metal-organic compounds
catena-Poly[[[diaqua(1,3-benzimidazole-κN3)manganese(II)]-μ-benzene-1,3-dicarboxylato-κ3O1,O1′:O3] dihydrate]
aZhejiang College of Construction, Hangzhou 311231, People's Republic of China
*Correspondence e-mail: hzwxh2000@yahoo.com.cn
In the polymeric title complex, {[Mn(C8H4O4)(C7H6N2)(H2O)2]·2H2O}n, the MnII cation is coordinated by two benzenedicarboxylate anions, one benzimidazole ligand and two water molecules in a distorted MnNO5 octahedral geometry. In the crystal, each benzenedicarboxylate anion bridges adjacent MnII cations through the terminal carboxylate groups, forming a polymeric complex chain along the a axis. One Mn—Ocarboxylate bond is much longer than the others. In the crystal, π–π stacking is observed between nearly parallel [dihedral angle = 4.32 (6)°] benzimidazole aromatic ring systems of adjacent molecules, the centroid–centroid distance between the imidazole and benzene rings being 3.5421 (11) Å. Extensive intermolecular O—H⋯O and N—H⋯O hydrogen bonding is present in the The two lattice water molecules are located on twofold rotation axes.
Related literature
For background to π–π stacking, see: Deisenhofer & Michel (1989). For a related structure, see: Hu et al. (2006). For a longer Mn—O bond length in complex with a seven-coordinate MnII atom, see: Liu et al. (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811008555/xu5169sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811008555/xu5169Isup2.hkl
An ethanol solution (5 ml) of benzimidazole (0.236 g, 2 mmol) was mixed with an aqueous solution (5 ml) of manganese(II) acetate tetrahydrate (0.490 g, 2 mmol) at room temperature. The solution was refluxed for 30 min. Then an aqueous solution (8 ml) containing 1,3-benzenedicarboxylic acid (0.332 g, 2 mmol) and NaOH (0.160 g, 4 mmol) was added dropwise into the above solution. The mixture was refluxed for a further 2 h. After cooling to room temperature the solution was filtered. Single crystals of the title compound were obtained from the filtrate after 2 week.
Water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with N—H = 0.86 and C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(N,C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. A fragment of the polymeric structure of (I) with 40% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) 1/2 + x,3/2 - y,1 - z]. | |
Fig. 2. A diagram showing the partially overlapped arrangement between aromatic rings [symmetry code: (ii) x,1 - y,-1/2 + z]. |
[Mn(C8H4O4)(C7H6N2)(H2O)2]·2H2O | F(000) = 1688 |
Mr = 409.25 | Dx = 1.540 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 8868 reflections |
a = 18.9148 (12) Å | θ = 3.0–25.0° |
b = 23.7112 (16) Å | µ = 0.79 mm−1 |
c = 7.8701 (4) Å | T = 292 K |
V = 3529.7 (4) Å3 | Prism, yellow |
Z = 8 | 0.24 × 0.20 × 0.18 mm |
Rigaku R-AXIS RAPID IP diffractometer | 4043 independent reflections |
Radiation source: fine-focus sealed tube | 3261 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ω scans | θmax = 27.5°, θmin = 2.8° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −24→20 |
Tmin = 0.786, Tmax = 0.880 | k = −30→30 |
20574 measured reflections | l = −10→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0428P)2 + 2.5725P] where P = (Fo2 + 2Fc2)/3 |
4043 reflections | (Δ/σ)max = 0.002 |
236 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
[Mn(C8H4O4)(C7H6N2)(H2O)2]·2H2O | V = 3529.7 (4) Å3 |
Mr = 409.25 | Z = 8 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 18.9148 (12) Å | µ = 0.79 mm−1 |
b = 23.7112 (16) Å | T = 292 K |
c = 7.8701 (4) Å | 0.24 × 0.20 × 0.18 mm |
Rigaku R-AXIS RAPID IP diffractometer | 4043 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3261 reflections with I > 2σ(I) |
Tmin = 0.786, Tmax = 0.880 | Rint = 0.029 |
20574 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.47 e Å−3 |
4043 reflections | Δρmin = −0.26 e Å−3 |
236 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn | 0.714708 (13) | 0.679735 (11) | 0.66543 (3) | 0.01758 (9) | |
N1 | 0.63968 (9) | 0.50825 (7) | 0.6050 (2) | 0.0300 (4) | |
H1 | 0.6084 | 0.4848 | 0.5691 | 0.036* | |
N3 | 0.69188 (8) | 0.59024 (6) | 0.66113 (19) | 0.0227 (3) | |
O1 | 0.37986 (7) | 0.73206 (5) | 0.33053 (17) | 0.0255 (3) | |
O2 | 0.32557 (7) | 0.81586 (6) | 0.33551 (17) | 0.0278 (3) | |
O3 | 0.60704 (7) | 0.71200 (6) | 0.64217 (17) | 0.0283 (3) | |
O4 | 0.67794 (7) | 0.78568 (7) | 0.65720 (16) | 0.0305 (3) | |
O5 | 0.71498 (6) | 0.68148 (5) | 0.94037 (17) | 0.0232 (3) | |
H5A | 0.7534 | 0.6897 | 1.0001 | 0.035* | |
H5B | 0.6793 | 0.6937 | 1.0010 | 0.035* | |
O6 | 0.71830 (6) | 0.69029 (5) | 0.39202 (17) | 0.0234 (3) | |
H6A | 0.7572 | 0.6963 | 0.3418 | 0.035* | |
H6B | 0.6861 | 0.7025 | 0.3247 | 0.035* | |
O7 | 0.5000 | 0.66207 (9) | 0.2500 | 0.0384 (5) | |
H7A | 0.4605 | 0.6869 | 0.2419 | 0.058* | |
O8 | 0.5000 | 0.64354 (8) | 0.7500 | 0.0321 (4) | |
H8A | 0.5364 | 0.6685 | 0.7171 | 0.048* | |
O9 | 0.45942 (9) | 0.57472 (7) | 0.4780 (2) | 0.0496 (4) | |
H9A | 0.4713 | 0.5996 | 0.3886 | 0.074* | |
H9B | 0.4773 | 0.5905 | 0.5737 | 0.074* | |
C2 | 0.63681 (10) | 0.56472 (8) | 0.5930 (2) | 0.0277 (4) | |
H2 | 0.5996 | 0.5839 | 0.5417 | 0.033* | |
C4 | 0.79996 (10) | 0.54864 (8) | 0.8052 (2) | 0.0270 (4) | |
H4 | 0.8220 | 0.5827 | 0.8297 | 0.032* | |
C5 | 0.83029 (11) | 0.49747 (9) | 0.8501 (3) | 0.0333 (5) | |
H5 | 0.8739 | 0.4972 | 0.9049 | 0.040* | |
C6 | 0.79648 (12) | 0.44598 (9) | 0.8146 (3) | 0.0357 (5) | |
H6 | 0.8180 | 0.4125 | 0.8482 | 0.043* | |
C7 | 0.73256 (12) | 0.44362 (8) | 0.7318 (3) | 0.0340 (5) | |
H7 | 0.7106 | 0.4094 | 0.7077 | 0.041* | |
C8 | 0.70224 (11) | 0.49489 (8) | 0.6857 (2) | 0.0264 (4) | |
C9 | 0.73497 (10) | 0.54671 (7) | 0.7219 (2) | 0.0229 (4) | |
C10 | 0.37791 (9) | 0.78435 (8) | 0.3620 (2) | 0.0215 (4) | |
C11 | 0.44298 (9) | 0.81128 (7) | 0.4375 (2) | 0.0202 (3) | |
C12 | 0.49726 (9) | 0.77770 (7) | 0.5012 (2) | 0.0203 (3) | |
H12 | 0.4924 | 0.7387 | 0.5003 | 0.024* | |
C13 | 0.55886 (9) | 0.80183 (8) | 0.5661 (2) | 0.0217 (4) | |
C14 | 0.56567 (10) | 0.86047 (8) | 0.5684 (2) | 0.0275 (4) | |
H14 | 0.6069 | 0.8770 | 0.6095 | 0.033* | |
C15 | 0.51092 (11) | 0.89410 (8) | 0.5092 (3) | 0.0315 (4) | |
H15 | 0.5152 | 0.9331 | 0.5134 | 0.038* | |
C16 | 0.44988 (10) | 0.86999 (8) | 0.4437 (2) | 0.0255 (4) | |
H16 | 0.4135 | 0.8929 | 0.4038 | 0.031* | |
C17 | 0.61786 (9) | 0.76481 (8) | 0.6275 (2) | 0.0242 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn | 0.01342 (14) | 0.02063 (14) | 0.01869 (15) | 0.00030 (9) | 0.00052 (9) | 0.00094 (10) |
N1 | 0.0311 (9) | 0.0279 (8) | 0.0310 (9) | −0.0081 (7) | 0.0018 (7) | −0.0039 (7) |
N3 | 0.0232 (7) | 0.0235 (8) | 0.0215 (8) | 0.0005 (6) | 0.0010 (6) | −0.0007 (6) |
O1 | 0.0192 (6) | 0.0291 (7) | 0.0282 (7) | −0.0034 (5) | −0.0031 (5) | −0.0002 (5) |
O2 | 0.0157 (6) | 0.0364 (7) | 0.0313 (8) | 0.0021 (5) | −0.0017 (5) | 0.0056 (6) |
O3 | 0.0188 (6) | 0.0350 (7) | 0.0310 (7) | 0.0057 (5) | 0.0008 (5) | 0.0066 (6) |
O4 | 0.0143 (6) | 0.0546 (9) | 0.0226 (7) | −0.0021 (6) | −0.0021 (5) | 0.0012 (6) |
O5 | 0.0179 (6) | 0.0317 (7) | 0.0201 (6) | −0.0003 (5) | 0.0006 (5) | −0.0032 (5) |
O6 | 0.0184 (6) | 0.0324 (7) | 0.0195 (6) | 0.0012 (5) | 0.0016 (5) | 0.0048 (5) |
O7 | 0.0381 (12) | 0.0359 (11) | 0.0413 (13) | 0.000 | 0.0073 (10) | 0.000 |
O8 | 0.0264 (10) | 0.0320 (10) | 0.0379 (12) | 0.000 | 0.0047 (9) | 0.000 |
O9 | 0.0577 (11) | 0.0495 (10) | 0.0417 (10) | −0.0234 (8) | −0.0079 (8) | 0.0003 (8) |
C2 | 0.0271 (10) | 0.0297 (10) | 0.0264 (10) | −0.0010 (8) | 0.0011 (8) | −0.0030 (8) |
C4 | 0.0273 (10) | 0.0285 (9) | 0.0253 (10) | −0.0021 (7) | 0.0028 (7) | 0.0022 (7) |
C5 | 0.0318 (11) | 0.0394 (11) | 0.0288 (11) | 0.0076 (9) | 0.0014 (8) | 0.0056 (8) |
C6 | 0.0468 (13) | 0.0282 (10) | 0.0321 (11) | 0.0115 (9) | 0.0113 (9) | 0.0069 (8) |
C7 | 0.0491 (13) | 0.0219 (9) | 0.0310 (11) | −0.0005 (8) | 0.0116 (9) | 0.0003 (8) |
C8 | 0.0317 (10) | 0.0250 (9) | 0.0224 (9) | −0.0036 (7) | 0.0070 (8) | −0.0010 (7) |
C9 | 0.0271 (9) | 0.0219 (8) | 0.0195 (9) | 0.0004 (7) | 0.0056 (7) | 0.0010 (7) |
C10 | 0.0156 (8) | 0.0308 (9) | 0.0179 (8) | −0.0014 (6) | 0.0015 (6) | 0.0033 (7) |
C11 | 0.0149 (8) | 0.0288 (9) | 0.0170 (8) | 0.0004 (6) | 0.0012 (6) | 0.0001 (7) |
C12 | 0.0172 (8) | 0.0259 (8) | 0.0178 (8) | 0.0003 (6) | 0.0022 (6) | −0.0008 (7) |
C13 | 0.0171 (8) | 0.0309 (9) | 0.0171 (8) | 0.0006 (7) | 0.0009 (7) | −0.0002 (7) |
C14 | 0.0213 (9) | 0.0345 (10) | 0.0267 (10) | −0.0058 (7) | −0.0030 (7) | −0.0035 (8) |
C15 | 0.0311 (11) | 0.0261 (9) | 0.0373 (12) | −0.0019 (8) | −0.0034 (9) | −0.0019 (8) |
C16 | 0.0214 (9) | 0.0287 (9) | 0.0265 (9) | 0.0047 (7) | −0.0011 (7) | 0.0008 (7) |
C17 | 0.0164 (8) | 0.0396 (11) | 0.0165 (8) | 0.0035 (7) | 0.0023 (6) | 0.0003 (7) |
Mn—N3 | 2.1657 (15) | C2—H2 | 0.9300 |
Mn—O2i | 2.0995 (13) | C4—C5 | 1.388 (3) |
Mn—O3 | 2.1832 (13) | C4—C9 | 1.394 (3) |
Mn—O4 | 2.6075 (16) | C4—H4 | 0.9300 |
Mn—O5 | 2.1642 (14) | C5—C6 | 1.406 (3) |
Mn—O6 | 2.1674 (14) | C5—H5 | 0.9300 |
N1—C2 | 1.343 (2) | C6—C7 | 1.375 (3) |
N1—C8 | 1.380 (3) | C6—H6 | 0.9300 |
N1—H1 | 0.8600 | C7—C8 | 1.392 (3) |
N3—C2 | 1.319 (2) | C7—H7 | 0.9300 |
N3—C9 | 1.400 (2) | C8—C9 | 1.405 (3) |
O1—C10 | 1.265 (2) | C10—C11 | 1.509 (2) |
O2—C10 | 1.258 (2) | C11—C12 | 1.393 (2) |
O3—C17 | 1.274 (2) | C11—C16 | 1.399 (3) |
O4—C17 | 1.261 (2) | C12—C13 | 1.395 (2) |
O5—H5A | 0.8866 | C12—H12 | 0.9300 |
O5—H5B | 0.8758 | C13—C14 | 1.396 (3) |
O6—H6A | 0.8469 | C13—C17 | 1.500 (2) |
O6—H6B | 0.8576 | C14—C15 | 1.388 (3) |
O7—H7A | 0.9532 | C14—H14 | 0.9300 |
O8—H8A | 0.9437 | C15—C16 | 1.388 (3) |
O9—H9A | 0.9455 | C15—H15 | 0.9300 |
O9—H9B | 0.9065 | C16—H16 | 0.9300 |
O2i—Mn—O5 | 90.01 (5) | C7—C6—H6 | 119.0 |
O2i—Mn—N3 | 104.35 (6) | C5—C6—H6 | 119.0 |
O5—Mn—N3 | 92.00 (5) | C6—C7—C8 | 116.76 (19) |
O2i—Mn—O6 | 87.68 (5) | C6—C7—H7 | 121.6 |
O5—Mn—O6 | 172.03 (5) | C8—C7—H7 | 121.6 |
N3—Mn—O6 | 95.96 (5) | N1—C8—C7 | 132.35 (19) |
O2i—Mn—O3 | 156.06 (5) | N1—C8—C9 | 105.70 (16) |
O5—Mn—O3 | 94.55 (5) | C7—C8—C9 | 121.95 (19) |
N3—Mn—O3 | 98.98 (6) | C4—C9—N3 | 130.56 (17) |
O6—Mn—O3 | 84.58 (5) | C4—C9—C8 | 120.85 (17) |
C2—N1—C8 | 107.21 (16) | N3—C9—C8 | 108.60 (16) |
C2—N1—H1 | 126.4 | O2—C10—O1 | 124.95 (16) |
C8—N1—H1 | 126.4 | O2—C10—C11 | 117.13 (16) |
C2—N3—C9 | 105.11 (15) | O1—C10—C11 | 117.92 (15) |
C2—N3—Mn | 127.84 (13) | C12—C11—C16 | 119.20 (16) |
C9—N3—Mn | 126.95 (12) | C12—C11—C10 | 120.08 (15) |
C10—O2—Mnii | 144.73 (12) | C16—C11—C10 | 120.72 (16) |
C17—O3—Mn | 101.66 (11) | C11—C12—C13 | 120.86 (16) |
Mn—O5—H5A | 122.4 | C11—C12—H12 | 119.6 |
Mn—O5—H5B | 123.3 | C13—C12—H12 | 119.6 |
H5A—O5—H5B | 105.7 | C12—C13—C14 | 119.34 (16) |
Mn—O6—H6A | 120.7 | C12—C13—C17 | 119.96 (16) |
Mn—O6—H6B | 129.0 | C14—C13—C17 | 120.67 (16) |
H6A—O6—H6B | 105.8 | C15—C14—C13 | 119.94 (17) |
H9A—O9—H9B | 105.8 | C15—C14—H14 | 120.0 |
N3—C2—N1 | 113.38 (18) | C13—C14—H14 | 120.0 |
N3—C2—H2 | 123.3 | C14—C15—C16 | 120.60 (18) |
N1—C2—H2 | 123.3 | C14—C15—H15 | 119.7 |
C5—C4—C9 | 117.11 (18) | C16—C15—H15 | 119.7 |
C5—C4—H4 | 121.4 | C15—C16—C11 | 120.02 (17) |
C9—C4—H4 | 121.4 | C15—C16—H16 | 120.0 |
C4—C5—C6 | 121.4 (2) | C11—C16—H16 | 120.0 |
C4—C5—H5 | 119.3 | O4—C17—O3 | 120.89 (17) |
C6—C5—H5 | 119.3 | O4—C17—C13 | 120.04 (17) |
C7—C6—C5 | 121.98 (19) | O3—C17—C13 | 119.01 (16) |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O9iii | 0.86 | 1.94 | 2.795 (2) | 171 |
O5—H5A···O4iv | 0.89 | 1.89 | 2.7605 (18) | 168 |
O5—H5B···O1v | 0.88 | 1.96 | 2.8120 (18) | 164 |
O6—H6A···O4vi | 0.85 | 1.95 | 2.7553 (18) | 159 |
O6—H6B···O1vii | 0.86 | 1.88 | 2.7379 (18) | 176 |
O7—H7A···O1 | 0.95 | 1.99 | 2.8844 (18) | 155 |
O8—H8A···O3 | 0.94 | 1.79 | 2.7303 (18) | 176 |
O9—H9A···O7 | 0.94 | 1.92 | 2.846 (2) | 167 |
O9—H9B···O8 | 0.91 | 1.92 | 2.799 (2) | 162 |
Symmetry codes: (iii) −x+1, −y+1, −z+1; (iv) −x+3/2, −y+3/2, z+1/2; (v) −x+1, y, −z+3/2; (vi) −x+3/2, −y+3/2, z−1/2; (vii) −x+1, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C8H4O4)(C7H6N2)(H2O)2]·2H2O |
Mr | 409.25 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 292 |
a, b, c (Å) | 18.9148 (12), 23.7112 (16), 7.8701 (4) |
V (Å3) | 3529.7 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.79 |
Crystal size (mm) | 0.24 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.786, 0.880 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20574, 4043, 3261 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.091, 1.04 |
No. of reflections | 4043 |
No. of parameters | 236 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.26 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
Mn—N3 | 2.1657 (15) | Mn—O4 | 2.6075 (16) |
Mn—O2i | 2.0995 (13) | Mn—O5 | 2.1642 (14) |
Mn—O3 | 2.1832 (13) | Mn—O6 | 2.1674 (14) |
Symmetry code: (i) x+1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O9ii | 0.86 | 1.94 | 2.795 (2) | 171 |
O5—H5A···O4iii | 0.89 | 1.89 | 2.7605 (18) | 168 |
O5—H5B···O1iv | 0.88 | 1.96 | 2.8120 (18) | 164 |
O6—H6A···O4v | 0.85 | 1.95 | 2.7553 (18) | 159 |
O6—H6B···O1vi | 0.86 | 1.88 | 2.7379 (18) | 176 |
O7—H7A···O1 | 0.95 | 1.99 | 2.8844 (18) | 155 |
O8—H8A···O3 | 0.94 | 1.79 | 2.7303 (18) | 176 |
O9—H9A···O7 | 0.94 | 1.92 | 2.846 (2) | 167 |
O9—H9B···O8 | 0.91 | 1.92 | 2.799 (2) | 162 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+3/2, −y+3/2, z+1/2; (iv) −x+1, y, −z+3/2; (v) −x+3/2, −y+3/2, z−1/2; (vi) −x+1, y, −z+1/2. |
Acknowledgements
The author thanks Dr J.-M. Gu of Zhejiang University for the data collection.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170. CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hu, Z.-Q., Wu, L.-B. & Lai, G.-Q. (2006). Acta Cryst. E62, m712–m713. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, Y., Xu, D.-J. & Hung, C.-H. (2005). Acta Cryst. C61, m155–m157. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
π-π Stacking between aromatic rings plays an important role in the electron transfer process in some biological system (Deisenhofer & Michel, 1989). Many structures of metal complexes incorporating aromatic ring ligands have been reported (Hu & Lai, 2006). The title MnII complex includes both of benzimidazole (bzim) and benzendicarboxylate (bdc) aromatic ring ligands, its crystal structure is presented here.
A fragment of the title polymeric MnII complex, together with lattice water molecules, is shown in Fig. 1. The MnII ion is surrounded by two bdc anions, one bzim and two coordination water molecules in a distorted octahedral geometry. Each bdc anion bridges two MnII ions to form the one dimensional polymeric chain running along the a axis. The Mn—O4 distance of 2.6075 (16) Å is much longer than the Mn—O3 bond distance (Table 1) but is comparable to 2.5356 (16) Å found in a seven-coordination MnII complex (Liu et al. 2005).
In the crystal structure, the partially overlapped arrangement is observed between nearly parallel bzim ring systems [dihedral angle 4.32 (6)°] (Fig. 2); the centroid-to-centroid separation between the N3-imidazole and C9i-benzene rings is 3.5421 (11) Å (symmetry code: (ii) (x, 1 - y, -1/2 + z), indicating the existence of π-π stacking between bzim ring systems of the adjacent molecules.
In the asymmetric unit two lattice water molecules locate on twofold rotation axes and are hydrogen bonded to the carboxyl groups of the complex, while the other lattice water molecule locates on a general position and links with bzim ligand of the complex via N—H···O hydrogen bonding (Table 2). Lattice water molecules are linked together via O—H···O hydrogen bonding and filled in the cavity formed by the polymeric complex chains (Fig. 3).