organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Fluoro-4-nitro­phenyl 4-methyl­benzene­sulfonate

aKey Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, and bState Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: dengyongy@sohu.com

(Received 16 December 2010; accepted 17 February 2011; online 2 March 2011)

In the title compound, C13H10FNO5S, the dihedral angle between the benzene rings is 47.63 (14)°. In the crystal, ππ stacking occurs between nearly parallel benzene rings of adjacent mol­ecules, the centroid–centroid distance being 3.7806 (16) Å. Weak inter­molecular C—H⋯O hydrogen bonding is also present in the crystal structure.

Related literature

For related compounds and their biological activity, see: Cho et al. (2003)[Cho, C. H., Yun, H. S. & Park, K. Y. (2003). J. Org. Chem. 68, 3017-3025.]; Marson et al. (2007[Marson, C. M., Mahadevan, T., Dines, J., Sengmany, S., Morrel, J. M., Alao, J. P., Joel, S. P., Vigushin, D. M. & Coombes, R. C. (2007). Bioorg. Med. Chem. Lett. 17, 136-141.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10FNO5S

  • Mr = 311.28

  • Orthorhombic, P n a 21

  • a = 14.2596 (5) Å

  • b = 11.4800 (3) Å

  • c = 8.3602 (2) Å

  • V = 1368.57 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.979, Tmax = 1.0

  • 10802 measured reflections

  • 2251 independent reflections

  • 1855 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.083

  • S = 1.05

  • 2251 reflections

  • 191 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 752 Friedel pairs

  • Flack parameter: −0.06 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.55 3.224 (4) 129
Symmetry code: (i) [-x+1, -y, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Aryloxyalkanoic acid hydroxyamides are potent inhibitors of histone deacetylase (Marson et al., 2007; Cho et al., 2003). 3-Fluoro-4-nitrophenyl 4-methylbenzenesulfonate is one of the key intermediates to synthesize the aryloxyalkanoic acid hydroxyamides derivatives. We report here its crystal structure. In the title compound (Fig. 1), the dihedral angle between the 3-fluoro-4-nitrophenyl ring and the 4-methylbenzene ring is 47.63 (14)°. In the crystal, intermolecular π-π stacking [centroid–centroid distance = 3.7806 (16) Å] stabilizes the structure (Fig. 2). Weak C—H···O hydrogen bonding is present in the crystal structure (Table 1).

Related literature top

For related compounds and their biological activity, see: Cho et al. (2003); Marson et al. (2007).

Experimental top

To the 3-fluoro-4-nitrophenol (19.10 mmol) in chloroform (20 ml) at 273 K were added pyridine (3.70 ml, 45.84 mmol) dropwise over a period of 20 min and p-toluenesulfonyl chloride (22.92 mmol) in small portions. This reaction mixture was stirred at room temperature for 12 h and diluted with dichloromethane and then 10% aqueous HCl. The separated organic layer was washed with 10% aqueous HCl, water and saturated aqueous NaCl; dried over NaSO4; and concentrated in vacuo. The crude 3-fluoro-4-nitrophenyl 4-methylbenzenesulfonate were purified by recrystallization. Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of ethanol.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The cell packing of the title compound.
3-Fluoro-4-nitrophenyl 4-methylbenzenesulfonate top
Crystal data top
C13H10FNO5SF(000) = 640
Mr = 311.28Dx = 1.511 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2c -2nCell parameters from 4234 reflections
a = 14.2596 (5) Åθ = 2.9–29.1°
b = 11.4800 (3) ŵ = 0.27 mm1
c = 8.3602 (2) ÅT = 293 K
V = 1368.57 (7) Å3Block, colorless
Z = 40.30 × 0.30 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2251 independent reflections
Radiation source: fine-focus sealed tube1855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 1414
Tmin = 0.979, Tmax = 1.0l = 710
10802 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.039P)2 + 0.1799P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.025
2251 reflectionsΔρmax = 0.12 e Å3
191 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 752 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (9)
Crystal data top
C13H10FNO5SV = 1368.57 (7) Å3
Mr = 311.28Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.2596 (5) ŵ = 0.27 mm1
b = 11.4800 (3) ÅT = 293 K
c = 8.3602 (2) Å0.30 × 0.30 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2251 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
1855 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 1.0Rint = 0.025
10802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.12 e Å3
S = 1.05Δρmin = 0.23 e Å3
2251 reflectionsAbsolute structure: Flack (1983), 752 Friedel pairs
191 parametersAbsolute structure parameter: 0.06 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16636 (4)0.27076 (5)0.58998 (10)0.05567 (19)
F10.34171 (15)0.14722 (14)0.6292 (3)0.1007 (7)
O10.56870 (17)0.0441 (2)0.8899 (4)0.0906 (8)
O20.51366 (19)0.1649 (2)0.7187 (3)0.1041 (9)
O30.18775 (13)0.20401 (17)0.7566 (2)0.0574 (5)
O40.16341 (14)0.18606 (19)0.4665 (3)0.0675 (6)
O50.08578 (12)0.33777 (18)0.6260 (3)0.0788 (7)
N10.5080 (2)0.0778 (2)0.7989 (3)0.0675 (7)
C10.4217 (2)0.0077 (2)0.7863 (4)0.0523 (7)
C20.3442 (2)0.0442 (2)0.7026 (4)0.0601 (8)
C30.2660 (2)0.0248 (2)0.6906 (4)0.0580 (7)
H30.21360.00030.63410.070*
C40.26682 (18)0.1317 (2)0.7636 (3)0.0474 (6)
C50.3427 (2)0.1698 (2)0.8491 (4)0.0548 (7)
H50.34170.24240.89870.066*
C60.4204 (2)0.0995 (2)0.8609 (4)0.0566 (7)
H60.47220.12430.91920.068*
C70.26414 (17)0.3597 (2)0.5642 (3)0.0468 (6)
C80.33831 (18)0.3209 (2)0.4704 (4)0.0532 (7)
H80.33590.24830.42130.064*
C90.41530 (18)0.3917 (2)0.4512 (4)0.0538 (7)
H90.46590.36500.39140.065*
C100.41940 (19)0.5008 (2)0.5179 (3)0.0519 (7)
C110.34570 (19)0.5373 (2)0.6128 (4)0.0584 (7)
H110.34830.61030.66090.070*
C120.26858 (19)0.4679 (2)0.6375 (3)0.0551 (7)
H120.21980.49310.70280.066*
C130.5028 (2)0.5786 (3)0.4867 (5)0.0752 (9)
H13A0.48600.63700.40960.113*
H13B0.55370.53270.44600.113*
H13C0.52150.61550.58470.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0420 (3)0.0668 (4)0.0582 (4)0.0045 (3)0.0005 (4)0.0083 (4)
F10.1299 (17)0.0508 (9)0.1214 (18)0.0063 (10)0.0321 (16)0.0197 (11)
O10.0640 (15)0.0999 (18)0.108 (2)0.0104 (14)0.0161 (15)0.0259 (17)
O20.135 (2)0.0934 (17)0.0836 (18)0.0580 (16)0.0025 (17)0.0028 (15)
O30.0489 (11)0.0689 (12)0.0543 (12)0.0047 (9)0.0104 (10)0.0087 (10)
O40.0635 (14)0.0765 (13)0.0625 (13)0.0099 (10)0.0104 (11)0.0038 (11)
O50.0452 (11)0.0901 (14)0.1011 (19)0.0158 (9)0.0081 (13)0.0152 (14)
N10.0737 (19)0.0709 (17)0.0579 (17)0.0151 (14)0.0075 (15)0.0231 (15)
C10.0533 (18)0.0547 (16)0.0487 (17)0.0054 (12)0.0020 (14)0.0132 (14)
C20.078 (2)0.0415 (14)0.0605 (19)0.0031 (14)0.0059 (17)0.0043 (14)
C30.0585 (17)0.0529 (15)0.0627 (19)0.0129 (13)0.0115 (15)0.0035 (14)
C40.0457 (14)0.0534 (14)0.0430 (15)0.0017 (11)0.0040 (13)0.0085 (12)
C50.0580 (17)0.0520 (15)0.0543 (17)0.0027 (13)0.0022 (15)0.0005 (13)
C60.0557 (18)0.0606 (17)0.0534 (18)0.0076 (14)0.0060 (15)0.0069 (14)
C70.0431 (13)0.0520 (13)0.0453 (17)0.0104 (10)0.0012 (13)0.0046 (13)
C80.0524 (16)0.0467 (13)0.0604 (17)0.0088 (12)0.0042 (15)0.0067 (13)
C90.0453 (15)0.0563 (16)0.0597 (18)0.0090 (12)0.0078 (14)0.0005 (14)
C100.0506 (16)0.0555 (16)0.0497 (17)0.0051 (12)0.0056 (13)0.0021 (12)
C110.0692 (18)0.0491 (13)0.0568 (18)0.0042 (12)0.0026 (18)0.0081 (14)
C120.0601 (17)0.0582 (15)0.0471 (17)0.0176 (12)0.0093 (14)0.0015 (13)
C130.069 (2)0.0714 (19)0.085 (2)0.0119 (15)0.001 (2)0.0069 (18)
Geometric parameters (Å, º) top
S1—O31.619 (2)C5—C61.374 (4)
S1—O41.419 (2)C6—H60.9300
S1—O51.4152 (19)C7—C81.390 (4)
S1—C71.741 (3)C7—C121.386 (3)
F1—C21.332 (3)C8—H80.9300
O1—N11.216 (4)C8—C91.375 (3)
O2—N11.206 (3)C9—H90.9300
O3—C41.401 (3)C9—C101.373 (4)
N1—C11.475 (4)C10—C111.382 (4)
C1—C21.374 (4)C10—C131.509 (4)
C1—C61.380 (4)C11—H110.9300
C2—C31.372 (4)C11—C121.374 (4)
C3—H30.9300C12—H120.9300
C3—C41.371 (4)C13—H13A0.9600
C4—C51.369 (4)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
F1—C2—C1121.8 (3)C6—C1—N1117.8 (3)
F1—C2—C3117.2 (3)C6—C5—H5120.4
O1—N1—C1117.7 (3)C7—C8—H8120.5
O2—N1—O1124.3 (3)C7—C12—H12120.3
O2—N1—C1118.0 (3)C8—C7—S1119.45 (19)
O3—S1—C7103.48 (11)C8—C9—H9119.1
O4—S1—O3107.89 (11)C9—C8—C7119.0 (2)
O4—S1—C7109.59 (13)C9—C8—H8120.5
O5—S1—O3103.14 (14)C9—C10—C11118.5 (2)
O5—S1—O4120.23 (14)C9—C10—C13120.2 (3)
O5—S1—C7110.97 (11)C10—C9—C8121.7 (2)
C1—C6—H6119.9C10—C9—H9119.1
C2—C1—N1122.7 (3)C10—C11—H11119.4
C2—C1—C6119.5 (3)C10—C13—H13A109.5
C2—C3—H3120.7C10—C13—H13B109.5
C3—C2—C1121.0 (3)C10—C13—H13C109.5
C3—C4—O3120.3 (2)C11—C10—C13121.3 (3)
C4—O3—S1117.93 (16)C11—C12—C7119.3 (2)
C4—C3—C2118.6 (3)C11—C12—H12120.3
C4—C3—H3120.7C12—C7—S1120.46 (19)
C4—C5—H5120.4C12—C7—C8120.1 (2)
C4—C5—C6119.1 (3)C12—C11—C10121.3 (2)
C5—C4—O3118.0 (2)C12—C11—H11119.4
C5—C4—C3121.7 (2)H13A—C13—H13B109.5
C5—C6—C1120.2 (3)H13A—C13—H13C109.5
C5—C6—H6119.9H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.553.224 (4)129
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10FNO5S
Mr311.28
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)14.2596 (5), 11.4800 (3), 8.3602 (2)
V3)1368.57 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.979, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
10802, 2251, 1855
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.083, 1.05
No. of reflections2251
No. of parameters191
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.23
Absolute structureFlack (1983), 752 Friedel pairs
Absolute structure parameter0.06 (9)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.553.224 (4)129
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationCho, C. H., Yun, H. S. & Park, K. Y. (2003). J. Org. Chem. 68, 3017–3025.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarson, C. M., Mahadevan, T., Dines, J., Sengmany, S., Morrel, J. M., Alao, J. P., Joel, S. P., Vigushin, D. M. & Coombes, R. C. (2007). Bioorg. Med. Chem. Lett. 17, 136–141.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds