metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m423-m424

catena-Poly[[[di­aqua­(1,3-benzimidazole-κN3)manganese(II)]-μ-benzene-1,3-di­carboxyl­ato-κ3O1,O1′:O3] dihydrate]

aZhejiang College of Construction, Hangzhou 311231, People's Republic of China
*Correspondence e-mail: hzwxh2000@yahoo.com.cn

(Received 28 February 2011; accepted 6 March 2011; online 12 March 2011)

In the polymeric title complex, {[Mn(C8H4O4)(C7H6N2)(H2O)2]·2H2O}n, the MnII cation is coordinated by two benzene­dicarboxyl­ate anions, one benzimidazole ligand and two water mol­ecules in a distorted MnNO5 octa­hedral geometry. In the crystal, each benzene­dicarboxyl­ate anion bridges adjacent MnII cations through the terminal carboxyl­ate groups, forming a polymeric complex chain along the a axis. One Mn—Ocarboxyl­ate bond is much longer than the others. In the crystal, ππ stacking is observed between nearly parallel [dihedral angle = 4.32 (6)°] benzimidazole aromatic ring systems of adjacent mol­ecules, the centroid–centroid distance between the imidazole and benzene rings being 3.5421 (11) Å. Extensive inter­molecular O—H⋯O and N—H⋯O hydrogen bonding is present in the crystal structure. The two lattice water mol­ecules are located on twofold rotation axes.

Related literature

For background to ππ stacking, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.]). For a related structure, see: Hu et al. (2006[Hu, Z.-Q., Wu, L.-B. & Lai, G.-Q. (2006). Acta Cryst. E62, m712-m713.]). For a longer Mn—O bond length in complex with a seven-coordinate MnII atom, see: Liu et al. (2005[Liu, Y., Xu, D.-J. & Hung, C.-H. (2005). Acta Cryst. C61, m155-m157.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H4O4)(C7H6N2)(H2O)2]·2H2O

  • Mr = 409.25

  • Orthorhombic, P b c n

  • a = 18.9148 (12) Å

  • b = 23.7112 (16) Å

  • c = 7.8701 (4) Å

  • V = 3529.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 292 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.786, Tmax = 0.880

  • 20574 measured reflections

  • 4043 independent reflections

  • 3261 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.04

  • 4043 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Mn—N3 2.1657 (15)
Mn—O2i 2.0995 (13)
Mn—O3 2.1832 (13)
Mn—O4 2.6075 (16)
Mn—O5 2.1642 (14)
Mn—O6 2.1674 (14)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O9ii 0.86 1.94 2.795 (2) 171
O5—H5A⋯O4iii 0.89 1.89 2.7605 (18) 168
O5—H5B⋯O1iv 0.88 1.96 2.8120 (18) 164
O6—H6A⋯O4v 0.85 1.95 2.7553 (18) 159
O6—H6B⋯O1vi 0.86 1.88 2.7379 (18) 176
O7—H7A⋯O1 0.95 1.99 2.8844 (18) 155
O8—H8A⋯O3 0.94 1.79 2.7303 (18) 176
O9—H9A⋯O7 0.94 1.92 2.846 (2) 167
O9—H9B⋯O8 0.91 1.92 2.799 (2) 162
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y, -z+{\script{3\over 2}}]; (v) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

π-π Stacking between aromatic rings plays an important role in the electron transfer process in some biological system (Deisenhofer & Michel, 1989). Many structures of metal complexes incorporating aromatic ring ligands have been reported (Hu & Lai, 2006). The title MnII complex includes both of benzimidazole (bzim) and benzendicarboxylate (bdc) aromatic ring ligands, its crystal structure is presented here.

A fragment of the title polymeric MnII complex, together with lattice water molecules, is shown in Fig. 1. The MnII ion is surrounded by two bdc anions, one bzim and two coordination water molecules in a distorted octahedral geometry. Each bdc anion bridges two MnII ions to form the one dimensional polymeric chain running along the a axis. The Mn—O4 distance of 2.6075 (16) Å is much longer than the Mn—O3 bond distance (Table 1) but is comparable to 2.5356 (16) Å found in a seven-coordination MnII complex (Liu et al. 2005).

In the crystal structure, the partially overlapped arrangement is observed between nearly parallel bzim ring systems [dihedral angle 4.32 (6)°] (Fig. 2); the centroid-to-centroid separation between the N3-imidazole and C9i-benzene rings is 3.5421 (11) Å (symmetry code: (ii) (x, 1 - y, -1/2 + z), indicating the existence of π-π stacking between bzim ring systems of the adjacent molecules.

In the asymmetric unit two lattice water molecules locate on twofold rotation axes and are hydrogen bonded to the carboxyl groups of the complex, while the other lattice water molecule locates on a general position and links with bzim ligand of the complex via N—H···O hydrogen bonding (Table 2). Lattice water molecules are linked together via O—H···O hydrogen bonding and filled in the cavity formed by the polymeric complex chains (Fig. 3).

Related literature top

For background to ππ stacking, see: Deisenhofer & Michel (1989). For a related structure, see: Hu & Lai (2006). For a longer Mn—O bond length in complex with a seven-coordinate MnII atom, see: Liu et al. (2005).

Experimental top

An ethanol solution (5 ml) of benzimidazole (0.236 g, 2 mmol) was mixed with an aqueous solution (5 ml) of manganese(II) acetate tetrahydrate (0.490 g, 2 mmol) at room temperature. The solution was refluxed for 30 min. Then an aqueous solution (8 ml) containing 1,3-benzenedicarboxylic acid (0.332 g, 2 mmol) and NaOH (0.160 g, 4 mmol) was added dropwise into the above solution. The mixture was refluxed for a further 2 h. After cooling to room temperature the solution was filtered. Single crystals of the title compound were obtained from the filtrate after 2 week.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with N—H = 0.86 and C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A fragment of the polymeric structure of (I) with 40% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) 1/2 + x,3/2 - y,1 - z].
[Figure 2] Fig. 2. A diagram showing the partially overlapped arrangement between aromatic rings [symmetry code: (ii) x,1 - y,-1/2 + z].
catena-Poly[[[diaqua(1,3-benzimidazole-κN3)manganese(II)]- µ-benzene-1,3-dicarboxylato-κ3O1,O1':O3] dihydrate] top
Crystal data top
[Mn(C8H4O4)(C7H6N2)(H2O)2]·2H2OF(000) = 1688
Mr = 409.25Dx = 1.540 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 8868 reflections
a = 18.9148 (12) Åθ = 3.0–25.0°
b = 23.7112 (16) ŵ = 0.79 mm1
c = 7.8701 (4) ÅT = 292 K
V = 3529.7 (4) Å3Prism, yellow
Z = 80.24 × 0.20 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4043 independent reflections
Radiation source: fine-focus sealed tube3261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2420
Tmin = 0.786, Tmax = 0.880k = 3030
20574 measured reflectionsl = 107
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0428P)2 + 2.5725P]
where P = (Fo2 + 2Fc2)/3
4043 reflections(Δ/σ)max = 0.002
236 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Mn(C8H4O4)(C7H6N2)(H2O)2]·2H2OV = 3529.7 (4) Å3
Mr = 409.25Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 18.9148 (12) ŵ = 0.79 mm1
b = 23.7112 (16) ÅT = 292 K
c = 7.8701 (4) Å0.24 × 0.20 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4043 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3261 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.880Rint = 0.029
20574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
4043 reflectionsΔρmin = 0.26 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.714708 (13)0.679735 (11)0.66543 (3)0.01758 (9)
N10.63968 (9)0.50825 (7)0.6050 (2)0.0300 (4)
H10.60840.48480.56910.036*
N30.69188 (8)0.59024 (6)0.66113 (19)0.0227 (3)
O10.37986 (7)0.73206 (5)0.33053 (17)0.0255 (3)
O20.32557 (7)0.81586 (6)0.33551 (17)0.0278 (3)
O30.60704 (7)0.71200 (6)0.64217 (17)0.0283 (3)
O40.67794 (7)0.78568 (7)0.65720 (16)0.0305 (3)
O50.71498 (6)0.68148 (5)0.94037 (17)0.0232 (3)
H5A0.75340.68971.00010.035*
H5B0.67930.69371.00100.035*
O60.71830 (6)0.69029 (5)0.39202 (17)0.0234 (3)
H6A0.75720.69630.34180.035*
H6B0.68610.70250.32470.035*
O70.50000.66207 (9)0.25000.0384 (5)
H7A0.46050.68690.24190.058*
O80.50000.64354 (8)0.75000.0321 (4)
H8A0.53640.66850.71710.048*
O90.45942 (9)0.57472 (7)0.4780 (2)0.0496 (4)
H9A0.47130.59960.38860.074*
H9B0.47730.59050.57370.074*
C20.63681 (10)0.56472 (8)0.5930 (2)0.0277 (4)
H20.59960.58390.54170.033*
C40.79996 (10)0.54864 (8)0.8052 (2)0.0270 (4)
H40.82200.58270.82970.032*
C50.83029 (11)0.49747 (9)0.8501 (3)0.0333 (5)
H50.87390.49720.90490.040*
C60.79648 (12)0.44598 (9)0.8146 (3)0.0357 (5)
H60.81800.41250.84820.043*
C70.73256 (12)0.44362 (8)0.7318 (3)0.0340 (5)
H70.71060.40940.70770.041*
C80.70224 (11)0.49489 (8)0.6857 (2)0.0264 (4)
C90.73497 (10)0.54671 (7)0.7219 (2)0.0229 (4)
C100.37791 (9)0.78435 (8)0.3620 (2)0.0215 (4)
C110.44298 (9)0.81128 (7)0.4375 (2)0.0202 (3)
C120.49726 (9)0.77770 (7)0.5012 (2)0.0203 (3)
H120.49240.73870.50030.024*
C130.55886 (9)0.80183 (8)0.5661 (2)0.0217 (4)
C140.56567 (10)0.86047 (8)0.5684 (2)0.0275 (4)
H140.60690.87700.60950.033*
C150.51092 (11)0.89410 (8)0.5092 (3)0.0315 (4)
H150.51520.93310.51340.038*
C160.44988 (10)0.86999 (8)0.4437 (2)0.0255 (4)
H160.41350.89290.40380.031*
C170.61786 (9)0.76481 (8)0.6275 (2)0.0242 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.01342 (14)0.02063 (14)0.01869 (15)0.00030 (9)0.00052 (9)0.00094 (10)
N10.0311 (9)0.0279 (8)0.0310 (9)0.0081 (7)0.0018 (7)0.0039 (7)
N30.0232 (7)0.0235 (8)0.0215 (8)0.0005 (6)0.0010 (6)0.0007 (6)
O10.0192 (6)0.0291 (7)0.0282 (7)0.0034 (5)0.0031 (5)0.0002 (5)
O20.0157 (6)0.0364 (7)0.0313 (8)0.0021 (5)0.0017 (5)0.0056 (6)
O30.0188 (6)0.0350 (7)0.0310 (7)0.0057 (5)0.0008 (5)0.0066 (6)
O40.0143 (6)0.0546 (9)0.0226 (7)0.0021 (6)0.0021 (5)0.0012 (6)
O50.0179 (6)0.0317 (7)0.0201 (6)0.0003 (5)0.0006 (5)0.0032 (5)
O60.0184 (6)0.0324 (7)0.0195 (6)0.0012 (5)0.0016 (5)0.0048 (5)
O70.0381 (12)0.0359 (11)0.0413 (13)0.0000.0073 (10)0.000
O80.0264 (10)0.0320 (10)0.0379 (12)0.0000.0047 (9)0.000
O90.0577 (11)0.0495 (10)0.0417 (10)0.0234 (8)0.0079 (8)0.0003 (8)
C20.0271 (10)0.0297 (10)0.0264 (10)0.0010 (8)0.0011 (8)0.0030 (8)
C40.0273 (10)0.0285 (9)0.0253 (10)0.0021 (7)0.0028 (7)0.0022 (7)
C50.0318 (11)0.0394 (11)0.0288 (11)0.0076 (9)0.0014 (8)0.0056 (8)
C60.0468 (13)0.0282 (10)0.0321 (11)0.0115 (9)0.0113 (9)0.0069 (8)
C70.0491 (13)0.0219 (9)0.0310 (11)0.0005 (8)0.0116 (9)0.0003 (8)
C80.0317 (10)0.0250 (9)0.0224 (9)0.0036 (7)0.0070 (8)0.0010 (7)
C90.0271 (9)0.0219 (8)0.0195 (9)0.0004 (7)0.0056 (7)0.0010 (7)
C100.0156 (8)0.0308 (9)0.0179 (8)0.0014 (6)0.0015 (6)0.0033 (7)
C110.0149 (8)0.0288 (9)0.0170 (8)0.0004 (6)0.0012 (6)0.0001 (7)
C120.0172 (8)0.0259 (8)0.0178 (8)0.0003 (6)0.0022 (6)0.0008 (7)
C130.0171 (8)0.0309 (9)0.0171 (8)0.0006 (7)0.0009 (7)0.0002 (7)
C140.0213 (9)0.0345 (10)0.0267 (10)0.0058 (7)0.0030 (7)0.0035 (8)
C150.0311 (11)0.0261 (9)0.0373 (12)0.0019 (8)0.0034 (9)0.0019 (8)
C160.0214 (9)0.0287 (9)0.0265 (9)0.0047 (7)0.0011 (7)0.0008 (7)
C170.0164 (8)0.0396 (11)0.0165 (8)0.0035 (7)0.0023 (6)0.0003 (7)
Geometric parameters (Å, º) top
Mn—N32.1657 (15)C2—H20.9300
Mn—O2i2.0995 (13)C4—C51.388 (3)
Mn—O32.1832 (13)C4—C91.394 (3)
Mn—O42.6075 (16)C4—H40.9300
Mn—O52.1642 (14)C5—C61.406 (3)
Mn—O62.1674 (14)C5—H50.9300
N1—C21.343 (2)C6—C71.375 (3)
N1—C81.380 (3)C6—H60.9300
N1—H10.8600C7—C81.392 (3)
N3—C21.319 (2)C7—H70.9300
N3—C91.400 (2)C8—C91.405 (3)
O1—C101.265 (2)C10—C111.509 (2)
O2—C101.258 (2)C11—C121.393 (2)
O3—C171.274 (2)C11—C161.399 (3)
O4—C171.261 (2)C12—C131.395 (2)
O5—H5A0.8866C12—H120.9300
O5—H5B0.8758C13—C141.396 (3)
O6—H6A0.8469C13—C171.500 (2)
O6—H6B0.8576C14—C151.388 (3)
O7—H7A0.9532C14—H140.9300
O8—H8A0.9437C15—C161.388 (3)
O9—H9A0.9455C15—H150.9300
O9—H9B0.9065C16—H160.9300
O2i—Mn—O590.01 (5)C7—C6—H6119.0
O2i—Mn—N3104.35 (6)C5—C6—H6119.0
O5—Mn—N392.00 (5)C6—C7—C8116.76 (19)
O2i—Mn—O687.68 (5)C6—C7—H7121.6
O5—Mn—O6172.03 (5)C8—C7—H7121.6
N3—Mn—O695.96 (5)N1—C8—C7132.35 (19)
O2i—Mn—O3156.06 (5)N1—C8—C9105.70 (16)
O5—Mn—O394.55 (5)C7—C8—C9121.95 (19)
N3—Mn—O398.98 (6)C4—C9—N3130.56 (17)
O6—Mn—O384.58 (5)C4—C9—C8120.85 (17)
C2—N1—C8107.21 (16)N3—C9—C8108.60 (16)
C2—N1—H1126.4O2—C10—O1124.95 (16)
C8—N1—H1126.4O2—C10—C11117.13 (16)
C2—N3—C9105.11 (15)O1—C10—C11117.92 (15)
C2—N3—Mn127.84 (13)C12—C11—C16119.20 (16)
C9—N3—Mn126.95 (12)C12—C11—C10120.08 (15)
C10—O2—Mnii144.73 (12)C16—C11—C10120.72 (16)
C17—O3—Mn101.66 (11)C11—C12—C13120.86 (16)
Mn—O5—H5A122.4C11—C12—H12119.6
Mn—O5—H5B123.3C13—C12—H12119.6
H5A—O5—H5B105.7C12—C13—C14119.34 (16)
Mn—O6—H6A120.7C12—C13—C17119.96 (16)
Mn—O6—H6B129.0C14—C13—C17120.67 (16)
H6A—O6—H6B105.8C15—C14—C13119.94 (17)
H9A—O9—H9B105.8C15—C14—H14120.0
N3—C2—N1113.38 (18)C13—C14—H14120.0
N3—C2—H2123.3C14—C15—C16120.60 (18)
N1—C2—H2123.3C14—C15—H15119.7
C5—C4—C9117.11 (18)C16—C15—H15119.7
C5—C4—H4121.4C15—C16—C11120.02 (17)
C9—C4—H4121.4C15—C16—H16120.0
C4—C5—C6121.4 (2)C11—C16—H16120.0
C4—C5—H5119.3O4—C17—O3120.89 (17)
C6—C5—H5119.3O4—C17—C13120.04 (17)
C7—C6—C5121.98 (19)O3—C17—C13119.01 (16)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O9iii0.861.942.795 (2)171
O5—H5A···O4iv0.891.892.7605 (18)168
O5—H5B···O1v0.881.962.8120 (18)164
O6—H6A···O4vi0.851.952.7553 (18)159
O6—H6B···O1vii0.861.882.7379 (18)176
O7—H7A···O10.951.992.8844 (18)155
O8—H8A···O30.941.792.7303 (18)176
O9—H9A···O70.941.922.846 (2)167
O9—H9B···O80.911.922.799 (2)162
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+3/2, y+3/2, z+1/2; (v) x+1, y, z+3/2; (vi) x+3/2, y+3/2, z1/2; (vii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C8H4O4)(C7H6N2)(H2O)2]·2H2O
Mr409.25
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)292
a, b, c (Å)18.9148 (12), 23.7112 (16), 7.8701 (4)
V3)3529.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.786, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
20574, 4043, 3261
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.04
No. of reflections4043
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.26

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Mn—N32.1657 (15)Mn—O42.6075 (16)
Mn—O2i2.0995 (13)Mn—O52.1642 (14)
Mn—O32.1832 (13)Mn—O62.1674 (14)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O9ii0.861.942.795 (2)171
O5—H5A···O4iii0.891.892.7605 (18)168
O5—H5B···O1iv0.881.962.8120 (18)164
O6—H6A···O4v0.851.952.7553 (18)159
O6—H6B···O1vi0.861.882.7379 (18)176
O7—H7A···O10.951.992.8844 (18)155
O8—H8A···O30.941.792.7303 (18)176
O9—H9A···O70.941.922.846 (2)167
O9—H9B···O80.911.922.799 (2)162
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+3/2, y+3/2, z+1/2; (iv) x+1, y, z+3/2; (v) x+3/2, y+3/2, z1/2; (vi) x+1, y, z+1/2.
 

Acknowledgements

The author thanks Dr J.-M. Gu of Zhejiang University for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, Z.-Q., Wu, L.-B. & Lai, G.-Q. (2006). Acta Cryst. E62, m712–m713.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Xu, D.-J. & Hung, C.-H. (2005). Acta Cryst. C61, m155–m157.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m423-m424
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds