (16)0.0104 (12)
C30.0505 (13)0.0286 (10)0.0416 (11)0.0025 (9)0.0024 (10)0.0031 (8)
C40.0560 (14)0.0298 (10)0.0439 (12)0.0069 (10)0.0099 (10)0.0024 (9)
C50.0511 (13)0.0373 (11)0.0411 (11)0.0065 (10)0.0093 (10)0.0078 (9)
C60.0345 (10)0.0291 (9)0.0438 (11)0.0071 (8)0.0048 (8)0.0022 (8)
C70.0356 (10)0.0188 (8)0.0442 (11)0.0014 (7)0.0045 (8)0.0004 (7)
C80.0402 (12)0.0439 (12)0.0463 (12)0.0019 (10)0.0096 (10)0.0011 (10)
C90.0366 (12)0.0619 (17)0.0668 (16)0.0031 (11)0.0087 (11)0.0032 (13)
C100.0442 (14)0.0571 (16)0.0606 (16)0.0052 (12)0.0060 (11)0.0079 (13)
C110.0615 (16)0.0483 (14)0.0421 (12)0.0045 (12)0.0049 (11)0.0084 (10)
C120.0419 (12)0.0384 (12)0.0476 (12)0.0039 (9)0.0114 (10)0.0043 (9)
Cl10.0629 (6)0.1541 (11)0.0912 (7)0.0175 (6)0.0221 (5)0.0266 (7)
O10.0520 (9)0.0310 (8)0.0412 (8)0.0050 (7)0.0175 (7)0.0022 (6)
O20.0435 (9)0.0373 (8)0.0423 (8)0.0009 (7)0.0150 (7)0.0016 (6)
O30.0485 (10)0.0528 (10)0.0546 (10)0.0105 (8)0.0089 (8)0.0022 (8)
O40.0622 (12)0.0444 (10)0.0503 (10)0.0086 (8)0.0054 (8)0.0130 (8)
P10.0342 (3)0.0304 (3)0.0358 (3)0.0021 (2)0.0039 (2)0.0004 (2)
Geometric parameters (Å, º) top
C1—C31.528 (3)C6—P11.816 (2)
C1—H1A0.9600C6—H60.9800
C1—H1B0.9600C7—C121.385 (3)
C1—H1C0.9600C7—C81.392 (3)
C2—C31.530 (3)C8—C91.382 (3)
C2—H2A0.9600C8—H80.9300
C2—H2B0.9600C9—C101.367 (4)
C2—H2C0.9600C9—H90.9300
C3—C51.518 (3)C10—C111.379 (4)
C3—C41.522 (3)C10—Cl11.742 (3)
C4—O11.463 (3)C11—C121.373 (3)
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700C12—H120.9300
C5—O21.469 (3)O1—P11.5716 (16)
C5—H5A0.9700O2—P11.5748 (16)
C5—H5B0.9700O3—P11.4721 (18)
C6—O41.412 (3)O4—H40.8200
C6—C71.505 (3)
C3—C1—H1A109.5C7—C6—P1113.47 (14)
C3—C1—H1B109.5O4—C6—H6108.2
H1A—C1—H1B109.5C7—C6—H6108.2
C3—C1—H1C109.5P1—C6—H6108.2
H1A—C1—H1C109.5C12—C7—C8118.8 (2)
H1B—C1—H1C109.5C12—C7—C6120.54 (19)
C3—C2—H2A109.5C8—C7—C6120.7 (2)
C3—C2—H2B109.5C9—C8—C7120.4 (2)
H2A—C2—H2B109.5C9—C8—H8119.8
C3—C2—H2C109.5C7—C8—H8119.8
H2A—C2—H2C109.5C10—C9—C8119.4 (2)
H2B—C2—H2C109.5C10—C9—H9120.3
C5—C3—C4109.08 (19)C8—C9—H9120.3
C5—C3—C1110.8 (2)C9—C10—C11121.5 (2)
C4—C3—C1110.9 (2)C9—C10—Cl1119.5 (2)
C5—C3—C2107.2 (2)C11—C10—Cl1119.0 (2)
C4—C3—C2108.0 (2)C12—C11—C10118.9 (2)
C1—C3—C2110.6 (2)C12—C11—H11120.6
O1—C4—C3111.34 (17)C10—C11—H11120.6
O1—C4—H4A109.4C11—C12—C7121.1 (2)
C3—C4—H4A109.4C11—C12—H12119.4
O1—C4—H4B109.4C7—C12—H12119.4
C3—C4—H4B109.4C4—O1—P1117.87 (14)
H4A—C4—H4B108.0C5—O2—P1116.83 (14)
O2—C5—C3111.10 (17)C6—O4—H4109.5
O2—C5—H5A109.4O3—P1—O1114.12 (11)
C3—C5—H5A109.4O3—P1—O2113.65 (10)
O2—C5—H5B109.4O1—P1—O2105.62 (9)
C3—C5—H5B109.4O3—P1—C6113.27 (10)
H5A—C5—H5B108.0O1—P1—C6105.02 (9)
O4—C6—C7113.10 (18)O2—P1—C6104.20 (9)
O4—C6—P1105.57 (15)
C5—C3—C4—O157.7 (3)C10—C11—C12—C70.6 (4)
C1—C3—C4—O164.7 (3)C8—C7—C12—C110.1 (3)
C2—C3—C4—O1173.9 (2)C6—C7—C12—C11178.7 (2)
C4—C3—C5—O258.9 (2)C3—C4—O1—P154.0 (2)
C1—C3—C5—O263.5 (2)C3—C5—O2—P156.2 (2)
C2—C3—C5—O2175.7 (2)C4—O1—P1—O380.51 (18)
O4—C6—C7—C12151.46 (19)C4—O1—P1—O245.05 (18)
P1—C6—C7—C1288.3 (2)C4—O1—P1—C6154.86 (16)
O4—C6—C7—C827.3 (3)C5—O2—P1—O379.99 (18)
P1—C6—C7—C892.9 (2)C5—O2—P1—O145.86 (17)
C12—C7—C8—C90.5 (3)C5—O2—P1—C6156.25 (16)
C6—C7—C8—C9178.2 (2)O4—C6—P1—O356.16 (18)
C7—C8—C9—C100.3 (4)C7—C6—P1—O3179.45 (15)
C8—C9—C10—C110.4 (5)O4—C6—P1—O169.01 (15)
C8—C9—C10—Cl1179.8 (2)C7—C6—P1—O155.38 (17)
C9—C10—C11—C120.8 (4)O4—C6—P1—O2179.83 (14)
Cl1—C10—C11—C12179.3 (2)C7—C6—P1—O255.44 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.892.705 (3)172
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H16ClO4P
Mr290.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.8965 (11), 9.4449 (8), 11.6425 (10)
β (°) 98.630 (1)
V3)1402.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.23 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10123, 3463, 3141
Rint0.071
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.154, 1.15
No. of reflections3463
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.28

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.892.705 (3)172
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support of this work by the National Basic Research Program of China (2010CB126100) and the National Natural Science Foundation of China (Nos. 20772042, 21002037). This work was supported in part by the PCSIRT (No. IRT0953).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, H., Zhou, Y. G., Yu, Z. K., Xiao, W. J., Liu, S. H. & He, H. W. (2006). Tetrahedron Lett. 62, 11207–11217.  CrossRef CAS Google Scholar
First citationPeng, H., Wang, T., Xie, P., Chen, T., He, H. W. & Wan, J. (2007). J. Agric. Food Chem. 55, 1871–1880.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, X., Liu, X. H., Yang, X., Shang, D. J., Xin, J. G. & Feng, X. M. (2008). Angew. Chem. Int. Ed. 47, 392–394.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds