organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o885-o886

N-Cyclo­hexyl-4-meth­­oxy­benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: iukhan@gcu.edu.pk, akkurt@erciyes.edu.tr

(Received 9 March 2011; accepted 10 March 2011; online 15 March 2011)

In the title mol­ecule, C13H19NO3S, the S atom has a distorted tetra­hedral geometry with an O—S—O bond angle of 120.39 (18)°. The cyclo­hexane ring has a chair conformation. In the crystal, mol­ecules are connected by inter­molecular N—H⋯O hydrogen bonds, forming zigzag hydrogen-bonded chains directed along the c axis.

Related literature

For background to the biological activity of sulfonamides, see: Gennarti et al. (1994[Gennarti, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl. 33, 2067-2069.]); Hanson et al. (1999[Hanson, P. R., Probst, D. A., Robinson, R. E. & Yau, M. (1999). Tetrahedron Lett. 40, 4761-4763.]); Moree et al. (1991[Moree, W. J., Van der Marel, G. A. & Liskamp, R. M. (1991). Tetrahedron Lett. 32, 409-411.]); Ozbek et al. (2007[Ozbek, N., Katircioğlu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105-5109.]); Rough et al. (1998[Rough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc. 120, 10994-10995.]); Siddiqui et al. (2007[Siddiqui, N., Pandeya, S. N., Khan, S. A., Stables, J., Rana, A., Alam, M., Arshad, M. F. & Bhat, M. A. (2007). Bioorg. Med. Chem. Lett. 17, 255-259.]). For literature on sulfonamide derivatives, see: Akkurt et al. (2011[Akkurt, M., Mariam, I., Naseer, I., Khan, I. U. & Sharif, S. (2011). Acta Cryst. E67, o186.]); Aziz-ur-Rehman, Rafique et al. (2010[Aziz-ur-Rehman, Rafique, H., Akkurt, M., Dilber, N., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o1728.]); Aziz-ur-Rehman, Sajjad et al. (2010[Aziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o1769.]); Aziz-ur-Rehman, Siddiqa et al. (2010[Aziz-ur-Rehman, Siddiqa, A., Akkurt, M., Abbasi, M. A., Jahangir, M. & Khan, I. U. (2010). Acta Cryst. E66, o1682.]); Khan, Akkurt et al. (2010[Khan, I. U., Akkurt, M., Sharif, S. & Ahmad, W. (2010). Acta Cryst. E66, o3053.]); Khan, Sharif et al. (2010[Khan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). Acta Cryst. E66, o786.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C13H19NO3S

  • Mr = 269.36

  • Orthorhombic, A b a 2

  • a = 17.2644 (12) Å

  • b = 20.4707 (16) Å

  • c = 7.9139 (5) Å

  • V = 2796.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.29 × 0.12 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 10601 measured reflections

  • 2704 independent reflections

  • 1945 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.136

  • S = 1.02

  • 2704 reflections

  • 167 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 829 Freidel pairs

  • Flack parameter: −0.05 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O2i 0.85 (3) 2.09 (3) 2.913 (4) 161 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides are familiar for their enormous potential as biologically active molecules (Hanson et al., 1999; Moree et al.,1991; Rough et al., 1998). They are being used as anti-microbial (Ozbek et al., 2007), anti-convulsant (Siddiqui et al., 2007), and for the treatment of inflammatory rheumatic and non-rheumatic processes including onsets and traumatologic lesions (Gennarti et al., 1994). In continuation of our structural studies on various sulfonamide derivatives, herein we report the crystal structure of the title compound (I) (Akkurt et al., 2011; Aziz-ur-Rehman, Rafique et al., 2010; Aziz-ur-Rehman, Sajjad et al., 2010; Aziz-ur-Rehman, Siddiqa et al., 2010; Khan, Akkurt et al., 2010; Khan, Sharif et al., 2010).

As shown in Fig. 1, the S atom of the title molecule has a distorted tetrahedral coordination geometry, with S1—O1 = 1.424 (3), S1—O2 = 1.436 (3), S1— N1 = 1.586 (3), S1—C7 = 1.747 (4) Å, O1—S1—O2 = 120.39 (18), O1—S1—N1 = 108.09 (16), O1—S1—C7 = 107.08 (16), O2—S1—N1 = 105.37 (16), O2—S1—C7 = 106.18 (15) and N1— S1—C7 = 109.43 (16)°. The cyclohexane ring (C1–C6) has an almost ideal chair conformation and the ring-puckering parameters (Cremer & Pople, 1975) are QT = 0.559 (4) Å, θ = 1.8 (4) ° and ϕ = 338 (9)°.

In the crystal structure, adjacent molecules form zigzag hydrogen-bonded chains directed along the c axis, linking by intermolecular N—H···O hydrogen bonds (Table 1). The packing and hydrogen bonding of (I) are viewed down a, b and c axes, respectively, in Figs. 2, 3 and 4.

Related literature top

For background to the biological activity of sulfonamides, see: Gennarti et al. (1994); Hanson et al. (1999); Moree et al. (1991); Ozbek et al. (2007); Rough et al. (1998); Siddiqui et al. (2007). For literature on sulfonamide derivatives, see: Akkurt et al. (2011); Aziz-ur-Rehman, Rafique et al. (2010); Aziz-ur-Rehman, Sajjad et al. (2010); Aziz-ur-Rehman, Siddiqa et al. (2010); Khan, Akkurt et al. (2010); Khan, Sharif et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Cylcohexylamine (0.5 g, 6.494 mmol) was taken in 50 ml round bottom flask and added 10 ml of distilled water. After 5 minutes stirring at room temperature 4-methoxy benzene sulfonyl chloride was carefully added. The pH of the reaction mixture was maintained at 8 with 10% Na2CO3 solution. After 6 h of stirring at room temperature the TLC check confirmed the completion of the reaction. The reaction mixture pH was reduced to 3 with 3 M HCl, product precipitated out was filtered and dried. Dried precipitates were dissolved in methanol for crystallization (yield: 87%).

Refinement top

In the last cycles of the refinement, 3 reflections (2 0 0), (1 2 0) and (0 2 0) were eliminated due to being poorly measured in the vicinity of the beam stop. The H atom of the NH group of the title compound was located in a difference map and refined with the distance restraint N—H = 0.86 (2) Å; its isotropic displacement parameter was set to be 1.2Ueq(N). The aromatic, methine, methylene and methyl H atoms were positioned geometrically with C—H = 0.93 - 0.98 Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic, methylene and methine, and 1.5Ueq(C) for methyl.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule, with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of (I) viewed down a axis. Hydrogen atoms that not involved in the hydrogen-bonding (dashed lines) have been omitted for clarity.
[Figure 3] Fig. 3. The packing and hydrogen bonding of (I) viewed down b axis. Hydrogen atoms that not involved in the hydrogen-bonding (dashed lines) have been omitted for clarity.
[Figure 4] Fig. 4. The packing and hydrogen bonding of (I) viewed down c axis. Hydrogen atoms that not involved in the hydrogen-bonding (dashed lines) have been omitted for clarity.
N-Cyclohexyl-4-methoxybenzenesulfonamide top
Crystal data top
C13H19NO3SF(000) = 1152
Mr = 269.36Dx = 1.279 Mg m3
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 3418 reflections
a = 17.2644 (12) Åθ = 2.3–24.7°
b = 20.4707 (16) ŵ = 0.23 mm1
c = 7.9139 (5) ÅT = 296 K
V = 2796.9 (3) Å3Prism, light brown
Z = 80.29 × 0.12 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
1945 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.047
Graphite monochromatorθmax = 28.3°, θmin = 3.0°
ϕ and ω scansh = 2323
10601 measured reflectionsk = 2327
2704 independent reflectionsl = 106
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0633P)2 + 1.387P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2704 reflectionsΔρmax = 0.17 e Å3
167 parametersΔρmin = 0.27 e Å3
2 restraintsAbsolute structure: Flack (1983), 829 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (12)
Crystal data top
C13H19NO3SV = 2796.9 (3) Å3
Mr = 269.36Z = 8
Orthorhombic, Aba2Mo Kα radiation
a = 17.2644 (12) ŵ = 0.23 mm1
b = 20.4707 (16) ÅT = 296 K
c = 7.9139 (5) Å0.29 × 0.12 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
1945 reflections with I > 2σ(I)
10601 measured reflectionsRint = 0.047
2704 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136Δρmax = 0.17 e Å3
S = 1.02Δρmin = 0.27 e Å3
2704 reflectionsAbsolute structure: Flack (1983), 829 Freidel pairs
167 parametersAbsolute structure parameter: 0.05 (12)
2 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16185 (4)0.09694 (5)0.20157 (12)0.0614 (3)
O10.09659 (16)0.11080 (14)0.3056 (4)0.0832 (11)
O20.23822 (17)0.11611 (14)0.2537 (4)0.0901 (11)
O30.16806 (14)0.18793 (14)0.1087 (4)0.0822 (11)
N10.14869 (13)0.13120 (14)0.0241 (4)0.0556 (10)
C10.0682 (2)0.20104 (16)0.1482 (5)0.0697 (15)
C20.0103 (3)0.21102 (18)0.2295 (6)0.0850 (16)
C30.0294 (2)0.15634 (19)0.3505 (5)0.0710 (16)
C40.0226 (2)0.09157 (18)0.2642 (6)0.0783 (16)
C50.0557 (2)0.08162 (16)0.1777 (6)0.0724 (13)
C60.07253 (15)0.13658 (15)0.0581 (4)0.0501 (10)
C70.16495 (15)0.01229 (17)0.1741 (4)0.0515 (10)
C80.10900 (15)0.0285 (2)0.2421 (4)0.0613 (13)
C90.11159 (16)0.09474 (19)0.2187 (5)0.0621 (11)
C100.17072 (17)0.12166 (19)0.1247 (5)0.0576 (11)
C110.22723 (18)0.08270 (18)0.0575 (6)0.0693 (16)
C120.22479 (17)0.01640 (19)0.0830 (5)0.0694 (15)
C130.2233 (3)0.2198 (2)0.0041 (8)0.111 (2)
HN10.1894 (15)0.1299 (18)0.037 (4)0.0740*
H1A0.108100.202800.234400.0840*
H1B0.077800.236100.068400.0840*
H2A0.049700.213100.142300.1020*
H2B0.010500.252200.290000.1020*
H3A0.081700.161900.392700.0860*
H3B0.005700.157800.446100.0860*
H4A0.030200.057200.346800.0940*
H4B0.063400.087800.180400.0940*
H5A0.055300.040600.116100.0870*
H5B0.096200.079300.262400.0870*
H60.032800.136300.030400.0600*
H80.068800.010500.305000.0740*
H90.073700.121400.265900.0750*
H110.267200.101100.005400.0830*
H120.263800.009800.038600.0830*
H13A0.220100.202500.108400.1670*
H13B0.212600.265800.001900.1670*
H13C0.274300.212600.048300.1670*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0628 (4)0.0785 (6)0.0429 (4)0.0052 (4)0.0071 (4)0.0091 (5)
O10.0961 (19)0.106 (2)0.0476 (16)0.0250 (15)0.0154 (14)0.0076 (15)
O20.0793 (17)0.107 (2)0.084 (2)0.0051 (15)0.0333 (15)0.0189 (17)
O30.0877 (18)0.0690 (18)0.090 (2)0.0011 (13)0.0110 (15)0.0140 (15)
N10.0457 (13)0.0707 (19)0.0503 (17)0.0032 (12)0.0027 (11)0.0033 (14)
C10.096 (3)0.0442 (18)0.069 (3)0.0004 (17)0.0043 (19)0.0053 (19)
C20.110 (3)0.066 (2)0.079 (3)0.024 (2)0.020 (2)0.002 (2)
C30.082 (2)0.074 (3)0.057 (3)0.0093 (19)0.0133 (18)0.0056 (19)
C40.082 (2)0.064 (2)0.089 (4)0.0068 (18)0.033 (2)0.000 (2)
C50.086 (2)0.0413 (18)0.090 (3)0.0029 (17)0.028 (2)0.0018 (19)
C60.0466 (14)0.057 (2)0.0467 (18)0.0002 (12)0.0011 (13)0.0052 (14)
C70.0403 (13)0.075 (2)0.0391 (19)0.0071 (13)0.0031 (12)0.0041 (15)
C80.0380 (14)0.098 (3)0.048 (2)0.0078 (15)0.0035 (13)0.0058 (18)
C90.0442 (14)0.084 (2)0.058 (2)0.0074 (15)0.0043 (16)0.016 (2)
C100.0542 (18)0.070 (2)0.0487 (19)0.0028 (16)0.0023 (15)0.0097 (17)
C110.064 (2)0.074 (3)0.070 (3)0.0076 (17)0.0265 (19)0.007 (2)
C120.0581 (19)0.082 (3)0.068 (3)0.0029 (16)0.0222 (17)0.009 (2)
C130.122 (4)0.091 (3)0.121 (5)0.019 (3)0.035 (3)0.009 (3)
Geometric parameters (Å, º) top
S1—O11.424 (3)C11—C121.373 (5)
S1—O21.436 (3)C1—H1A0.9700
S1—N11.586 (3)C1—H1B0.9700
S1—C71.747 (4)C2—H2A0.9700
O3—C101.363 (5)C2—H2B0.9700
O3—C131.421 (6)C3—H3A0.9700
N1—C61.471 (4)C3—H3B0.9700
N1—HN10.85 (3)C4—H4A0.9700
C1—C21.514 (6)C4—H4B0.9700
C1—C61.502 (5)C5—H5A0.9700
C2—C31.510 (6)C5—H5B0.9700
C3—C41.496 (6)C6—H60.9800
C4—C51.529 (5)C8—H80.9300
C5—C61.499 (5)C9—H90.9300
C7—C121.390 (4)C11—H110.9300
C7—C81.386 (4)C12—H120.9300
C8—C91.369 (6)C13—H13A0.9600
C9—C101.378 (5)C13—H13B0.9600
C10—C111.368 (5)C13—H13C0.9600
O1—S1—O2120.39 (18)C3—C2—H2A109.00
O1—S1—N1108.09 (16)C3—C2—H2B109.00
O1—S1—C7107.08 (16)H2A—C2—H2B108.00
O2—S1—N1105.37 (16)C2—C3—H3A110.00
O2—S1—C7106.18 (15)C2—C3—H3B110.00
N1—S1—C7109.43 (16)C4—C3—H3A110.00
C10—O3—C13119.2 (3)C4—C3—H3B110.00
S1—N1—C6123.6 (2)H3A—C3—H3B108.00
S1—N1—HN1112 (2)C3—C4—H4A109.00
C6—N1—HN1119 (2)C3—C4—H4B109.00
C2—C1—C6111.4 (3)C5—C4—H4A109.00
C1—C2—C3111.4 (3)C5—C4—H4B109.00
C2—C3—C4110.5 (3)H4A—C4—H4B108.00
C3—C4—C5113.1 (3)C4—C5—H5A109.00
C4—C5—C6110.7 (3)C4—C5—H5B110.00
N1—C6—C5113.4 (3)C6—C5—H5A109.00
C1—C6—C5110.5 (3)C6—C5—H5B109.00
N1—C6—C1108.7 (2)H5A—C5—H5B108.00
C8—C7—C12117.7 (3)N1—C6—H6108.00
S1—C7—C8121.9 (2)C1—C6—H6108.00
S1—C7—C12120.4 (3)C5—C6—H6108.00
C7—C8—C9121.4 (3)C7—C8—H8119.00
C8—C9—C10119.6 (3)C9—C8—H8119.00
O3—C10—C11124.6 (3)C8—C9—H9120.00
O3—C10—C9115.0 (3)C10—C9—H9120.00
C9—C10—C11120.3 (4)C10—C11—H11120.00
C10—C11—C12119.8 (3)C12—C11—H11120.00
C7—C12—C11121.1 (3)C7—C12—H12119.00
C2—C1—H1A109.00C11—C12—H12120.00
C2—C1—H1B109.00O3—C13—H13A109.00
C6—C1—H1A109.00O3—C13—H13B109.00
C6—C1—H1B109.00O3—C13—H13C109.00
H1A—C1—H1B108.00H13A—C13—H13B110.00
C1—C2—H2A109.00H13A—C13—H13C110.00
C1—C2—H2B109.00H13B—C13—H13C110.00
O1—S1—N1—C636.4 (3)C1—C2—C3—C454.1 (4)
O2—S1—N1—C6166.3 (3)C2—C3—C4—C553.2 (5)
C7—S1—N1—C679.9 (3)C3—C4—C5—C654.4 (5)
N1—S1—C7—C1265.7 (3)C4—C5—C6—N1177.6 (3)
O2—S1—C7—C8132.0 (3)C4—C5—C6—C155.4 (4)
N1—S1—C7—C8114.7 (3)S1—C7—C12—C11178.7 (3)
O1—S1—C7—C82.2 (3)C8—C7—C12—C111.7 (5)
O2—S1—C7—C1247.6 (3)S1—C7—C8—C9179.5 (3)
O1—S1—C7—C12177.4 (3)C12—C7—C8—C91.0 (5)
C13—O3—C10—C115.6 (6)C7—C8—C9—C100.4 (5)
C13—O3—C10—C9175.5 (4)C8—C9—C10—C111.1 (6)
S1—N1—C6—C1144.0 (3)C8—C9—C10—O3179.9 (3)
S1—N1—C6—C592.7 (3)O3—C10—C11—C12179.2 (4)
C2—C1—C6—N1177.5 (3)C9—C10—C11—C120.4 (6)
C6—C1—C2—C357.0 (4)C10—C11—C12—C71.1 (6)
C2—C1—C6—C557.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O2i0.85 (3)2.09 (3)2.913 (4)161 (3)
Symmetry code: (i) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC13H19NO3S
Mr269.36
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)296
a, b, c (Å)17.2644 (12), 20.4707 (16), 7.9139 (5)
V3)2796.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.29 × 0.12 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10601, 2704, 1945
Rint0.047
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.02
No. of reflections2704
No. of parameters167
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.27
Absolute structureFlack (1983), 829 Freidel pairs
Absolute structure parameter0.05 (12)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O2i0.85 (3)2.09 (3)2.913 (4)161 (3)
Symmetry code: (i) x+1/2, y, z1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University, Lahore.

References

First citationAkkurt, M., Mariam, I., Naseer, I., Khan, I. U. & Sharif, S. (2011). Acta Cryst. E67, o186.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAziz-ur-Rehman, Rafique, H., Akkurt, M., Dilber, N., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o1728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o1769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAziz-ur-Rehman, Siddiqa, A., Akkurt, M., Abbasi, M. A., Jahangir, M. & Khan, I. U. (2010). Acta Cryst. E66, o1682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGennarti, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl. 33, 2067–2069.  Google Scholar
First citationHanson, P. R., Probst, D. A., Robinson, R. E. & Yau, M. (1999). Tetrahedron Lett. 40, 4761–4763.  Web of Science CrossRef CAS Google Scholar
First citationKhan, I. U., Akkurt, M., Sharif, S. & Ahmad, W. (2010). Acta Cryst. E66, o3053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). Acta Cryst. E66, o786.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMoree, W. J., Van der Marel, G. A. & Liskamp, R. M. (1991). Tetrahedron Lett. 32, 409–411.  CrossRef CAS Web of Science Google Scholar
First citationOzbek, N., Katircioğlu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105–5109.  Web of Science CrossRef PubMed Google Scholar
First citationRough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc. 120, 10994–10995.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Pandeya, S. N., Khan, S. A., Stables, J., Rana, A., Alam, M., Arshad, M. F. & Bhat, M. A. (2007). Bioorg. Med. Chem. Lett. 17, 255–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o885-o886
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds