metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m406-m407

Poly[[dodeca­aqua­hexa­kis­(μ2-pyridine-2,5-di­carboxyl­ato)tricopper(II)diytterbium(III)] dihydrate]

aDepartment of Biotechnology, Yuanpei University, HsinChu 30015, Taiwan, and bDepartment of General Education Center, Yuanpei University, HsinChu 30015, Taiwan
*Correspondence e-mail: lush@mail.ypu.edu.tw

(Received 24 February 2011; accepted 27 February 2011; online 9 March 2011)

The asymmetric unit of the title heterometallic coordination polymer, {[Cu3Yb2(C7H3NO4)6(H2O)12]·2H2O}n, contains one YbIII and two CuII atoms. The CuII atom that is located on an inversion center is N,O-chelated by two pyridine-2,5-dicarboxyl­ate (pdc) anions in a square-planar geometry; the Cu atom located on a general position is N,O-chelated by two pdc anions in the basal plane and is further coordinated by a water O atom at the apical position in a distorted square-pyramidal geometry. The Yb(III) atom is eight coordinated in a distorted square-anti­prismatic geometry formed by three carboxyl­ate O atoms from three pdc anions and five water mol­ecules. The pdc anions bridge adjacent Yb(III) and Cu(III) atoms, forming a three-dimensional polymeric structure. The crystal structure contains extensive O—H⋯O hydrogen bonds. ππ stacking is present in the crystal structure, the shortest centroid–centroid distance between parallel pyridine rings of adjacent mol­ecules being 3.646 (3) Å.

Related literature

For general background to the use of pdc as a ligand in rare earth transition metal complexes, see: Huang et al. (2008[Huang, Y., Song, Y. S., Yan, B. & Shao, M. (2008). J. Solid State Chem. 181, 1731-1737.]). For related structures, see: Wei et al. (2005[Wei, Y.-L., Hou, H.-W., Li, H.-K., Fan, Y.-T. & Zhu, Y. (2005). Cryst. Growth Des. 5, 1405-1413.]); Wen et al. (2007[Wen, L.-L., Lu, Z.-D., Lin, J.-G., Tian, Z.-F., Zhu, H.-Z. & Meng, Q.-J. (2007). Cryst. Growth Des. 7, 93-99.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3Yb2(C7H3NO4)6(H2O)12]·2H2O

  • Mr = 1815.58

  • Triclinic, [P \overline 1]

  • a = 7.3486 (4) Å

  • b = 13.5417 (7) Å

  • c = 15.1244 (8) Å

  • α = 72.534 (1)°

  • β = 76.330 (1)°

  • γ = 80.166 (1)°

  • V = 1386.89 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.59 mm−1

  • T = 295 K

  • 0.13 × 0.08 × 0.05 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.739, Tmax = 0.973

  • 14910 measured reflections

  • 6624 independent reflections

  • 6010 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.083

  • S = 1.23

  • 6624 reflections

  • 421 parameters

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −1.68 e Å−3

Table 1
Selected bond lengths (Å)

Yb1—O2 2.299 (5)
Yb1—O3 2.272 (4)
Yb1—O4 2.411 (4)
Yb1—O5 2.278 (4)
Yb1—O6 2.364 (4)
Yb1—O7 2.447 (3)
Yb1—O13 2.364 (4)
Yb1—O15 2.281 (4)
Cu1—N1 1.975 (4)
Cu1—N2i 1.955 (4)
Cu1—O1 2.372 (4)
Cu1—O8 1.964 (3)
Cu1—O11i 1.943 (3)
Cu2—N3 1.967 (4)
Cu2—O17 1.931 (4)
Symmetry code: (i) -x+2, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O17ii 0.82 2.50 3.072 (5) 128
O1—H1A⋯O18ii 0.82 2.06 2.865 (6) 166
O1—H1B⋯O9iii 0.82 2.02 2.840 (6) 173
O2—H2A⋯O10iv 0.82 2.48 2.988 (7) 121
O2—H2B⋯O19 0.82 1.83 2.644 (8) 173
O3—H3A⋯O16 0.82 1.91 2.572 (6) 137
O3—H3B⋯O10iii 0.82 1.91 2.695 (6) 159
O4—H4A⋯O9iii 0.82 1.87 2.670 (6) 165
O4—H4B⋯O14v 0.82 1.98 2.774 (6) 163
O5—H5A⋯O14 0.82 1.85 2.586 (6) 148
O5—H5B⋯O8 0.82 2.06 2.717 (6) 137
O6—H6A⋯O1vi 0.82 2.09 2.826 (6) 149
O6—H6B⋯O4vi 0.82 2.15 2.936 (6) 160
O19—H19A⋯O20vii 0.82 2.06 2.816 (8) 152
O19—H19B⋯O12viii 0.82 2.15 2.965 (7) 171
O20—H20A⋯O13v 0.82 2.55 3.174 (7) 134
O20—H20B⋯O16 0.82 2.15 2.957 (9) 166
Symmetry codes: (ii) x, y+1, z-1; (iii) -x, -y+2, -z; (iv) -x+1, -y+2, -z; (v) x-1, y, z; (vi) -x+1, -y+1, -z; (vii) -x, -y+1, -z+1; (viii) x-1, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Many studies concering the use of pdc as a ligand toward transition metal (Wen et al., 2007) and /or rare earth transition metal (Wei et al., 2005; Huang et al., 2008) have shown that a great variety of polymeric structures can be obtained as a result of the differnet coordination modes of the pdc ligands.

The asymmetric unit of the title heterometallic coordination polymer, [Cu3Yb2(C7H3NO4)6(H2O)12.4H2O]n,contains one YbIII and two CuII atoms, three pyridine-2,5-dicarboxylate (pdc) anions and six water molecules. One CuII atom is located on an located on an inversion center and is N,O-chelated by two pdc anions in the equatorial plane with square-planar geometry; the other Cu atom is N,O-chelated by two pdc anions in the coordination basal plane and coordinated by a carboxyl O atom at the apical position with a distorted square-pyramidal geometry [Cu—O = 2.374 (4) Å in the apical direction]. The Yb atom is eight coordinated with a distorted square-antiprismatic geometry formed by three carboxylate O atoms from three pdc anions and five water molecules (selected bond lengths are given in Table 1). The pdy anions bridge adjacent Yb and Cu atoms to form the three dimensional polymeric structure (Fig. 1).

The crystal structure contains the extensive O—H···O and weak C—H···O hydrogen bonds (Fig. 2 and Table 2). π-π stackings are present in the crystal structure, the shortest centroids distance between parallel pyridine rings is 3.646 (3) Å [Cg6iiv···Cg6 (N1/C1—C5)] [symmetry code: (iiv) -x, 2 - y, -z].

Related literature top

For general background to the use of pdc as a ligand in rare earth transition metal complexes, see: Huang et al. (2008). For related structures, see: Wei et al. (2005); Wen et al. (2007).

Experimental top

A mixture of ytterbium chloride hexahydrate (0.2438 g, 0.25 mmol), copper acetate hydrate (0.050 g, 0.25 mmol), pyridine-2,5-dicarboxylic acid (0.0418 g, 0.25 mmol,) and 10 ml H2O were put in a 23-ml Teflon liner reactor and heated at 418 K in oven for 48 h. The resulting solution was slowly cooled to room temperature. The blue transparent single crystals of the title complex were obtained in 34.26% yield (based on Yb).

Refinement top

Water H atoms were placed in calculated positions and refined with the distances constrains of O—H = 0.82, and Uiso(H)= 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.93 Å and refined using a riding model, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms have been omitted for clarity.[Symmetry codes: (i) 2 - x, 1 - y, -z; (ii)1 - x, -y, 1 - z].
[Figure 2] Fig. 2. The molecular packing for the title compound. Hydrogen bonds are shown as dashed lines.
Poly[[dodecaaquahexakis(µ2-pyridine-2,5- dicarboxylato)tricopper(II)diytterbium(III)] dihydrate] top
Crystal data top
[Cu3Yb2(C7H3NO4)6(H2O)12]·2H2OZ = 1
Mr = 1815.58F(000) = 891
Triclinic, P1Dx = 2.174 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3486 (4) ÅCell parameters from 7576 reflections
b = 13.5417 (7) Åθ = 2.5–25.0°
c = 15.1244 (8) ŵ = 4.59 mm1
α = 72.534 (1)°T = 295 K
β = 76.330 (1)°Columnar, blue
γ = 80.166 (1)°0.13 × 0.08 × 0.05 mm
V = 1386.89 (13) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6624 independent reflections
Radiation source: fine-focus sealed tube6010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9 pixels mm-1θmax = 28.3°, θmin = 1.4°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1818
Tmin = 0.739, Tmax = 0.973l = 2020
14910 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.019P)2 + 3.1503P]
where P = (Fo2 + 2Fc2)/3
6624 reflections(Δ/σ)max = 0.001
421 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 1.68 e Å3
Crystal data top
[Cu3Yb2(C7H3NO4)6(H2O)12]·2H2Oγ = 80.166 (1)°
Mr = 1815.58V = 1386.89 (13) Å3
Triclinic, P1Z = 1
a = 7.3486 (4) ÅMo Kα radiation
b = 13.5417 (7) ŵ = 4.59 mm1
c = 15.1244 (8) ÅT = 295 K
α = 72.534 (1)°0.13 × 0.08 × 0.05 mm
β = 76.330 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6624 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6010 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.973Rint = 0.044
14910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.23Δρmax = 1.01 e Å3
6624 reflectionsΔρmin = 1.68 e Å3
421 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.46140 (3)0.553608 (18)0.188850 (15)0.01980 (7)
Cu10.55405 (9)0.88959 (5)0.15334 (4)0.02228 (15)
Cu20.50000.00000.50000.0251 (2)
O10.3238 (6)0.7999 (3)0.1743 (3)0.0346 (10)
H1A0.26260.84870.20520.052*
H1B0.25740.78250.12150.052*
O20.5782 (7)0.6367 (4)0.2722 (3)0.0489 (12)
H2A0.69130.62730.27180.073*
H2B0.52740.66720.31260.073*
O30.1694 (6)0.6205 (3)0.2490 (3)0.0416 (12)
H3A0.10140.60010.30080.062*
H3B0.10870.66890.21740.062*
O40.2936 (5)0.5798 (3)0.0631 (3)0.0280 (9)
H4A0.23060.63670.05280.042*
H4B0.21720.53690.08030.042*
O50.6992 (5)0.5902 (3)0.0603 (3)0.0322 (10)
H5A0.80330.55640.05830.048*
H5B0.71710.64860.02560.048*
O60.4981 (6)0.4061 (3)0.1308 (3)0.0329 (9)
H6A0.53190.34890.16390.049*
H6B0.53200.40540.07540.049*
O70.4094 (5)0.7414 (3)0.1179 (2)0.0276 (9)
O80.5572 (5)0.7817 (3)0.0331 (2)0.0249 (8)
O90.0731 (6)1.2456 (3)0.0036 (3)0.0334 (10)
O100.0874 (6)1.2581 (3)0.1509 (3)0.0387 (11)
O150.3506 (6)0.4262 (3)0.3191 (3)0.0395 (11)
O160.0621 (7)0.4704 (4)0.3939 (3)0.0575 (15)
O190.3979 (9)0.7458 (4)0.3914 (4)0.0710 (18)
H19A0.37620.70830.44580.107*
H19B0.36690.80590.39450.107*
O200.3399 (9)0.4351 (5)0.4577 (4)0.085 (2)
H20A0.37550.46480.40790.128*
H20B0.22850.44290.44990.128*
N10.3689 (6)0.9653 (3)0.0721 (3)0.0181 (9)
N30.3478 (6)0.1321 (3)0.5096 (3)0.0227 (9)
C10.2791 (7)1.0610 (4)0.0974 (4)0.0222 (11)
H1C0.29991.09850.16080.027*
C20.1559 (7)1.1059 (4)0.0317 (4)0.0197 (10)
C30.1278 (7)1.0499 (4)0.0627 (4)0.0233 (11)
H3C0.04901.07910.10830.028*
C40.2181 (7)0.9499 (4)0.0887 (3)0.0218 (11)
H4C0.19870.91060.15150.026*
C50.3377 (7)0.9099 (4)0.0192 (3)0.0177 (10)
C60.4413 (7)0.8016 (4)0.0383 (3)0.0186 (10)
C70.0495 (7)1.2123 (4)0.0651 (4)0.0249 (12)
C150.3497 (8)0.2265 (4)0.4463 (4)0.0238 (11)
H15A0.43930.23620.39040.029*
C160.2210 (8)0.3089 (4)0.4630 (4)0.0272 (12)
C170.0938 (9)0.2969 (5)0.5474 (4)0.0359 (15)
H17A0.00730.35230.55960.043*
C180.0968 (9)0.2009 (5)0.6140 (4)0.0349 (14)
H18A0.01480.19120.67230.042*
C190.2225 (8)0.1209 (4)0.5924 (4)0.0256 (12)
C200.2115 (8)0.4112 (4)0.3869 (4)0.0306 (13)
C210.2323 (8)0.0112 (4)0.6572 (4)0.0254 (12)
O170.3522 (6)0.0560 (3)0.6238 (2)0.0290 (9)
O180.1287 (6)0.0081 (3)0.7352 (3)0.0364 (10)
O130.7259 (5)0.4452 (3)0.2402 (3)0.0305 (9)
C140.8891 (8)0.4189 (4)0.2009 (4)0.0257 (12)
O140.9801 (6)0.4704 (3)0.1242 (3)0.0385 (11)
C90.9846 (7)0.3138 (4)0.2468 (4)0.0226 (11)
C81.1424 (8)0.2750 (4)0.1928 (4)0.0255 (12)
H8A1.18900.31620.13290.031*
C100.9196 (8)0.2533 (5)0.3365 (4)0.0281 (12)
H10A0.81300.27770.37440.034*
N21.2312 (6)0.1808 (3)0.2233 (3)0.0234 (10)
C111.0135 (8)0.1559 (4)0.3702 (4)0.0259 (12)
H11A0.97330.11520.43120.031*
C121.1666 (7)0.1212 (4)0.3115 (3)0.0212 (11)
C131.2777 (8)0.0148 (4)0.3346 (4)0.0255 (12)
O111.4056 (5)0.0058 (3)0.2658 (2)0.0277 (9)
O121.2456 (6)0.0441 (3)0.4144 (3)0.0398 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.01978 (12)0.01595 (11)0.01753 (11)0.00351 (8)0.00040 (8)0.00100 (8)
Cu10.0237 (3)0.0165 (3)0.0195 (3)0.0044 (3)0.0007 (2)0.0018 (2)
Cu20.0298 (5)0.0168 (4)0.0217 (4)0.0030 (4)0.0021 (4)0.0002 (4)
O10.038 (2)0.026 (2)0.038 (2)0.0019 (18)0.0167 (19)0.0017 (18)
O20.046 (3)0.059 (3)0.051 (3)0.016 (2)0.021 (2)0.033 (2)
O30.033 (2)0.033 (2)0.033 (2)0.0115 (19)0.0083 (18)0.0084 (18)
O40.029 (2)0.0157 (18)0.037 (2)0.0018 (16)0.0095 (17)0.0048 (16)
O50.026 (2)0.024 (2)0.031 (2)0.0091 (17)0.0019 (16)0.0034 (17)
O60.044 (3)0.020 (2)0.031 (2)0.0068 (18)0.0084 (18)0.0072 (17)
O70.033 (2)0.0200 (19)0.0212 (18)0.0013 (16)0.0008 (16)0.0003 (15)
O80.028 (2)0.0149 (18)0.0239 (18)0.0081 (15)0.0009 (15)0.0035 (15)
O90.035 (2)0.023 (2)0.035 (2)0.0063 (18)0.0026 (18)0.0064 (17)
O100.039 (3)0.029 (2)0.033 (2)0.0116 (19)0.0024 (19)0.0016 (18)
O150.033 (2)0.024 (2)0.037 (2)0.0072 (18)0.0082 (19)0.0093 (18)
O160.048 (3)0.035 (3)0.053 (3)0.018 (2)0.016 (2)0.011 (2)
O190.100 (5)0.042 (3)0.059 (3)0.010 (3)0.002 (3)0.021 (3)
O200.080 (5)0.083 (5)0.069 (4)0.009 (4)0.001 (3)0.005 (3)
N10.017 (2)0.014 (2)0.022 (2)0.0012 (17)0.0024 (16)0.0055 (16)
N30.024 (2)0.020 (2)0.022 (2)0.0002 (19)0.0041 (18)0.0038 (18)
C10.023 (3)0.019 (3)0.020 (2)0.001 (2)0.004 (2)0.000 (2)
C20.015 (2)0.017 (2)0.029 (3)0.000 (2)0.008 (2)0.007 (2)
C30.018 (3)0.026 (3)0.027 (3)0.001 (2)0.002 (2)0.012 (2)
C40.021 (3)0.025 (3)0.018 (2)0.003 (2)0.002 (2)0.005 (2)
C50.016 (2)0.016 (2)0.021 (2)0.0014 (19)0.0055 (19)0.0034 (19)
C60.018 (3)0.016 (2)0.023 (2)0.001 (2)0.009 (2)0.0022 (19)
C70.020 (3)0.021 (3)0.033 (3)0.004 (2)0.006 (2)0.004 (2)
C150.026 (3)0.022 (3)0.018 (2)0.002 (2)0.002 (2)0.001 (2)
C160.034 (3)0.017 (3)0.024 (3)0.003 (2)0.000 (2)0.002 (2)
C170.042 (4)0.023 (3)0.030 (3)0.008 (3)0.004 (3)0.005 (2)
C180.039 (4)0.030 (3)0.023 (3)0.001 (3)0.009 (2)0.002 (2)
C190.032 (3)0.021 (3)0.018 (2)0.002 (2)0.001 (2)0.001 (2)
C200.031 (3)0.021 (3)0.029 (3)0.004 (2)0.001 (2)0.001 (2)
C210.031 (3)0.020 (3)0.022 (3)0.003 (2)0.006 (2)0.000 (2)
O170.037 (2)0.0181 (19)0.0229 (19)0.0017 (17)0.0011 (16)0.0010 (15)
O180.045 (3)0.029 (2)0.023 (2)0.0034 (19)0.0053 (18)0.0012 (17)
O130.022 (2)0.034 (2)0.027 (2)0.0098 (17)0.0028 (16)0.0050 (17)
C140.026 (3)0.022 (3)0.029 (3)0.003 (2)0.005 (2)0.009 (2)
O140.025 (2)0.030 (2)0.039 (2)0.0053 (18)0.0023 (18)0.0106 (18)
C90.020 (3)0.019 (3)0.030 (3)0.000 (2)0.006 (2)0.008 (2)
C80.024 (3)0.024 (3)0.021 (3)0.000 (2)0.002 (2)0.002 (2)
C100.022 (3)0.035 (3)0.024 (3)0.004 (2)0.001 (2)0.011 (2)
N20.023 (2)0.019 (2)0.023 (2)0.0028 (18)0.0005 (18)0.0028 (18)
C110.026 (3)0.028 (3)0.021 (3)0.003 (2)0.002 (2)0.006 (2)
C120.024 (3)0.021 (3)0.017 (2)0.001 (2)0.004 (2)0.001 (2)
C130.027 (3)0.020 (3)0.025 (3)0.002 (2)0.006 (2)0.002 (2)
O110.031 (2)0.0202 (19)0.0208 (18)0.0051 (16)0.0036 (16)0.0004 (15)
O120.044 (3)0.035 (2)0.023 (2)0.007 (2)0.0023 (18)0.0049 (18)
Geometric parameters (Å, º) top
Yb1—O22.299 (5)N1—C51.345 (6)
Yb1—O32.272 (4)N3—C151.347 (6)
Yb1—O42.411 (4)N3—C191.351 (7)
Yb1—O52.278 (4)C1—C21.388 (7)
Yb1—O62.364 (4)C1—H1C0.9300
Yb1—O72.447 (3)C2—C31.386 (7)
Yb1—O132.364 (4)C2—C71.518 (7)
Yb1—O152.281 (4)C3—C41.388 (7)
Cu1—N11.975 (4)C3—H3C0.9300
Cu1—N2i1.955 (4)C4—C51.384 (7)
Cu1—O12.372 (4)C4—H4C0.9300
Cu1—O81.964 (3)C5—C61.510 (7)
Cu1—O11i1.943 (3)C15—C161.379 (7)
Cu2—N3ii1.967 (4)C15—H15A0.9300
Cu2—N31.967 (4)C16—C171.376 (7)
Cu2—O171.931 (4)C16—C201.515 (7)
Cu2—O17ii1.931 (4)C17—C181.386 (8)
O1—H1A0.8187C17—H17A0.9300
O1—H1B0.8198C18—C191.365 (8)
O2—H2A0.8178C18—H18A0.9300
O2—H2B0.8205C19—C211.516 (7)
O3—H3A0.8205C21—O181.224 (6)
O3—H3B0.8178C21—O171.285 (6)
O4—H4A0.8202O13—C141.250 (6)
O4—H4B0.8200C14—O141.259 (6)
O5—H5A0.8202C14—C91.516 (7)
O5—H5B0.8202C9—C81.374 (7)
O6—H6A0.8201C9—C101.378 (7)
O6—H6B0.8196C8—N21.331 (7)
O7—C61.230 (6)C8—H8A0.9300
O8—C61.275 (6)C10—C111.388 (8)
O9—C71.264 (6)C10—H10A0.9300
O10—C71.245 (6)N2—C121.356 (6)
O15—C201.260 (6)N2—Cu1i1.955 (4)
O16—C201.247 (7)C11—C121.369 (7)
O19—H19A0.8211C11—H11A0.9300
O19—H19B0.8196C12—C131.514 (7)
O20—H20A0.8200C13—O121.225 (6)
O20—H20B0.8196C13—O111.291 (6)
N1—C11.338 (6)O11—Cu1i1.943 (3)
O3—Yb1—O5140.82 (13)C15—N3—Cu2129.5 (4)
O3—Yb1—O1574.65 (14)C19—N3—Cu2111.9 (3)
O5—Yb1—O15143.99 (14)N1—C1—C2121.8 (5)
O3—Yb1—O287.37 (17)N1—C1—H1C119.1
O5—Yb1—O293.59 (17)C2—C1—H1C119.1
O15—Yb1—O294.33 (18)C3—C2—C1118.6 (5)
O3—Yb1—O6120.10 (16)C3—C2—C7121.8 (5)
O5—Yb1—O677.53 (15)C1—C2—C7119.6 (4)
O15—Yb1—O676.43 (15)C2—C3—C4119.6 (5)
O2—Yb1—O6146.13 (15)C2—C3—H3C120.2
O3—Yb1—O13140.12 (13)C4—C3—H3C120.2
O5—Yb1—O1376.19 (13)C5—C4—C3118.6 (5)
O15—Yb1—O1372.76 (14)C5—C4—H4C120.7
O2—Yb1—O1372.90 (15)C3—C4—H4C120.7
O6—Yb1—O1373.24 (14)N1—C5—C4121.8 (4)
O3—Yb1—O477.38 (15)N1—C5—C6114.6 (4)
O5—Yb1—O479.41 (14)C4—C5—C6123.5 (4)
O15—Yb1—O4111.93 (15)O7—C6—O8125.8 (5)
O2—Yb1—O4144.31 (15)O7—C6—C5119.7 (5)
O6—Yb1—O466.81 (13)O8—C6—C5114.5 (4)
O13—Yb1—O4136.66 (13)O10—C7—O9125.6 (5)
O3—Yb1—O768.67 (13)O10—C7—C2117.4 (5)
O5—Yb1—O774.46 (13)O9—C7—C2117.0 (5)
O15—Yb1—O7141.10 (13)N3—C15—C16121.1 (5)
O2—Yb1—O771.91 (15)N3—C15—H15A119.5
O6—Yb1—O7133.87 (13)C16—C15—H15A119.5
O13—Yb1—O7131.94 (14)C17—C16—C15120.0 (5)
O4—Yb1—O772.50 (13)C17—C16—C20119.6 (5)
O11i—Cu1—N2i83.59 (16)C15—C16—C20120.4 (5)
O11i—Cu1—O8168.02 (17)C16—C17—C18118.8 (5)
N2i—Cu1—O894.15 (16)C16—C17—H17A120.6
O11i—Cu1—N197.55 (16)C18—C17—H17A120.6
N2i—Cu1—N1170.26 (18)C19—C18—C17118.7 (5)
O8—Cu1—N182.73 (15)C19—C18—H18A120.6
O11i—Cu1—O1105.91 (15)C17—C18—H18A120.6
N2i—Cu1—O195.56 (17)N3—C19—C18122.7 (5)
O8—Cu1—O186.00 (15)N3—C19—C21113.7 (5)
N1—Cu1—O193.43 (16)C18—C19—C21123.6 (5)
O17—Cu2—O17ii180.0O16—C20—O15125.6 (5)
O17—Cu2—N3ii95.81 (16)O16—C20—C16117.0 (5)
O17ii—Cu2—N3ii84.19 (16)O15—C20—C16117.2 (5)
O17—Cu2—N384.19 (16)O18—C21—O17124.7 (5)
O17ii—Cu2—N395.81 (16)O18—C21—C19119.8 (5)
N3ii—Cu2—N3180.0 (3)O17—C21—C19115.5 (4)
Cu1—O1—H1A100.1C21—O17—Cu2114.7 (3)
Cu1—O1—H1B104.2C14—O13—Yb1135.2 (3)
H1A—O1—H1B106.2O13—C14—O14125.9 (5)
Yb1—O2—H2A118.6O13—C14—C9117.7 (5)
Yb1—O2—H2B132.6O14—C14—C9116.4 (5)
H2A—O2—H2B107.7C8—C9—C10118.3 (5)
Yb1—O3—H3A129.8C8—C9—C14117.0 (5)
Yb1—O3—H3B122.7C10—C9—C14124.6 (5)
H3A—O3—H3B107.3N2—C8—C9122.4 (5)
Yb1—O4—H4A112.3N2—C8—H8A118.8
Yb1—O4—H4B108.2C9—C8—H8A118.8
H4A—O4—H4B105.2C9—C10—C11119.9 (5)
Yb1—O5—H5A122.2C9—C10—H10A120.0
Yb1—O5—H5B125.1C11—C10—H10A120.0
H5A—O5—H5B105.8C8—N2—C12119.2 (4)
Yb1—O6—H6A119.0C8—N2—Cu1i127.6 (4)
Yb1—O6—H6B126.0C12—N2—Cu1i113.1 (3)
H6A—O6—H6B108.2C12—C11—C10118.5 (5)
C6—O7—Yb1136.8 (3)C12—C11—H11A120.8
C6—O8—Cu1115.5 (3)C10—C11—H11A120.8
C20—O15—Yb1140.2 (4)N2—C12—C11121.6 (5)
H19A—O19—H19B106.7N2—C12—C13113.0 (4)
H20A—O20—H20B108.0C11—C12—C13125.3 (5)
C1—N1—C5119.6 (4)O12—C13—O11124.6 (5)
C1—N1—Cu1128.1 (3)O12—C13—C12120.2 (5)
C5—N1—Cu1112.3 (3)O11—C13—C12115.2 (4)
C15—N3—C19118.6 (5)C13—O11—Cu1i114.7 (3)
O2—Yb1—O7—C6128.6 (5)C5—N1—C1—C21.0 (8)
O3—Yb1—O7—C6137.1 (5)Cu1—N1—C5—C4177.6 (4)
O4—Yb1—O7—C654.1 (5)Cu1—N1—C5—C63.1 (6)
O5—Yb1—O7—C629.4 (5)C1—N1—C5—C41.5 (8)
O6—Yb1—O7—C625.3 (6)C1—N1—C5—C6177.7 (5)
O13—Yb1—O7—C683.7 (5)C12—N2—C8—C91.3 (8)
O15—Yb1—O7—C6157.6 (5)Cu1i—N2—C8—C9175.7 (4)
O2—Yb1—O13—C14109.4 (5)C8—N2—C12—C110.6 (8)
O3—Yb1—O13—C14173.1 (5)C8—N2—C12—C13177.9 (5)
O4—Yb1—O13—C1446.4 (6)Cu1i—N2—C12—C11178.0 (4)
O5—Yb1—O13—C1411.1 (5)Cu1i—N2—C12—C130.5 (6)
O6—Yb1—O13—C1469.8 (5)Cu2—N3—C15—C16174.8 (4)
O7—Yb1—O13—C1464.9 (6)C19—N3—C15—C163.2 (8)
O15—Yb1—O13—C14150.4 (6)Cu2—N3—C19—C18177.7 (5)
O2—Yb1—O15—C2080.6 (6)Cu2—N3—C19—C211.0 (6)
O3—Yb1—O15—C205.5 (6)C15—N3—C19—C180.7 (9)
O4—Yb1—O15—C2074.7 (6)C15—N3—C19—C21179.4 (5)
O5—Yb1—O15—C20177.2 (5)N1—C1—C2—C30.8 (8)
O6—Yb1—O15—C20132.4 (6)N1—C1—C2—C7176.6 (5)
O7—Yb1—O15—C2014.3 (7)C1—C2—C3—C42.0 (8)
O13—Yb1—O15—C20151.2 (6)C7—C2—C3—C4175.3 (5)
O1—Cu1—O8—C690.2 (4)C1—C2—C7—O9173.9 (5)
N1—Cu1—O8—C63.8 (4)C1—C2—C7—O104.5 (8)
N2i—Cu1—O8—C6174.6 (4)C3—C2—C7—O93.4 (8)
O1—Cu1—N1—C195.5 (5)C3—C2—C7—O10178.2 (5)
O1—Cu1—N1—C585.5 (4)C2—C3—C4—C51.5 (8)
O8—Cu1—N1—C1179.0 (5)C3—C4—C5—N10.3 (8)
O8—Cu1—N1—C50.1 (4)C3—C4—C5—C6178.9 (5)
O11i—Cu1—N1—C111.1 (5)N1—C5—C6—O7173.5 (5)
O11i—Cu1—N1—C5168.0 (4)N1—C5—C6—O86.4 (7)
O1—Cu1—O11i—C13i88.6 (4)C4—C5—C6—O75.7 (8)
N1—Cu1—O11i—C13i175.6 (4)C4—C5—C6—O8174.4 (5)
O1—Cu1—N2i—C8i79.9 (5)N2—C8—C9—C101.5 (9)
O1—Cu1—N2i—C12i103.0 (4)N2—C8—C9—C14175.7 (5)
O8—Cu1—N2i—C8i6.6 (5)C8—C9—C10—C110.1 (9)
O8—Cu1—N2i—C12i170.6 (4)C14—C9—C10—C11177.1 (6)
N3—Cu2—O17—C211.5 (4)C8—C9—C14—O13165.0 (5)
O12iii—Cu2—O17—C2192.1 (4)C8—C9—C14—O1412.6 (8)
N3ii—Cu2—O17—C21178.5 (4)C10—C9—C14—O1312.0 (9)
O12iv—Cu2—O17—C2188.0 (4)C10—C9—C14—O14170.4 (6)
O17—Cu2—N3—C15178.0 (5)C9—C10—C11—C121.9 (9)
O17—Cu2—N3—C190.2 (4)C10—C11—C12—N22.2 (8)
O12iii—Cu2—N3—C1586.7 (5)C10—C11—C12—C13176.1 (5)
O12iii—Cu2—N3—C1991.5 (4)N2—C12—C13—O114.9 (7)
O17ii—Cu2—N3—C152.0 (5)N2—C12—C13—O12173.9 (5)
O17ii—Cu2—N3—C19179.8 (4)C11—C12—C13—O11173.5 (5)
O12iv—Cu2—N3—C1593.3 (5)C11—C12—C13—O127.7 (9)
O12iv—Cu2—N3—C1988.6 (4)N3—C15—C16—C173.2 (9)
Yb1—O7—C6—O817.4 (9)N3—C15—C16—C20173.5 (5)
Yb1—O7—C6—C5162.5 (4)C15—C16—C17—C180.7 (9)
Cu1—O8—C6—O7173.5 (4)C20—C16—C17—C18176.1 (6)
Cu1—O8—C6—C56.4 (6)C15—C16—C20—O1516.8 (8)
Cu1i—O11—C13—O12171.8 (5)C15—C16—C20—O16159.0 (6)
Cu1i—O11—C13—C127.0 (6)C17—C16—C20—O15166.5 (6)
Cu2v—O12—C13—O1185.5 (6)C17—C16—C20—O1617.7 (9)
Cu2v—O12—C13—C1293.1 (5)C16—C17—C18—C191.8 (10)
Yb1—O13—C14—O1425.3 (9)C17—C18—C19—N31.8 (10)
Yb1—O13—C14—C9152.0 (4)C17—C18—C19—C21176.7 (6)
Yb1—O15—C20—O1611.1 (10)N3—C19—C21—O172.2 (8)
Yb1—O15—C20—C16173.6 (4)N3—C19—C21—O18178.3 (5)
Cu2—O17—C21—O18178.2 (5)C18—C19—C21—O17176.4 (6)
Cu2—O17—C21—C192.4 (6)C18—C19—C21—O183.1 (9)
Cu1—N1—C1—C2178.0 (4)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x+2, y, z+1; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O17vi0.822.503.072 (5)128
O1—H1A···O18vi0.822.062.865 (6)166
O1—H1B···O9vii0.822.022.840 (6)173
O2—H2A···O10viii0.822.482.988 (7)121
O2—H2B···O190.821.832.644 (8)173
O3—H3A···O160.821.912.572 (6)137
O3—H3B···O10vii0.821.912.695 (6)159
O4—H4A···O9vii0.821.872.670 (6)165
O4—H4B···O14iii0.821.982.774 (6)163
O5—H5A···O140.821.852.586 (6)148
O5—H5B···O80.822.062.717 (6)137
O6—H6A···O1ix0.822.092.826 (6)149
O6—H6B···O4ix0.822.152.936 (6)160
O19—H19A···O20x0.822.062.816 (8)152
O19—H19B···O12xi0.822.152.965 (7)171
O20—H20A···O13iii0.822.553.174 (7)134
O20—H20B···O160.822.152.957 (9)166
C3—H3C···O18x0.932.423.134 (7)134
C11—H11A···O12iv0.932.523.409 (7)159
Symmetry codes: (iii) x1, y, z; (iv) x+2, y, z+1; (vi) x, y+1, z1; (vii) x, y+2, z; (viii) x+1, y+2, z; (ix) x+1, y+1, z; (x) x, y+1, z+1; (xi) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu3Yb2(C7H3NO4)6(H2O)12]·2H2O
Mr1815.58
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.3486 (4), 13.5417 (7), 15.1244 (8)
α, β, γ (°)72.534 (1), 76.330 (1), 80.166 (1)
V3)1386.89 (13)
Z1
Radiation typeMo Kα
µ (mm1)4.59
Crystal size (mm)0.13 × 0.08 × 0.05
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.739, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
14910, 6624, 6010
Rint0.044
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.083, 1.23
No. of reflections6624
No. of parameters421
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 1.68

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Yb1—O22.299 (5)Cu1—N11.975 (4)
Yb1—O32.272 (4)Cu1—N2i1.955 (4)
Yb1—O42.411 (4)Cu1—O12.372 (4)
Yb1—O52.278 (4)Cu1—O81.964 (3)
Yb1—O62.364 (4)Cu1—O11i1.943 (3)
Yb1—O72.447 (3)Cu2—N31.967 (4)
Yb1—O132.364 (4)Cu2—O171.931 (4)
Yb1—O152.281 (4)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O17ii0.822.503.072 (5)128
O1—H1A···O18ii0.822.062.865 (6)166
O1—H1B···O9iii0.822.022.840 (6)173
O2—H2A···O10iv0.822.482.988 (7)121
O2—H2B···O190.821.832.644 (8)173
O3—H3A···O160.821.912.572 (6)137
O3—H3B···O10iii0.821.912.695 (6)159
O4—H4A···O9iii0.821.872.670 (6)165
O4—H4B···O14v0.821.982.774 (6)163
O5—H5A···O140.821.852.586 (6)148
O5—H5B···O80.822.062.717 (6)137
O6—H6A···O1vi0.822.092.826 (6)149
O6—H6B···O4vi0.822.152.936 (6)160
O19—H19A···O20vii0.822.062.816 (8)152
O19—H19B···O12viii0.822.152.965 (7)171
O20—H20A···O13v0.822.553.174 (7)134
O20—H20B···O160.822.152.957 (9)166
Symmetry codes: (ii) x, y+1, z1; (iii) x, y+2, z; (iv) x+1, y+2, z; (v) x1, y, z; (vi) x+1, y+1, z; (vii) x, y+1, z+1; (viii) x1, y+1, z.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, Y., Song, Y. S., Yan, B. & Shao, M. (2008). J. Solid State Chem. 181, 1731–1737.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y.-L., Hou, H.-W., Li, H.-K., Fan, Y.-T. & Zhu, Y. (2005). Cryst. Growth Des. 5, 1405–1413.  CrossRef CAS Google Scholar
First citationWen, L.-L., Lu, Z.-D., Lin, J.-G., Tian, Z.-F., Zhu, H.-Z. & Meng, Q.-J. (2007). Cryst. Growth Des. 7, 93–99.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m406-m407
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds