organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o912-o913

(E)-3-(8-Benz­yl­oxy-2,3-di­hydro-1,4-benzodioxin-6-yl)-1-[2-hy­dr­oxy-4,6-bis­­(meth­­oxy­meth­­oxy)phen­yl]prop-2-en-1-one

aDepartment of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China, and bInstitute of Pharmacy, Ham Hung Pharmaceutical University, Ham Hung, Democratic People's Republic of Korea
*Correspondence e-mail: dyye@shmu.edu.cn

(Received 6 March 2011; accepted 10 March 2011; online 19 March 2011)

In the title mol­ecule, C28H28O9, the phenol and the benzene rings adjacent to the α,β-unsaturated ketone unit are inclined at 9.15 (13)° to each other. The terminal phenyl ring is oriented with respect to the phenol ring at a dihedral angle of 85.88 (13)°. In the crystal, the methyl­ene C atoms of the dihydro­dioxine ring are disordered over two sites with an occupancy ratio of 0.463 (18):0.537 (18), and both disordered components of the dihydro­dioxine ring adopt twisted-chair conformations. An intra­molecular O—H⋯O hydrogen bond and weak inter­molecular C—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For background to 1,3-diaryl-2-propen-1-one, see: Carlo et al. (1999[Carlo, D. G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]); Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Go et al. (2005[Go, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483-499.]); Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]); Yarishkin et al. (2008[Yarishkin, O. V., Ryu, H. W., Park, J. Y., Yang, M. S., Hong, S. G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137-140.]). For related structures, see: Özbey et al. (1997[Özbey, S., Kendi, E., Göker, H. & Ertan, R. (1997). Acta Cryst. C53, 1981-1983.]); Gao & Ng (2006[Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, o3517-o3518.]); Loghmani-Khouzani et al. (2009[Loghmani-Khouzani, H., Abdul Rahman, N., Robinson, W. T., Yaeghoobi, M. & Kia, R. (2009). Acta Cryst. E65, o2545.]); Rizvi et al. (2010[Rizvi, S. U. F., Siddiqui, H. L., Hussain, T., Azam, M. & Parvez, M. (2010). Acta Cryst. E66, o744.]). For the synthesis, see: Lin et al. (2007[Lin, A.-S., Nakagawa-Goto, K., Chang, F.-R., Yu, D., Morris-Natschke, S. L., Wu, C.-C., Chen, S.-L., Wu, Y.-C. & Lee, K. H. (2007). J. Med. Chem. 50, 3921-3927.]).

[Scheme 1]

Experimental

Crystal data
  • C28H28O9

  • Mr = 508.50

  • Triclinic, [P \overline 1]

  • a = 8.149 (4) Å

  • b = 11.744 (5) Å

  • c = 14.439 (7) Å

  • α = 72.752 (5)°

  • β = 84.269 (5)°

  • γ = 70.601 (5)°

  • V = 1244.7 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.35 × 0.25 × 0.18 mm

Data collection
  • Bruker CCD 1000 area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.982

  • 5687 measured reflections

  • 4774 independent reflections

  • 3239 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.195

  • S = 1.02

  • 4774 reflections

  • 353 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9C⋯O4 0.82 1.71 2.448 (2) 149
C6—H6A⋯O9i 0.93 2.57 3.426 (3) 154
C21—H21A⋯O8ii 0.93 2.53 3.453 (3) 169
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x-1, -y+3, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3-Diaryl-2-propen-1-ones, commonly known as chalcones are a kind of aromatic ketones that form the central core for a variety of important biological compounds, showing anti-bacterial, anti-fungal, anti-malarial, anti-viral, anti-inflammatory, anti-oxidant and anti-tumor properties, which have been reviewed by Carlo et al. (1999), Dimmock et al. (1999), Go et al. (2005) and Nowakowska (2007). Some even demonstrated the ability to block voltage-dependent potassium channels (Yarishkin et al., 2008). Chalcones can also be converted into flavonoids in several classical synthetic steps, consolidating its significance in synthetic chemistry.

The title compound, i.e. (E)-3-(8-(benzyloxy)-2,3-dihydrobenzo[b][1,4]dioxin-6-yl) -1-(2-hydroxy-4,6-bis(methoxymethyl)phenyl)prop-2-en-1-one, is first prepared aiming to find out potential anti-virus candidates. It is obtained from a dihydrobenzo[b][1,4]dioxine aldehyde derivative and an acetophenone derivative by a classical aldol condensation in the presence of potassium hydroxide as a catalyst (Lin et al., 2007). We now report here the synthesis and crystal structure, as part of our investigations in revealing the relationship between the structure and the anti-virus activity. A series of chalcones related to the title compound is also under investigation for their biological activities in our laboratory.

The title molecule is presented in Fig. 1. The least-square planes of the benzene and phenol rings defined by atoms C3—C8 and C19—C24, respectively, are inclined at 9.15 (13)° with respect to each other. The dihedral angle between the benzyloxy group and the benzene plane is 85.90 (7)°. Both the major and minor conformers of the disordered dioxane ring adopt twist-chair conformations [ϕ = 193.86 (8)°, θ = 77.63 (16)° (for ring C1—C2—O2—C3—C4—O1), and ϕ = 184.02 (10)°, θ = 95.1 (2)° (for ring C1'-C2'-O2—C3—C4—O1)], having total puckering amplitudes, QT, of 0.2538 (8) Å and 0.1675 (10) Å, respectively. The crystal structure is stabilized by a strong intramolecular O—H···O hydrogen bond, and further consolidated by the weak intermolecular hydrogen-bonding interactions of the type C—H···O, and Van der Waals forces (Table 1).

Related literature top

For background to 1,3-diaryl-2-propen-1-one, see: Carlo et al. (1999); Dimmock et al. (1999); Go et al. (2005); Nowakowska (2007); Yarishkin et al. (2008). For related structures, see: Özbey et al. (1997); Gao et al. (2006); Loghmani-Khouzani et al. (2009); Rizvi et al. (2010). For the synthesis, see: Lin et al. (2007).

Experimental top

1-[2-Hydroxy-4,6-bis-(methoxymethyl)-phenyl]-ethanone (1.8 g, 7.0 mmol) and 8-(benzyloxy)-2,3-dihydro-benzo[b][1,4]dioxine-6-carbaldehyde (1.9 g, 7.0 mmol) were dissolved in 95% EtOH, KOH/H2O solution (3M). The reaction mixture was stirred at room temperature overnight, evaporated under reduced pressure, and further extracted by ethyl acetate. The extract layer was chromatographed on silica gel to afford the title compound (3.2 g, yield 90%) as an orange solid. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate and petroleum ether solution.

Refinement top

The methylene C atoms of the dihydrodioxine ring are disordered over two sites (C1/C1' and C2/C2') with refined occupancies of 0.463 (18):0.537 (18). The corresponding bond distances involving the disordered atoms were restrained to be equal, and also the same Uij parameters were used for atoms C1 and C1', and C2 and C2'. All H atoms were positioned geometrically with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and refined as riding with Uiso(H) = 1.2–1.5Ueq(C,O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. The displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
(E)-3-(8-Benzyloxy-2,3-dihydro-1,4-benzodioxin-6-yl)- 1-[2-hydroxy-4,6-bis(methoxymethoxy)phenyl]prop-2-en-1-one top
Crystal data top
C28H28O9Z = 2
Mr = 508.50F(000) = 536
Triclinic, P1Dx = 1.357 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.149 (4) ÅCell parameters from 847 reflections
b = 11.744 (5) Åθ = 2.7–27.1°
c = 14.439 (7) ŵ = 0.10 mm1
α = 72.752 (5)°T = 294 K
β = 84.269 (5)°Block, orange
γ = 70.601 (5)°0.35 × 0.25 × 0.18 mm
V = 1244.7 (10) Å3
Data collection top
Bruker CCD 1000 area-detector
diffractometer
4774 independent reflections
Radiation source: sealed tube3239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.965, Tmax = 0.982k = 1412
5687 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.126P)2]
where P = (Fo2 + 2Fc2)/3
4774 reflections(Δ/σ)max < 0.001
353 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C28H28O9γ = 70.601 (5)°
Mr = 508.50V = 1244.7 (10) Å3
Triclinic, P1Z = 2
a = 8.149 (4) ÅMo Kα radiation
b = 11.744 (5) ŵ = 0.10 mm1
c = 14.439 (7) ÅT = 294 K
α = 72.752 (5)°0.35 × 0.25 × 0.18 mm
β = 84.269 (5)°
Data collection top
Bruker CCD 1000 area-detector
diffractometer
4774 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3239 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.982Rint = 0.026
5687 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.02Δρmax = 0.60 e Å3
4774 reflectionsΔρmin = 0.21 e Å3
353 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.02313 (19)0.61404 (14)0.91280 (12)0.0582 (5)
O20.2521 (2)0.86192 (14)0.83479 (12)0.0597 (5)
O30.29103 (19)0.54252 (13)0.84269 (11)0.0558 (5)
O40.3240 (2)1.09630 (15)0.44508 (13)0.0642 (5)
O50.1587 (2)1.65623 (15)0.28563 (12)0.0647 (5)
O60.2044 (3)1.83191 (15)0.15912 (13)0.0736 (5)
O70.1328 (2)1.30029 (15)0.55058 (12)0.0659 (5)
O80.4304 (3)1.35542 (18)0.53966 (16)0.0848 (6)
O90.3228 (2)1.28722 (16)0.31656 (13)0.0668 (5)
H9C0.35721.21370.34940.100*
C10.172 (2)0.6699 (16)0.9639 (10)0.086 (4)0.463 (18)
H1A0.24940.62000.97190.103*0.463 (18)
H1B0.13330.65861.02830.103*0.463 (18)
C20.2644 (15)0.7837 (9)0.9331 (7)0.057 (2)0.463 (18)
H2A0.24400.82680.97650.069*0.463 (18)
H2B0.38470.78550.94240.069*0.463 (18)
C1'0.2038 (13)0.6528 (9)0.9316 (8)0.054 (2)0.537 (18)
H1'10.24920.59820.91030.065*0.537 (18)
H1'20.21500.63041.00170.065*0.537 (18)
C2'0.3120 (14)0.7637 (13)0.9008 (13)0.110 (5)0.537 (18)
H2'10.36150.79230.95700.132*0.537 (18)
H2'20.40620.75670.86900.132*0.537 (18)
C30.0883 (3)0.82076 (19)0.79882 (16)0.0448 (5)
C40.0230 (3)0.69963 (18)0.83660 (15)0.0443 (5)
C50.1907 (3)0.66401 (18)0.79889 (16)0.0451 (5)
C60.2440 (3)0.74792 (19)0.72391 (16)0.0474 (5)
H6A0.35590.72360.69910.057*
C70.1314 (3)0.86943 (18)0.68465 (15)0.0432 (5)
C80.0349 (3)0.90484 (19)0.72278 (16)0.0458 (5)
H8A0.11090.98540.69710.055*
C90.4658 (3)0.5063 (2)0.8107 (2)0.0668 (7)
H9A0.52400.56150.82090.080*
H9B0.46860.51370.74190.080*
C100.5581 (3)0.3732 (2)0.86577 (16)0.0493 (6)
C110.5419 (3)0.2761 (2)0.83868 (17)0.0581 (6)
H11A0.46750.29310.78800.070*
C120.6339 (4)0.1524 (2)0.8848 (2)0.0697 (7)
H12A0.62090.08740.86510.084*
C130.7425 (4)0.1264 (2)0.9585 (2)0.0699 (8)
H13A0.80610.04340.98850.084*
C140.7594 (4)0.2206 (3)0.9891 (2)0.0758 (8)
H14A0.83280.20211.04060.091*
C150.6664 (3)0.3454 (2)0.9430 (2)0.0663 (7)
H15A0.67720.41000.96420.080*
C160.1943 (3)0.95607 (19)0.60541 (15)0.0453 (5)
H16A0.31150.92870.58930.054*
C170.1011 (3)1.06911 (19)0.55476 (16)0.0478 (5)
H17A0.01671.09940.56860.057*
C180.1795 (3)1.1487 (2)0.47661 (16)0.0458 (5)
C190.0915 (3)1.28298 (19)0.43388 (15)0.0431 (5)
C200.0676 (3)1.35676 (19)0.46461 (15)0.0461 (5)
C210.1479 (3)1.4795 (2)0.41326 (16)0.0510 (6)
H21A0.25521.52470.43350.061*
C220.0687 (3)1.53574 (19)0.33120 (16)0.0487 (5)
C230.0905 (3)1.4708 (2)0.30072 (16)0.0528 (6)
H23A0.14481.51000.24700.063*
C240.1693 (3)1.3463 (2)0.35090 (15)0.0473 (5)
C250.0851 (4)1.7180 (3)0.19855 (19)0.0734 (8)
H25A0.02111.72900.21340.088*
H25B0.05751.66770.15310.088*
C260.2259 (6)1.9197 (3)0.2108 (3)0.1194 (14)
H26A0.31221.99710.17950.179*
H26B0.11741.93440.21260.179*
H26C0.26271.88760.27580.179*
C270.2982 (3)1.3618 (2)0.5841 (2)0.0680 (7)
H27A0.30591.32420.65330.082*
H27B0.30941.44950.57400.082*
C280.4456 (5)1.2299 (3)0.5652 (3)0.0982 (11)
H28A0.54171.23150.53080.147*
H28B0.46491.20230.63370.147*
H28C0.34021.17290.54780.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0523 (10)0.0408 (9)0.0614 (10)0.0101 (7)0.0183 (7)0.0037 (7)
O20.0496 (9)0.0402 (9)0.0694 (11)0.0047 (7)0.0203 (8)0.0036 (7)
O30.0429 (9)0.0350 (8)0.0643 (10)0.0012 (6)0.0149 (7)0.0053 (7)
O40.0442 (9)0.0503 (10)0.0700 (11)0.0021 (7)0.0110 (8)0.0056 (8)
O50.0641 (11)0.0434 (9)0.0637 (11)0.0075 (8)0.0032 (8)0.0065 (8)
O60.0993 (15)0.0432 (10)0.0642 (11)0.0155 (9)0.0202 (10)0.0038 (8)
O70.0589 (10)0.0522 (10)0.0613 (10)0.0085 (8)0.0240 (8)0.0028 (8)
O80.0620 (12)0.0685 (13)0.1118 (17)0.0101 (10)0.0126 (11)0.0240 (12)
O90.0468 (10)0.0562 (10)0.0720 (11)0.0076 (8)0.0192 (8)0.0028 (8)
C10.064 (7)0.089 (8)0.065 (7)0.001 (5)0.024 (5)0.003 (5)
C20.043 (5)0.047 (4)0.061 (5)0.006 (3)0.025 (3)0.003 (3)
C1'0.042 (3)0.043 (3)0.060 (5)0.013 (2)0.016 (4)0.007 (3)
C2'0.053 (5)0.092 (7)0.125 (10)0.012 (4)0.027 (5)0.036 (7)
C30.0383 (11)0.0347 (11)0.0536 (13)0.0068 (9)0.0085 (9)0.0094 (9)
C40.0463 (12)0.0347 (11)0.0464 (12)0.0138 (9)0.0078 (9)0.0051 (9)
C50.0432 (12)0.0310 (10)0.0515 (13)0.0066 (9)0.0063 (9)0.0054 (9)
C60.0399 (11)0.0366 (11)0.0544 (13)0.0068 (9)0.0099 (9)0.0056 (9)
C70.0433 (12)0.0352 (11)0.0464 (12)0.0114 (9)0.0033 (9)0.0067 (9)
C80.0437 (12)0.0295 (10)0.0533 (13)0.0056 (9)0.0052 (9)0.0041 (9)
C90.0472 (14)0.0437 (13)0.0808 (18)0.0031 (11)0.0211 (12)0.0047 (12)
C100.0377 (11)0.0393 (12)0.0558 (14)0.0047 (9)0.0124 (10)0.0038 (10)
C110.0586 (15)0.0560 (15)0.0532 (14)0.0139 (12)0.0013 (11)0.0113 (11)
C120.083 (2)0.0442 (14)0.0769 (18)0.0134 (13)0.0072 (15)0.0205 (13)
C130.0599 (16)0.0448 (14)0.0790 (19)0.0017 (12)0.0042 (14)0.0014 (13)
C140.0631 (18)0.077 (2)0.0727 (18)0.0190 (15)0.0193 (14)0.0036 (15)
C150.0725 (18)0.0574 (16)0.0744 (18)0.0275 (13)0.0030 (14)0.0194 (13)
C160.0419 (12)0.0372 (11)0.0493 (13)0.0102 (9)0.0057 (9)0.0056 (9)
C170.0381 (11)0.0385 (11)0.0556 (13)0.0096 (9)0.0052 (9)0.0011 (10)
C180.0373 (11)0.0435 (12)0.0479 (12)0.0107 (9)0.0007 (9)0.0031 (9)
C190.0356 (11)0.0407 (11)0.0451 (12)0.0105 (9)0.0012 (9)0.0030 (9)
C200.0430 (12)0.0420 (12)0.0461 (12)0.0138 (9)0.0065 (9)0.0037 (9)
C210.0439 (12)0.0424 (12)0.0542 (14)0.0050 (10)0.0072 (10)0.0074 (10)
C220.0504 (13)0.0365 (11)0.0495 (13)0.0112 (10)0.0042 (10)0.0003 (9)
C230.0500 (13)0.0469 (13)0.0483 (13)0.0153 (11)0.0071 (10)0.0035 (10)
C240.0389 (12)0.0475 (13)0.0492 (13)0.0153 (10)0.0058 (9)0.0047 (10)
C250.0837 (19)0.0560 (16)0.0585 (16)0.0155 (14)0.0043 (13)0.0096 (12)
C260.211 (5)0.061 (2)0.090 (2)0.051 (2)0.006 (3)0.0159 (18)
C270.0657 (18)0.0594 (16)0.0700 (17)0.0178 (13)0.0291 (14)0.0172 (13)
C280.090 (2)0.082 (2)0.130 (3)0.0292 (18)0.019 (2)0.044 (2)
Geometric parameters (Å, º) top
O1—C41.369 (2)C9—C101.497 (3)
O1—C1'1.413 (10)C9—H9A0.9700
O1—C11.425 (14)C9—H9B0.9700
O2—C31.366 (2)C10—C111.358 (3)
O2—C2'1.452 (11)C10—C151.384 (3)
O2—C21.458 (10)C11—C121.385 (3)
O3—C51.377 (2)C11—H11A0.9300
O3—C91.416 (3)C12—C131.350 (4)
O4—C181.245 (2)C12—H12A0.9300
O5—C221.352 (3)C13—C141.357 (4)
O5—C251.437 (3)C13—H13A0.9300
O6—C251.362 (3)C14—C151.396 (4)
O6—C261.400 (4)C14—H14A0.9300
O7—C201.370 (2)C15—H15A0.9300
O7—C271.415 (3)C16—C171.319 (3)
O8—C271.341 (3)C16—H16A0.9300
O8—C281.455 (4)C17—C181.477 (3)
O9—C241.340 (2)C17—H17A0.9300
O9—H9C0.8200C18—C191.464 (3)
C1—C21.264 (19)C19—C201.413 (3)
C1—H1A0.9700C19—C241.422 (3)
C1—H1B0.9700C20—C211.375 (3)
C2—H2A0.9700C21—C221.387 (3)
C2—H2B0.9700C21—H21A0.9300
C1'—C2'1.282 (15)C22—C231.373 (3)
C1'—H1'10.9700C23—C241.384 (3)
C1'—H1'20.9700C23—H23A0.9300
C2'—H2'10.9700C25—H25A0.9700
C2'—H2'20.9700C25—H25B0.9700
C3—C81.384 (3)C26—H26A0.9600
C3—C41.388 (3)C26—H26B0.9600
C4—C51.395 (3)C26—H26C0.9600
C5—C61.374 (3)C27—H27A0.9700
C6—C71.398 (3)C27—H27B0.9700
C6—H6A0.9300C28—H28A0.9600
C7—C81.388 (3)C28—H28B0.9600
C7—C161.465 (3)C28—H28C0.9600
C8—H8A0.9300
C4—O1—C1'112.0 (4)C12—C11—H11A119.3
C4—O1—C1113.1 (6)C13—C12—C11119.9 (2)
C1'—O1—C126.9 (7)C13—C12—H12A120.0
C3—O2—C2'114.7 (5)C11—C12—H12A120.0
C3—O2—C2110.1 (5)C12—C13—C14120.4 (3)
C2'—O2—C230.5 (7)C12—C13—H13A119.8
C5—O3—C9116.05 (16)C14—C13—H13A119.8
C22—O5—C25117.68 (19)C13—C14—C15119.8 (3)
C25—O6—C26113.9 (3)C13—C14—H14A120.1
C20—O7—C27120.56 (18)C15—C14—H14A120.1
C27—O8—C28113.5 (2)C10—C15—C14120.2 (2)
C24—O9—H9C109.5C10—C15—H15A119.9
C2—C1—O1122.3 (10)C14—C15—H15A119.9
C2—C1—H1A106.8C17—C16—C7126.4 (2)
O1—C1—H1A106.8C17—C16—H16A116.8
C2—C1—H1B106.8C7—C16—H16A116.8
O1—C1—H1B106.8C16—C17—C18121.5 (2)
H1A—C1—H1B106.6C16—C17—H17A119.2
C1—C2—O2123.6 (9)C18—C17—H17A119.2
C1—C2—H2A106.4O4—C18—C19119.96 (18)
O2—C2—H2A106.4O4—C18—C17117.31 (19)
C1—C2—H2B106.4C19—C18—C17122.70 (18)
O2—C2—H2B106.4C20—C19—C24115.78 (19)
H2A—C2—H2B106.5C20—C19—C18126.62 (18)
C2'—C1'—O1126.8 (8)C24—C19—C18117.56 (18)
C2'—C1'—H1'1105.6O7—C20—C21122.18 (19)
O1—C1'—H1'1105.6O7—C20—C19115.90 (18)
C2'—C1'—H1'2105.6C21—C20—C19121.86 (19)
O1—C1'—H1'2105.6C20—C21—C22119.9 (2)
H1'1—C1'—H1'2106.1C20—C21—H21A120.0
C1'—C2'—O2119.3 (8)C22—C21—H21A120.0
C1'—C2'—H2'1107.5O5—C22—C23123.9 (2)
O2—C2'—H2'1107.5O5—C22—C21115.3 (2)
C1'—C2'—H2'2107.5C23—C22—C21120.8 (2)
O2—C2'—H2'2107.5C22—C23—C24119.27 (19)
H2'1—C2'—H2'2107.0C22—C23—H23A120.4
O2—C3—C8117.66 (18)C24—C23—H23A120.4
O2—C3—C4122.02 (18)O9—C24—C23116.51 (18)
C8—C3—C4120.32 (18)O9—C24—C19121.29 (19)
O1—C4—C3122.35 (18)C23—C24—C19122.19 (19)
O1—C4—C5118.11 (18)O6—C25—O5107.9 (2)
C3—C4—C5119.49 (18)O6—C25—H25A110.1
C6—C5—O3125.25 (18)O5—C25—H25A110.1
C6—C5—C4120.08 (19)O6—C25—H25B110.1
O3—C5—C4114.67 (17)O5—C25—H25B110.1
C5—C6—C7120.63 (19)H25A—C25—H25B108.4
C5—C6—H6A119.7O6—C26—H26A109.5
C7—C6—H6A119.7O6—C26—H26B109.5
C8—C7—C6119.15 (18)H26A—C26—H26B109.5
C8—C7—C16122.12 (19)O6—C26—H26C109.5
C6—C7—C16118.73 (19)H26A—C26—H26C109.5
C3—C8—C7120.32 (19)H26B—C26—H26C109.5
C3—C8—H8A119.8O8—C27—O7113.2 (2)
C7—C8—H8A119.8O8—C27—H27A108.9
O3—C9—C10109.76 (17)O7—C27—H27A108.9
O3—C9—H9A109.7O8—C27—H27B108.9
C10—C9—H9A109.7O7—C27—H27B108.9
O3—C9—H9B109.7H27A—C27—H27B107.8
C10—C9—H9B109.7O8—C28—H28A109.5
H9A—C9—H9B108.2O8—C28—H28B109.5
C11—C10—C15118.2 (2)H28A—C28—H28B109.5
C11—C10—C9120.4 (2)O8—C28—H28C109.5
C15—C10—C9121.4 (2)H28A—C28—H28C109.5
C10—C11—C12121.4 (3)H28B—C28—H28C109.5
C10—C11—H11A119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9C···O40.821.712.448 (2)149
C6—H6A···O9i0.932.573.426 (3)154
C21—H21A···O8ii0.932.533.453 (3)169
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y+3, z+1.

Experimental details

Crystal data
Chemical formulaC28H28O9
Mr508.50
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.149 (4), 11.744 (5), 14.439 (7)
α, β, γ (°)72.752 (5), 84.269 (5), 70.601 (5)
V3)1244.7 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.25 × 0.18
Data collection
DiffractometerBruker CCD 1000 area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.965, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
5687, 4774, 3239
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.195, 1.02
No. of reflections4774
No. of parameters353
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9C···O40.821.712.448 (2)149
C6—H6A···O9i0.932.573.426 (3)154
C21—H21A···O8ii0.932.533.453 (3)169
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y+3, z+1.
 

Acknowledgements

The authors greatly appreciate financial support from the Open Grant of the Institute of Bioscience, Fudan University, China.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlo, D. G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  Web of Science PubMed Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationGao, S. & Ng, S. W. (2006). Acta Cryst. E62, o3517–o3518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGo, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483–499.  CrossRef CAS Google Scholar
First citationLin, A.-S., Nakagawa-Goto, K., Chang, F.-R., Yu, D., Morris-Natschke, S. L., Wu, C.-C., Chen, S.-L., Wu, Y.-C. & Lee, K. H. (2007). J. Med. Chem. 50, 3921–3927.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoghmani-Khouzani, H., Abdul Rahman, N., Robinson, W. T., Yaeghoobi, M. & Kia, R. (2009). Acta Cryst. E65, o2545.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationÖzbey, S., Kendi, E., Göker, H. & Ertan, R. (1997). Acta Cryst. C53, 1981–1983.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRizvi, S. U. F., Siddiqui, H. L., Hussain, T., Azam, M. & Parvez, M. (2010). Acta Cryst. E66, o744.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYarishkin, O. V., Ryu, H. W., Park, J. Y., Yang, M. S., Hong, S. G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137–140.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o912-o913
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds